1
|
Akakuru OU, Xing J, Huang S, Iqbal ZM, Bryant S, Wu A, Trifkovic M. Leveraging Non-Radiative Transitions in Asphaltenes-Derived Carbon Dots for Cancer Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404591. [PMID: 39210655 PMCID: PMC11899496 DOI: 10.1002/smll.202404591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Cancer photothermal therapy leverages the capability of photothermal agents to convert light to heat for cancer cell ablation and necrosis. However, most conventional photothermal agents (Au, CuS, Pd, mesoporous silica nanoparticles, and indocyanine green dye) either face scalability challenges or photobleached upon prolonged irradiation which jeopardizes practical applications. Here, asphaltenes-derived carbon dots (ACDs, 5 nm) are rationally engineered as a low-cost and photostable photothermal agent with negligible in vivo cytotoxicity. The abundant water-solvating functional groups on the ACDs surface endows them with excellent water re-dispersibility that outperforms those of most commercial nanomaterials. Photothermal therapeutic property of the ACDs is mechanistically described by non-radiative transitions of excited electrons at 808 nm via internal conversions and vibrational relaxations. Consequently, the ACDs offer cancer photothermal therapy in mice within 15 days post-exposure to one-time near infrared irradiation. This pioneering study showcases the first utilization of asphaltenes-based materials for cancer therapy and is expected to arouse further utilization of such materials in various cancer theranostics.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum EngineeringSchulich School of EngineeringUniversity of CalgaryAlbertaT2N 1N4Canada
| | - Jie Xing
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and TechnologyZhejiang International Cooperation Base of Biomedical Materials Technology and ApplicationChinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and DevicesNingbo Cixi Institute of Biomedical EngineeringZhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Shuqi Huang
- Institute of Smart Biomedical MaterialsSchool of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Zubair M. Iqbal
- Institute of Smart Biomedical MaterialsSchool of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Steven Bryant
- Department of Chemical and Petroleum EngineeringSchulich School of EngineeringUniversity of CalgaryAlbertaT2N 1N4Canada
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and TechnologyZhejiang International Cooperation Base of Biomedical Materials Technology and ApplicationChinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and DevicesNingbo Cixi Institute of Biomedical EngineeringZhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Milana Trifkovic
- Department of Chemical and Petroleum EngineeringSchulich School of EngineeringUniversity of CalgaryAlbertaT2N 1N4Canada
| |
Collapse
|
2
|
Koirala P, Bhattarai P, Sriprablom J, Zhang R, Nirmal S, Nirmal N. Recent progress of functional nano-chitosan in pharmaceutical and biomedical applications: An updated review. Int J Biol Macromol 2025; 285:138324. [PMID: 39638188 DOI: 10.1016/j.ijbiomac.2024.138324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Chitosan is a deacylated derivative of chitin, which is a naturally occurring polysaccharide found in the shells of crustaceans. Chitosan's biocompatibility, physicochemical and mechanical properties qualify it as an excellent candidate for biomedical and pharmaceutical applications. Furthermore, the nanoengineering of chitosan enhances its functional and desirable properties for various applications. Additional functionalization of nano-chitosan is possible using various crosslinkers via chemical modification of hydroxyl or amino groups chitosan. This advanced functionalized nano-chitosan enables drug stability, site-specific delivery, controlled release, and sustainable pharmacodynamic properties. It is also used as a regenerative medicine for wound healing, bone and dental repair, biosensing and disease detection, tissue engineering, etc. Therefore, this review discusses the functionalization of nano-chitosan. A brief discussion is provided on the applications of nano-chitosan in the pharmaceutical industry such as drug carriers, targeted delivery, and controlled release, as well as in the biomedical industry, including wound healing, bone, and dental repair. Additionally, the disease detection using nano-chitosan has been investigated. Lastly, future perspectives and concluding remarks are presented.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Prabina Bhattarai
- Department of Health and Human Development, Montana State University, Bozeman, MT, USA
| | - Jiratthitikan Sriprablom
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Siddhesh Nirmal
- Maharashtra Institute of Technology, Chatrapati Sambhaji Nagar, Aurangabad, Maharashtra 431010, India
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
3
|
Thirupathi K, Santhamoorthy M, Suresh R, Wadaan MA, Lin MC, Kim SC, Kumarasamy K, Phan TTV. Synthesis of bis(2-aminoethyl)amine functionalized mesoporous silica (SBA-15) adsorbent for selective adsorption of Pb 2+ ions from wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:357. [PMID: 39083123 DOI: 10.1007/s10653-024-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Rapid growth in the industry has released large quantities of contaminants, particularly metal discharges into the environment. Heavy metal poisoning in water bodies has become a major problem due to its toxicity to living organisms. In this study, we developed a 3-chloropropyl triethoxysilane incorporated mesoporous silica nanoparticle (SBA-15) based adsorbent utilizing the sol-gel process and Pluronic 123 (P123) as a structure-directing surfactant. Furthermore, the produced SBA-15 NPs were functionalized with bis(2-aminoethyl)amine (BDA) using the surface grafting approach. The physical and chemical properties of the prepared SBA-15@BDA NPs were determined using a variety of instruments, including small-angle X-ray diffraction (SAXS), Fourier-transform infrared (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption, thermogravimetric, particle size distribution, and zeta potential analysis. The MSN has a large surface area of up to 574 m2/g, a pore volume of 0.57 cm3/g, and a well-ordered mesoporous nanostructure with an average pore size of 3.6 nm. The produced SBA-15@BDA NPs were used to adsorb selectively to lead (Pd2+) ions from an aqueous solution. The adsorption study was performed under various conditions, including the influence of solution pH, adsorbent dose, adsorption kinetics, adsorption selectivity in the presence of competing metal ions, and reusability. The results of the kinetic study demonstrated that SBA-15@BDA NPs absorb selectively Pb2+ ions via chemisorption. The SBA-15@BDA NPs show Pb2+ ions with a maximum adsorption capacity of ~ 88% and an adsorbed quantity of approximately ~ 112 mg/g from the studied aqueous solution. The adsorption mechanism relies on coordination bonding between Pb2+ ions and surface-functionalized amine groups on SBA-15@BDA NPs. Furthermore, the proposed SBA-15@BDA NPs adsorbent demonstrated excellent reusability over five cycles without significantly reducing adsorption performance. As a consequence, SBA-15@BDA NPs might serve as an effective adsorbent for the selective removal of Pb2+ ions from aqueous effluent.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam, Dharmapuri, Tamil Nadu, 635111, India
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Ranganathan Suresh
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, R.O.C
| | - Seong-Cheol Kim
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, R.O.C..
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam.
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam.
| |
Collapse
|
4
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
5
|
Mondal A, Nayak AK, Chakraborty P, Banerjee S, Nandy BC. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics 2023; 15:2064. [PMID: 37631276 PMCID: PMC10459560 DOI: 10.3390/pharmaceutics15082064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751 003, India;
| | - Prithviraj Chakraborty
- Department of Pharmaceutics, Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781 035, India;
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India;
| | - Bankim Chandra Nandy
- Department of Pharmaceutics, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India;
| |
Collapse
|
6
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Exploration on in vitro bioactivity, antibacterial activity and corrosion behavior of Strontium doped Hydroxyapatite reinforced chitosan-polypyrrole/TNT for bone regeneration. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
9
|
Khodadadi Yazdi M, Zarrintaj P, Khodadadi A, Arefi A, Seidi F, Shokrani H, Saeb MR, Mozafari M. Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydr Polym 2022; 278:118998. [PMID: 34973800 DOI: 10.1016/j.carbpol.2021.118998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023]
Abstract
Architecting an appropriate platform for biomedical applications requires setting a balance between simplicity and complexity. Polysaccharides (PSAs) play essential roles in our life in food resources, structural materials, and energy storage capacitors. Moreover, the diversity and abundance of PSAs have made them an indispensable part of food ingredients and cosmetics. PSA-based hydrogels have been extensively reviewed in biomedical applications. These hydrogels can be designed in different forms to show optimum performance. For instance, electroactive PSA-based hydrogels respond under an electric stimulus. Such performance can be served in stimulus drug release and determining cell fate. This review classifies and discusses the structure, properties, and applications of the most important polysaccharide-based electroactive hydrogels (agarose, alginate, chitosan, cellulose, and dextran) in medicine, focusing on their usage in tissue engineering, flexible electronics, and drug delivery applications.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Canada
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Hanieh Shokrani
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Keša P, Paúrová M, Babič M, Heizer T, Matouš P, Turnovcová K, Mareková D, Šefc L, Herynek V. Photoacoustic Properties of Polypyrrole Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2457. [PMID: 34578773 PMCID: PMC8470055 DOI: 10.3390/nano11092457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
Photoacoustic imaging, an emerging modality, provides supplemental information to ultrasound imaging. We investigated the properties of polypyrrole nanoparticles, which considerably enhance contrast in photoacoustic images, in relation to the synthesis procedure and to their size. We prepared polypyrrole nanoparticles by water-based redox precipitation polymerization in the presence of ammonium persulphate (ratio nPy:nOxi 1:0.5, 1:1, 1:2, 1:3, 1:5) or iron(III) chloride (nPy:nOxi 1:2.3) acting as an oxidant. To stabilize growing nanoparticles, non-ionic polyvinylpyrrolidone was used. The nanoparticles were characterized and tested as a photoacoustic contrast agent in vitro on an imaging platform combining ultrasound and photoacoustic imaging. High photoacoustic signals were obtained with lower ratios of the oxidant (nPy:nAPS ≥ 1:2), which corresponded to higher number of conjugated bonds in the polymer. The increasing portion of oxidized structures probably shifted the absorption spectra towards shorter wavelengths. A strong photoacoustic signal dependence on the nanoparticle size was revealed; the signal linearly increased with particle surface. Coated nanoparticles were also tested in vivo on a mouse model. To conclude, polypyrrole nanoparticles represent a promising contrast agent for photoacoustic imaging. Variations in the preparation result in varying photoacoustic properties related to their structure and allow to optimize the nanoparticles for in vivo imaging.
Collapse
Affiliation(s)
- Peter Keša
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; (P.K.); (T.H.); (P.M.); (L.Š.)
| | - Monika Paúrová
- Institute of Macromolecular Chemistry, Czech Academy of Science, 162 06 Prague, Czech Republic; (M.P.); (M.B.)
| | - Michal Babič
- Institute of Macromolecular Chemistry, Czech Academy of Science, 162 06 Prague, Czech Republic; (M.P.); (M.B.)
| | - Tomáš Heizer
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; (P.K.); (T.H.); (P.M.); (L.Š.)
| | - Petr Matouš
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; (P.K.); (T.H.); (P.M.); (L.Š.)
| | - Karolína Turnovcová
- Institute of Experimental Medicine, Czech Academy of Science, 142 20 Prague, Czech Republic; (K.T.); (D.M.)
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Science, 142 20 Prague, Czech Republic; (K.T.); (D.M.)
- Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
| | - Luděk Šefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; (P.K.); (T.H.); (P.M.); (L.Š.)
| | - Vít Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; (P.K.); (T.H.); (P.M.); (L.Š.)
| |
Collapse
|
12
|
|
13
|
Doan VHM, Nguyen VT, Mondal S, Vo TMT, Ly CD, Vu DD, Ataklti GY, Park S, Choi J, Oh J. Fluorescence/photoacoustic imaging-guided nanomaterials for highly efficient cancer theragnostic agent. Sci Rep 2021; 11:15943. [PMID: 34354208 PMCID: PMC8342712 DOI: 10.1038/s41598-021-95660-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Imaging modalities combined with a multimodal nanocomposite contrast agent hold great potential for significant contributions in the biomedical field. Among modern imaging techniques, photoacoustic (PA) and fluorescence (FL) imaging gained much attention due to their non-invasive feature and the mutually supportive characteristic in terms of spatial resolution, penetration depth, imaging sensitivity, and speed. In this present study, we synthesized IR783 conjugated chitosan-polypyrrole nanocomposites (IR-CS-PPy NCs) as a theragnostic agent used for FL/PA dual-modal imaging. A customized FL and photoacoustic imaging system was constructed to perform required imaging experiments and create high-contrast images. The proposed nanocomposites were confirmed to have great biosafety, essentially a near-infrared (NIR) absorbance property with enhanced photostability. The in vitro photothermal results indicate the high-efficiency MDA-MB-231 breast cancer cell ablation ability of IR-CS-PPy NCs under 808 nm NIR laser irradiation. The in vivo PTT study revealed the complete destruction of the tumor tissues with IR-CS-PPy NCs without further recurrence. The in vitro and in vivo results suggest that the demonstrated nanocomposites, together with the proposed imaging systems could be an effective theragnostic agent for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Vu Hoang Minh Doan
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Thi Mai Thien Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dinh Dat Vu
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Gebremedhin Yonatan Ataklti
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jaeyeop Choi
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea.
- Ohlabs Corp., Busan, 48513, Republic of Korea.
| |
Collapse
|
14
|
Kumari S, Sharma N, Sahi SV. Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics 2021; 13:1174. [PMID: 34452135 PMCID: PMC8398544 DOI: 10.3390/pharmaceutics13081174] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
In this review, advancement in cancer therapy that shows a transition from conventional thermal therapies to laser-based photothermal therapies is discussed. Laser-based photothermal therapies are gaining popularity in cancer therapeutics due to their overall outcomes. In photothermal therapy, light is converted into heat to destruct the various types of cancerous growth. The role of nanoparticles as a photothermal agent is emphasized in this review article. Magnetic, as well as non-magnetic, nanoparticles have been effectively used in the photothermal-based cancer therapies. The discussion includes a critical appraisal of in vitro and in vivo, as well as the latest clinical studies completed in this area. Plausible evidence suggests that photothermal therapy is a promising avenue in the treatment of cancer.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, KY 42101-1080, USA;
| | - Shivendra V. Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| |
Collapse
|
15
|
Li Z, Li T, Zhang C, Ni JS, Ji Y, Sun A, Peng D, Wu W, Xi L, Li K. A Multispectral Photoacoustic Tracking Strategy for Wide-Field and Real-Time Monitoring of Macrophages in Inflammation. Anal Chem 2021; 93:8467-8475. [PMID: 34109798 DOI: 10.1021/acs.analchem.1c00690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is a common defensive response of the vascular system that involves the activation and mediation of immune cell and stem cell homing. However, it is usually hard to track and analyze the real-time status of these cell types toward the inflammation microenvironment in a large field of view with desired resolution. Here, we designed and synthesized near-infrared absorbing semiconducting polymer nanoparticles, BBT-TQP-NP (BTNPs), as the cell tracker and utilized their photoacoustic activity to unveil the targeting behaviors of macrophages, neutrophils, and mesenchymal stem cells to the inflamed sites in mice. Facilitated by multispectral optical-resolution photoacoustic microscopy (ORPAM), we can continuously monitor the in vivo photoacoustic signals of the labeled cells with cellular resolution in a wide-field (a circle field-of-view with a diameter of 9 mm). In addition, the highly sensitive observation of vascular microstructures and labeled cells can reveal the time-dependent accumulating behaviors of various cell types toward inflammation sites. As a result, our study offers an effective and promising tracking strategy to analyze the in vivo status and fate of functional cells in targeting the diseased/damaged regions.
Collapse
Affiliation(s)
- Zeshun Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jen-Shyang Ni
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaoyao Ji
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Aihui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dinglu Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weijun Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
17
|
Dhananjayan N, Viswanathan K, Jeyaraj W, Ayyakannu A, Karuppasamy G. Antibiofilm and antimicrobial efficacy evaluation of polypyrrole nanotubes embedded in aminated gum acacia based nanocomposite. IET Nanobiotechnol 2021; 15:441-454. [PMID: 34694716 PMCID: PMC8675859 DOI: 10.1049/nbt2.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
The sustainable development of natural polysaccharide-based hybrid composites is highly important for the effective replacement of metal nanoparticles in diverse applications. Here, polypyrrole nanotubes (PPyNTs) were embedded on the surface of aminated gum acacia (AGA) to produce ecofriendly nanocomposites for biomedical applications. The morphology of a PPyNT-enhanced AGA (PPyNT@AGA) hybrid nanocomposite was studied by scanning electron microscopy and transmission electron microscopy and their affirmed interactions were characterised by X-ray diffraction, Raman, Fourier transform-infrared and UV-visible spectroscopy. Interestingly, the prepared PPyNT@AGA nanocomposite exhibited 90% biofilm inhibition against gram-negative Pseudomonas aeruginosa, gram-positive Streptococcus pneumoniae and fungal strain Candida albicans with promising antimicrobial performance. This study establishes the good inhibition of a PPyNT@AGA hybrid composite against various microorganisms. The stability of the nanocomposite coupled with antimicrobial activity enables an effective strategy for diagnosing and controlling pathogens.
Collapse
Affiliation(s)
- Nathiya Dhananjayan
- Department of Bioelectronics and BiosensorsAlagappa UniversityKaraikudiIndia
| | | | - Wilson Jeyaraj
- Department of Bioelectronics and BiosensorsAlagappa UniversityKaraikudiIndia
| | | | | |
Collapse
|
18
|
Katowah DF, Mohammed GI, Adeosun WA, Asiri AM, Hussein MA. Impact of CuO nanoparticles on the performance of ternary conductive C-PANI/(OXSWCNTs-GO-CS)/CuO network as a selective chlorophenol sensor. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1904986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waheed A. Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
19
|
Biomaterials in treatment of Alzheimer's disease. Neurochem Int 2021; 145:105008. [PMID: 33684545 DOI: 10.1016/j.neuint.2021.105008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a non-recoverable progressive neurodegenerative disorder most prevalent but not limited to the old age population. After all the scientific efforts, there are still many unmet criteria and loopholes in available treatment and diagnostic strategies, limiting their efficacy. The poor drug efficacy is attributed to various biological hurdles, including blood-brain barrier (BBB) and peripheral side effects as most prominent ones and the lack of promising carriers to precisely deliver the drug to the brain by conserving its therapeutic potency. The increasing disease prevalence and unavailability of effective therapy calls for developing a more innovative, convenient and affordable way to treat AD. To fulfill such need, researchers explored various biomaterials to develop potential vectors or other forms to target the bioactives in the brain by preserving their inherent properties, improving the existing lacuna like poor solubility, permeability and bioavailability etc. and minimize the side effect. The unique characteristic properties of biomaterials are used to develop different drug carriers, surface modifying target active ligands, functional carriers, drug conjugate, biosensing probe, diagnostic tool and many more. The nanoparticulate system and other colloidal carriers like hydrogel and biodegradable scaffold can effectively target the drug moieties to the brain. Also, the use of different target-acting ligands and stimuli-responsive carriers assures the site-specificity and controlled release at the desired site by interaction with receptors and various exo- and endogenous stimuli. This review article has highlighted the application of biomaterials for targeting the drug to the brain and as promising diagnostic tools to detect the markers for better AD management. The work particularly focuses on the use of biomaterials as smart drug carriers including pH, thermo, photo, electro and magnetically triggered system; novel drug carriers for brain targeting including polymeric carriers (polymeric nanoparticle, dendrimer and polymeric micelle); lipid carrier (liposome, nanoemulsion, NLC and SLN); inorganic nanoparticles (quantum dots, gold nanoparticles etc.); and other drug vectors (hydrogel, biodegradable scaffold, and carbon nanotube) in treatment of AD. It also highlighted the application of some novel carrier systems and biomaterials as biosensor and other diagnostic tools for early and precise AD diagnosis.
Collapse
|
20
|
Akakuru OU, Xu C, Liu C, Li Z, Xing J, Pan C, Li Y, Nosike EI, Zhang Z, Iqbal ZM, Zheng J, Wu A. Metal-Free Organo-Theranostic Nanosystem with High Nitroxide Stability and Loading for Image-Guided Targeted Tumor Therapy. ACS NANO 2021; 15:3079-3097. [PMID: 33464053 DOI: 10.1021/acsnano.0c09590] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The desire for all-organic-composed nanoparticles (NPs) of considerable biocompatibility to simultaneously diagnose and treat cancer is undeniably interminable. Heretofore, metal-based agents dominate the landscape of available magnetic resonance imaging (MRI) contrast agents and photothermal therapeutic agents, but with associated metal-specific downsides. Here, an all-organic metal-free nanoprobe, whose appreciable biocompatibility is synergistically contributed by its tetra-organo-components, is developed as a viable alternative to metal-based probes for MRI-guided tumor-targeted photothermal therapy (PTT). This rationally entails a glycol chitosan (GC)-linked polypyrrole (PP) nanoscaffold that provides abundant primary and secondary amino groups for amidation with the carboxyl groups in a nitroxide radical (TEMPO) and folic acid (FA), to obtain GC-PP@TEMPO-FA NPs. Advantageously, the appreciably benign GC-PP@TEMPO-FA features high nitroxide loading (r1 = 1.58 mM-1 s-1) and in vivo nitroxide-reduction resistance, prolonged nitroxide-systemic circulation times, appreciable water dispersibility, potential photodynamic therapeutic and electron paramagnetic resonance imaging capabilities, considerable biocompatibility, and ultimately achieves a 17 h commensurate MRI contrast enhancement. Moreover, its GC component conveys a plethora of PP to tumor sites, where FA-mediated tumor targeting enables substantial NP accumulation with consequential near-complete tumor regression within 16 days in an MRI-guided PTT. The present work therefore promotes the engineering of organic-based metal-free biocompatible NPs in synergism, in furtherance of tumor-targeted image-guided therapy.
Collapse
Affiliation(s)
- Ozioma U Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis I Nosike
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Zubair M Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou 310018, China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| |
Collapse
|
21
|
Phan DT, Phan TTV, Bui NT, Park S, Choi J, Oh J. A portable device with low-power consumption for monitoring mouse vital signs during in vivo photoacoustic imaging and photothermal therapy. Physiol Meas 2021; 41:125011. [PMID: 32674080 DOI: 10.1088/1361-6579/aba6a1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to monitor the physiological changes and cytotoxic effects of exogenous contrast agents during photoacoustic imaging (PAI) and photothermal therapy (PTT). In this paper, a low-power telemetric device for mouse vital signs monitoring was designed and demonstrated. APPROACH The power consumption was optimized through hardware and software co-design with a 17% increased operating time compared with typical operation. To demonstrate the feasibility of the monitoring device, PAI and PTT experiments with chitosan-polypyrrole nanocomposites (CS-PPy NCs) as exogenous contrast agents were conducted. Herein, the physiological variation in groups of mice with different CS-PPy NC concentrations was observed and analyzed. MAIN RESULTS The experimental results indicated the influence of CS-PPy NCs and anesthesia on mouse vital signs in PAI and PTT. Additionally, the association between core temperature, heart rate, and saturation of peripheral oxygen (SpO2) during PAI and PTT was shown. The strong near-infrared absorbance of exogenous contrast agents could account for the increase in mouse core temperature and tumor temperature in this study. Furthermore, high cross-correlation values between core temperature, heart rate, and SpO2 were demonstrated to explain the fluctuation of mouse vital signs during PAI and PTT. SIGNIFICANCE A design of a vital signs monitoring device, with low power consumption, was introduced in this study. A high cross correlation coefficient of mouse vital signs and the effects of CS-PPy NCs were observed, which explained the mouse physiological variation during the PAI and PTT experiments.
Collapse
Affiliation(s)
- Duc Tri Phan
- Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Pukyong National University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Akakuru OU, Liu C, Iqbal MZ, Dar GI, Yang G, Qian K, Nosike EI, Xing J, Zhang Z, Li Y, Li J, Wu A. A Hybrid Organo-Nanotheranostic Platform of Superlative Biocompatibility for Near-Infrared-Triggered Fluorescence Imaging and Synergistically Enhanced Ablation of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002445. [PMID: 32954652 DOI: 10.1002/smll.202002445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The quest for an all-organic nanosystem with negligible cytotoxicity and remarkable in vivo tumor theranostic capability is inescapably unending. Hitherto, the landscape of available photothermal agents is dominated by metal-based nanoparticles (NPs) with attendant in vivo negatives. Here, an all-organic-composed theranostic nanosystem with outstanding biocompatibility for fluorescence image-guided tumor photothermal therapy, and as a potential alternative to metal-based photothermal agents is developed. This is rationally achieved by compartmentalizing indocyanine green (ICG) in glycol chitosan (GC)-polypyrrole (PP) nanocarrier to form hybrid ICG@GC-PP NPs (≈65 nm). The compartmentalization strategy, alongside the high photothermal conversion ability of PP jointly enhances the low photostability of free ICG. Advantageously, ICG@GC-PP is endowed with an impeccable in vivo performance by the well-known biocompatibility track records of its individual tri organo-components (GC, PP, and ICG). As a proof of concept, ICG@GC-PP NPs enables a sufficiently prolonged tumor diagnosis by fluorescence imaging up to 20 h post-injection. Furthermore, owing to the complementary heating performances of PP and ICG, ICG@GC-PP NPs-treated mice by one-time near-infrared irradiation exhibit total tumor regression within 14 days post-treatment. Therefore, leveraging the underlying benefits of this study will help to guide the development of new all-organic biocompatible systems in synergism, for safer tumor theranostics.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou, 310018, China
| | - Gohar Ijaz Dar
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gao Yang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Kun Qian
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis Ikechukwu Nosike
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| |
Collapse
|
23
|
Getiren B, Çıplak Z, Gökalp C, Yıldız N. Novel approach in synthesizing ternary GO‐Fe
3
O
4
‐PPy nanocomposites for high Photothermal performance. J Appl Polym Sci 2020. [DOI: 10.1002/app.48837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bengü Getiren
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| | - Zafer Çıplak
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| | - Ceren Gökalp
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| | - Nuray Yıldız
- Department of Chemical EngineeringAnkara University, Faculty of Engineering 06100 Tandoğan Ankara Turkey
| |
Collapse
|
24
|
Adeosun WA, Asiri AM, Marwani HM. Fabrication of Conductive Polypyrrole Doped Chitosan Thin Film for Sensitive Detection of Sulfite in Real Food and Biological Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.201900765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Waheed A. Adeosun
- Centre of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University P.O Box 80203 Jeddah 21589 Saudi Arabia
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University P.O Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Centre of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University P.O Box 80203 Jeddah 21589 Saudi Arabia
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University P.O Box 80203 Jeddah 21589 Saudi Arabia
| | - Hadi M. Marwani
- Centre of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University P.O Box 80203 Jeddah 21589 Saudi Arabia
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University P.O Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
25
|
Abstract
Photoacoustic imaging has demonstrated its potential for diagnosis over the last few decades. In recent years, its unique imaging capabilities, such as detecting structural, functional and molecular information in deep regions with optical contrast and ultrasound resolution, have opened up many opportunities for photoacoustic imaging to be used during image-guided interventions. Numerous studies have investigated the capability of photoacoustic imaging to guide various interventions such as drug delivery, therapies, surgeries, and biopsies. These studies have demonstrated that photoacoustic imaging can guide these interventions effectively and non-invasively in real-time. In this minireview, we will elucidate the potential of photoacoustic imaging in guiding active and passive drug deliveries, photothermal therapy, and other surgeries and therapies using endogenous and exogenous contrast agents including organic, inorganic, and hybrid nanoparticles, as well as needle-based biopsy procedures. The advantages of photoacoustic imaging in guided interventions will be discussed. It will, therefore, show that photoacoustic imaging has great potential in real-time interventions due to its advantages over current imaging modalities like computed tomography, magnetic resonance imaging, and ultrasound imaging.
Collapse
Affiliation(s)
- Madhumithra S Karthikesh
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Xinmai Yang
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
26
|
Mei S, Kochovski Z, Roa R, Gu S, Xu X, Yu H, Dzubiella J, Ballauff M, Lu Y. Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation. NANO-MICRO LETTERS 2019; 11:83. [PMID: 34138056 PMCID: PMC7770829 DOI: 10.1007/s40820-019-0314-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 06/12/2023]
Abstract
Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.
Collapse
Affiliation(s)
- Shilin Mei
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Zdravko Kochovski
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Rafael Roa
- Department of Applied Physics I, University of Málaga, 29071, Málaga, Spain
| | - Sasa Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210000, People's Republic of China
| | - Xiaohui Xu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Hongtao Yu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Joachim Dzubiella
- Institute of Physics, University of Freiburg, 79104, Freiburg, Germany
- Simulation of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489, Berlin, Germany
| | - Yan Lu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany.
- Institute of Chemistry, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
27
|
Behzadpour N, Akbari N, Sattarahmady N. Photothermal inactivation of methicillin-resistant Staphylococcus aureus: anti-biofilm mediated by a polypyrrole-carbon nanocomposite. IET Nanobiotechnol 2019; 13:800-807. [PMID: 31625519 PMCID: PMC8676018 DOI: 10.1049/iet-nbt.2018.5340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/01/2019] [Accepted: 02/07/2019] [Indexed: 04/05/2024] Open
Abstract
Widespread resistance to antibiotics amongst pathogens has become a tremendous challenge of high morbidity and mortality rates which increases the needs to exploring novel methods of treatment. An efficient antimicrobial procedure to root out pathogenic bacteria is photothermal therapy. In this study, antimicrobial effects of a polypyrrole-carbon nanocomposite (PPy-C) upon laser irradiation in order to destroy the pathogenic gram-positive bacterium, methicillin-resistant Staphylococcus aureus (MRSA) were assessed. The bacterial cells were incubated with 500, 750 and 1000 μg ml-1 concentrations of PPy-C and irradiated with an 808-nm laser at a power density of 1.0 W cm-2. To indicate the biocompatibility and toxic effect of the nanocomposite without and with laser irradiation, the authors counted the number of CFUs and compared it to an untreated sample. Antibacterial mechanisms of PPy-C were assessed through temperature increment, reactive oxygen species production, and protein and DNA leakages. Photothermal heating assay showed that 26°C temperature increases in the presence of 1000 µg ml-1 PPy-C led to >98% killing of MRSA. Furthermore, 20 min radiation of near-infrared light to PPy-C in different concentrations indicated destruction and reduction in the MRSA biofilm formation. Therefore, PPy-C was introduced as a photothermal absorber with a bactericidal effect in MRSA.
Collapse
Affiliation(s)
- Niloufar Behzadpour
- Department of Medical Physics, School of Medicine, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Akbari
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Lin B, Dun G, Jin D, Du Y. Development of polypyrrole/collagen/nano-strontium substituted bioactive glass composite for boost sciatic nerve rejuvenation in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3423-3430. [DOI: 10.1080/21691401.2019.1638794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bo Lin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Guoqing Dun
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dongzhu Jin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yaowu Du
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
29
|
Shan D, Ma C, Yang J. Enabling biodegradable functional biomaterials for the management of neurological disorders. Adv Drug Deliv Rev 2019; 148:219-238. [PMID: 31228483 PMCID: PMC6888967 DOI: 10.1016/j.addr.2019.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of patients are being diagnosed with neurological diseases, but are rarely cured because of the lack of curative therapeutic approaches. This situation creates an urgent clinical need to develop effective diagnosis and treatment strategies for repair and regeneration of injured or diseased neural tissues. In this regard, biodegradable functional biomaterials provide promising solutions to meet this demand owing to their unique responsiveness to external stimulation fields, which enable neuro-imaging, neuro-sensing, specific targeting, hyperthermia treatment, controlled drug delivery, and nerve regeneration. This review discusses recent progress in the research and development of biodegradable functional biomaterials including electroactive biomaterials, magnetic materials and photoactive biomaterials for the management of neurological disorders with emphasis on their applications in bioimaging (photoacoustic imaging, MRI and fluorescence imaging), biosensing (electrochemical sensing, magnetic sensing and opical sensing), and therapy strategies (drug delivery, hyperthermia treatment, and tissue engineering). It is expected that this review will provide an insightful discussion on the roles of biodegradable functional biomaterials in the diagnosis and treatment of neurological diseases, and lead to innovations for the design and development of the next generation biodegradable functional biomaterials.
Collapse
Affiliation(s)
- Dingying Shan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
30
|
Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold Nanoparticles for Photothermal Cancer Therapy. Front Chem 2019; 7:167. [PMID: 31024882 PMCID: PMC6460051 DOI: 10.3389/fchem.2019.00167] [Citation(s) in RCA: 463] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Gold is a multifunctional material that has been utilized in medicinal applications for centuries because it has been recognized for its bacteriostatic, anticorrosive, and antioxidative properties. Modern medicine makes routine, conventional use of gold and has even developed more advanced applications by taking advantage of its ability to be manufactured at the nanoscale and functionalized because of the presence of thiol and amine groups, allowing for the conjugation of various functional groups such as targeted antibodies or drug products. It has been shown that colloidal gold exhibits localized plasmon surface resonance (LPSR), meaning that gold nanoparticles can absorb light at specific wavelengths, resulting in photoacoustic and photothermal properties, making them potentially useful for hyperthermic cancer treatments and medical imaging applications. Modifying gold nanoparticle shape and size can change their LPSR photochemical activities, thereby also altering their photothermal and photoacoustic properties, allowing for the utilization of different wavelengths of light, such as light in the near-infrared spectrum. By manufacturing gold in a nanoscale format, it is possible to passively distribute the material through the body, where it can localize in tumors (which are characterized by leaky blood vessels) and be safely excreted through the urinary system. In this paper, we give a quick review of the structure, applications, recent advancements, and potential future directions for the utilization of gold nanoparticles in cancer therapeutics.
Collapse
Affiliation(s)
| | - Jee-Hyun Yoon
- Department of Herbology, College of Korean Medicine, Woosuk UniversityJeonju, South Korea
| | - Na-Eun Ryu
- School of Integrative Engineering, Chung-Ang UniversitySeoul, South Korea
| | - Dong-Jin Lim
- Otolaryngology Head and Neck Surgery, University of Alabama at BirminghamBirmingham, AL, United States
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang UniversitySeoul, South Korea
| |
Collapse
|
31
|
Lee C, Lim K, Kim SS, Thien LX, Lee ES, Oh KT, Choi HG, Youn YS. Near infrared light-responsive heat-emitting hemoglobin hydrogels for photothermal cancer therapy. Colloids Surf B Biointerfaces 2019; 176:156-166. [DOI: 10.1016/j.colsurfb.2018.12.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
|
32
|
Chen Q, Guo H, Qi W, Gan Q, Yang L, Ke B, Chen X, Jin T, Xi L. Assessing hemorrhagic shock: Feasibility of using an ultracompact photoacoustic microscope. JOURNAL OF BIOPHOTONICS 2019; 12:e201800348. [PMID: 30421586 DOI: 10.1002/jbio.201800348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 05/22/2023]
Abstract
Hemorrhagic shock, as an important clinical issue, is regarding as a critical disease with a high mortality rate. Unfortunately, existing clinical technologies are inaccessible to assess the hemorrhagic shock via hemodynamics in microcirculation. Here, we propose an ultracompact photoacoustic microscope to assess hemorrhagic shock using a rat model and demonstrate its clinical feasibility by visualizing buccal microcirculation of healthy volunteers. Both functional and morphological features of the microvascular network including concentration of total hemoglobin (CHbT ), number of blood vessels (VN), small vascular density (SVD) and vascular diameter (VD) were derived to assess the microvascular hemodynamics of different organs. Animal studies show the feasibility of the proposed tool to assess and stage the hemorrhagic shock via microcirculation. in vivo oral imaging of healthy volunteers indicates the translational possibility of this technique for clinical evaluation of hemorrhagic shock.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Gan
- Department of Neurosurgery, West China Hospital Sichuan University, Chengdu, China
| | - Lei Yang
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu, China
| | - Bowen Ke
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu, China
| | - Xingxing Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
Albumin-functionalized CuFeS 2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:179-189. [PMID: 31029311 DOI: 10.1016/j.msec.2019.03.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Multimodal therapy is an emerging medical intervention to overcome the current limitation in cancer therapy combining treatment modalities with different mechanisms of action to eradicate tumors. This study demonstrates a targeted multifunctional bovine serum albumin (BSA)-functionalized CuFeS2/chlorin e6 (Ce6) for synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) effects. The CuFeS2 nanocrystals were synthesized through a simple heating-up approach and transferred into an aqueous phase using BSA in an ultrasonic-assisted microemulsion method. The as-prepared CuFeS2@BSA nanoparticles further conjugated with folic acid (FA) followed by attachment of Ce6 to form the Ce6:CuFeS2@BSA-FA nanohybrid with improved solubility and strong near-infrared (NIR) absorbance and fluorescence. It is the first report to fabricate the targeted Ce6:CuFeS2@BSA-FA hybrid and evaluates their synergistic PTT/PDT effect using a single laser. The Ce6:CuFeS2@BSA-FA hybrid showed lower toxicity in vitro (HeLa and HepG2 cells) and in vivo (zebrafish embryos), while they are selectively recognized and internalized by HeLa cells that over-express folate receptors. Compared to each modality applied separately, the combined single-laser-induced PTT and PDT treatment showed the enhanced generation of heat and reactive oxygen species (ROS) with synergistic cancer killing under 671 nm laser irradiation (10 min, 1 W/cm2). As a biocompatible targeted nanoprobe, the multifunctional nanohybrid holds promise in combined PDT/PTT synergistic therapy to achieve better efficacy.
Collapse
|
34
|
Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog 2019; 128:363-373. [DOI: 10.1016/j.micpath.2019.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
|
35
|
Chiang CW, Chuang EY. Biofunctional core-shell polypyrrole-polyethylenimine nanocomplex for a locally sustained photothermal with reactive oxygen species enhanced therapeutic effect against lung cancer. Int J Nanomedicine 2019; 14:1575-1585. [PMID: 30880966 PMCID: PMC6400129 DOI: 10.2147/ijn.s163299] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Polymeric delivery systems have been elucidated over the last few years as an approach of achieving high therapeutic effect to the local site of malignant disease patients who have cancer. Polypyrrole (Ppy) is a potential organic conducting polymer which has long been recognized as a versatile material due to its excellent stability, conductive properties, and great absorbance in the range of near-infrared (NIR). It is tremendously versatile for use in various biomedical fields such as cancer therapy. NIR irradiation-activated treatment platform technologies are now being considered to be novel and exciting options in potential nanomedicine. However, the realistic photothermal use of Ppy-applied nanomaterials is yet in its early phase, and there are a few disadvantages of Ppy, such as its water insolubility. In the clinic, the common approach for treatment of lung cancer is the delivery of therapeutic active substances through intratumoral administration. Nevertheless, the tumor uptake, regional retention, mechanism of treatment, and tissue organ penetration regarding the developed strategy of this nanomaterial with photothermal hyperthermia are important issues for exerting effective cancer therapy. MATERIALS AND METHODS In this study, we developed a cationic Ppy-polyethylenimine nanocomplex (NC) with photothermal hyperthermia to study its physicochemical characteristics, including size distribution, zeta potential, and transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared morphology. We also examined the cellular uptake effect on lung cancer cells, the photothermal properties, intracellularly generated reactive oxygen species (ROS), and cytotoxicity. RESULTS The results suggested that this nanocarrier system was able to effectively attach onto lung cancer cells for subsequent endocytosis. The NCs taken up were able to absorb NIR and then converted the NIR light into local hyperthermia with its intracellular photothermal performance to provide local hyperthermic treatment. This regionally generated hyperthermia also induced ROS formation and improved the killing of lung cancer cells as a promising local photothermal therapy. CONCLUSION This development of a nanocarrier would bring a novel therapeutic strategy for lung cancer in the future.
Collapse
Affiliation(s)
- Chih-Wei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,
| |
Collapse
|
36
|
Qiao H, Jia J, Chen W, Di B, Scherman OA, Hu C. Magnetic Regulation of Thermo-Chemotherapy from a Cucurbit[7]uril-Crosslinked Hybrid Hydrogel. Adv Healthc Mater 2019; 8:e1801458. [PMID: 30548830 DOI: 10.1002/adhm.201801458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 12/27/2022]
Abstract
The fabrication, characterization, and therapy efficiency of a noncovalent-bonded hydrogel network, which is assembled by utilizing cucurbit[7]uril as a supramolecular linker to "stick" superparamagnetic γ-Fe2 O3 nanoparticles onto the polymer backbone of catechol-functionalized chitosan are described. The unique barrel-shaped structure of cucurbit[7]uril not only facilitates host-guest recognition with the catechol derivatives, but also forms robust electrostatic interactions between its carbonyl portals and the γ-Fe2 O3 nanoparticles in a supramolecular manner, which leaves the physical and chemical properties of the nanoparticles intact. The γ-Fe2 O3 nanoparticles display vibrational movement and heat generation under an alternating magnetic field, endowing the formed hybrid supramolecular hydrogel with both thermo- and chemotherapy modalities, which are demonstrated both in vitro and in vivo. Here, a facile strategy is introduced to construct noncovalent interactions between a polymer matrix and the incorporated nanoparticles, which is amendable to a wide range of biomedical and industrial applications.
Collapse
Affiliation(s)
- Haishi Qiao
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| | - Jing Jia
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical University Nanjing 210009 China
| | - Wei Chen
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| | - Bin Di
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical University Nanjing 210009 China
| | - Oren A. Scherman
- Melville Laboratory for Polymer SynthesisDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Chi Hu
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
37
|
Vines JB, Lim DJ, Park H. Contemporary Polymer-Based Nanoparticle Systems for Photothermal Therapy. Polymers (Basel) 2018; 10:E1357. [PMID: 30961282 PMCID: PMC6401975 DOI: 10.3390/polym10121357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Abstract
Current approaches for the treatment of cancer, such as chemotherapy, radiotherapy, immunotherapy, and surgery, are limited by various factors, such as inadvertent necrosis of healthy cells, immunological destruction, or secondary cancer development. Hyperthermic therapy is a promising strategy intended to mitigate many of the shortcomings associated with traditional therapeutic approaches. However, to utilize this approach effectively, it must be targeted to specific tumor sites to prevent adverse side effects. In this regard, photothermal therapy, using intravenously-administered nanoparticle materials capable of eliciting hyperthermic effects in combination with the precise application of light in the near-infrared spectrum, has shown promise. Many different materials have been proposed, including various inorganic materials such as Au, Ag, and Germanium, and C-based materials. Unfortunately, these materials are limited by concerns about accumulation and potential cytotoxicity. Polymer-based nanoparticle systems have been investigated to overcome limitations associated with traditional inorganic nanoparticle systems. Some of the materials that have been investigated for this purpose include polypyrrole, poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), polydopamine, and polyaniline. The purpose of this review is to summarize these contemporary polymer-based nanoparticle technologies to acquire an understanding of their current applications and explore the potential for future improvements.
Collapse
Affiliation(s)
- Jeremy B Vines
- Organogenesis, Surgical and Sports Medicine, Birmingham, AL 35216, USA.
| | - Dong-Jin Lim
- Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
38
|
Sun H, Lv F, Liu L, Gu Q, Wang S. Conjugated Polymer Materials for Photothermal Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800057] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Han Sun
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100910 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100910 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100910 P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100910 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
39
|
Phan TTV, Bui NQ, Cho SW, Bharathiraja S, Manivasagan P, Moorthy MS, Mondal S, Kim CS, Oh J. Photoacoustic Imaging-Guided Photothermal Therapy with Tumor-Targeting HA-FeOOH@PPy Nanorods. Sci Rep 2018; 8:8809. [PMID: 29891947 PMCID: PMC5995888 DOI: 10.1038/s41598-018-27204-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer theragnosis agents with both cancer diagnosis and therapy abilities would be the next generation of cancer treatment. Recently, nanomaterials with strong absorption in near-infrared (NIR) region have been explored as promising cancer theragnosis agents for bio-imaging and photothermal therapy (PTT). Herein, we reported the synthesis and application of a novel multifunctional theranostic nanoagent based on hyaluronan (HA)-coated FeOOH@polypyrrole (FeOOH@PPy) nanorods (HA-FeOOH@PPy NRs) for photoacoustic imaging (PAI)-guided PTT. The nanoparticles were intentionally designed with rod-like shape and conjugated with tumor-targeting ligands to enhance the accumulation and achieve the entire tumor distribution of nanoparticles. The prepared HA-FeOOH@PPy NRs showed excellent biocompatible and physiological stabilities in different media. Importantly, HA-FeOOH@PPy NRs exhibited strong NIR absorbance, remarkable photothermal conversion capability, and conversion stability. Furthermore, HA-FeOOH@PPy NRs could act as strong contrast agents to enhance PAI, conducting accurate locating of cancerous tissue, as well as precise guidance for PTT. The in vitro and in vivo photothermal anticancer activity results of the designed nanoparticles evidenced their promising potential in cancer treatment. The tumor-bearing mice completely recovered after 17 days of PTT treatment without obvious side effects. Thus, our work highlights the great potential of using HA-FeOOH@PPy NRs as a theranostic nanoplatform for cancer imaging-guided therapy.
Collapse
Affiliation(s)
- Thi Tuong Vy Phan
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nhat Quang Bui
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Subramaniyan Bharathiraja
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Panchanathan Manivasagan
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Madhappan Santha Moorthy
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
40
|
Kumar M, Brar A, Vivekanand V, Pareek N. Bioconversion of Chitin to Bioactive Chitooligosaccharides: Amelioration and Coastal Pollution Reduction by Microbial Resources. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:269-281. [PMID: 29637379 DOI: 10.1007/s10126-018-9812-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Chitin-metabolizing products are of high industrial relevance in current scenario due to their wide biological applications, relatively lower cost, greater abundance, and sustainable supply. Chitooligosaccharides have remarkably wide spectrum of applications in therapeutics such as antitumor agents, immunomodulators, drug delivery, gene therapy, wound dressings, as chitinase inhibitors to prevent malaria. Hypocholesterolemic and antimicrobial activities of chitooligosaccharides make them a molecule of choice for food industry, and their functional profile depends on the physicochemical characteristics. Recently, chitin-based nanomaterials are also gaining tremendous importance in biomedical and agricultural applications. Crystallinity and insolubility of chitin imposes a major hurdle in the way of polymer utilization. Chemical production processes are known to produce chitooligosaccharides with variable degree of polymerization and properties along with ecological concerns. Biological production routes mainly involve chitinases, chitosanases, and chitin-binding proteins. Development of bio-catalytic production routes for chitin will not only enhance the production of commercially viable chitooligosaccharides with defined molecular properties but will also provide a means to combat marine pollution with value addition.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India
| | - Amandeep Brar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India.
| |
Collapse
|
41
|
Chen J, Li W, Zhou L, Zhou Z, Tan G, Chen D, Wang R, Yu P, Ning C. A built-in electric field with nanoscale distinction for cell behavior regulation. J Mater Chem B 2018; 6:2723-2727. [PMID: 32254224 DOI: 10.1039/c8tb00063h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To mimic the electrical properties of collagen fibrils on a bone surface, a built-in nanoscale electric field is formed on the surface of a polypyrrole (PPy) coating-decorated potassium-sodium niobate (KNN) piezoceramic. With the fabrication strategy, the piezoelectricity of KNN after polarization results in the formation of an electric field on the surface, which could be regulated by adjusting the polarization process. Then, conductive PPy nanoarrays (CPNAs) are obtained on the surfaces of the KNN piezoceramics. The conductive PPy transports the electric field to the coating surface, and the nanoarray morphology results in variations in the surface potential, leading to a built-in nanoscale electric field. Biological characterization indicates that CPNAs exhibit acceptable biocompatibility. Moreover, the nanoscale electric field regulates cell behavior, and the relatively high surface potential promotes cell proliferation, cell attachment and osteogenic differentiation.
Collapse
Affiliation(s)
- Junqi Chen
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today 2018; 23:1115-1125. [PMID: 29481876 DOI: 10.1016/j.drudis.2018.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/18/2018] [Accepted: 02/19/2018] [Indexed: 01/11/2023]
Abstract
In recent years, research has focused on the development of smart nanocarriers that can respond to specific stimuli. Among the various stimuli-responsive platforms for cancer therapy, near-infrared (NIR) light (700-1000nm)-responsive nanocarriers have gained considerable interest because of their deeper tissue penetration capacity, precisely controlled drug release, and minimal damage towards normal tissues. In this review, we outline various therapeutic applications of NIR-responsive nanocarriers in drug delivery, photothermal therapy (PTT), photodynamic therapy (PDT), and bioimaging. We also highlight recent trends towards NIR-responsive combinatorial therapy and multistimuli-responsive nanocarriers for improving therapeutic outcomes.
Collapse
|
43
|
Bui NQ, Cho SW, Moorthy MS, Park SM, Piao Z, Nam SY, Kang HW, Kim CS, Oh J. In vivo photoacoustic monitoring using 700-nm region Raman source for targeting Prussian blue nanoparticles in mouse tumor model. Sci Rep 2018; 8:2000. [PMID: 29386518 PMCID: PMC5792574 DOI: 10.1038/s41598-018-20139-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022] Open
Abstract
Photoacoustic imaging (PAI) is a noninvasive imaging tool to visualize optical absorbing contrast agents. Due to high ultrasonic resolution and superior optical sensitivity, PAI can be used to monitor nanoparticle-mediated cancer therapy. The current study synthesized Food and Drug Administration-approved Prussian blue (PB) in the form of nanoparticles (NPs) with the peak absorption at 712 nm for photoacoustically imaging tumor-bearing mouse models. To monitor PB NPs from the background tissue in vivo, we also developed a new 700-nm-region stimulated Raman scattering (SRS) source (pulse energy up to 200 nJ and repetition rate up to 50 kHz) and implemented optical-resolution photoacoustic microscopy (OR-PAM). The SRS-assisted OR-PAM system was able to monitor PB NPs in the tumor model with micrometer resolution. Due to strong light absorption at 712 nm, the developed SRS light yielded a two-fold higher contrast from PB NPs, in comparison with a 532-nm pumping source. The proposed laser source involved cost-effective and simple system implementation along with high compatibility with the fiber-based OR-PAM system. The study highlights the OR-PAM system in conjunction with the tunable-color SRS light source as a feasible tool to assist NP-mediated cancer therapy.
Collapse
Affiliation(s)
- Nhat Quang Bui
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Madhappan Santha Moorthy
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Zhonglie Piao
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.,Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, 02114, USA
| | - Seung Yun Nam
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea.,Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea.,Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea. .,Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
44
|
Santha Moorthy M, Hoang G, Subramanian B, Bui NQ, Panchanathan M, Mondal S, Thi Tuong VP, Kim H, Oh J. Prussian blue decorated mesoporous silica hybrid nanocarriers for photoacoustic imaging-guided synergistic chemo-photothermal combination therapy. J Mater Chem B 2018; 6:5220-5233. [DOI: 10.1039/c8tb01214h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, Prussian blue decorated mesoporous silica PB@MSH-EDA NPs are fabricated for efficient photoacoustic imaging guided chemo-photothermal combination therapy.
Collapse
Affiliation(s)
| | - Giang Hoang
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | | | - Nhat Quang Bui
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University
- Busan 48513
- Korea
| | | | - Sudip Mondal
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | - Vy Phan Thi Tuong
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University
- Busan 48513
- Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University
- Busan 48513
| |
Collapse
|
45
|
Yang Y, Wang C, Tian C, Guo H, Shen Y, Zhu M. Fe3O4@MnO2@PPy nanocomposites overcome hypoxia: magnetic-targeting-assisted controlled chemotherapy and enhanced photodynamic/photothermal therapy. J Mater Chem B 2018; 6:6848-6857. [DOI: 10.1039/c8tb02077a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, a multifunctional nanocomposite composed by a core of iron oxide (Fe3O4) and two shells of manganese dioxide (MnO2) and polypyrrole (PPy) was successfully designed and synthesized for drug delivery and magnetic targeting assisted synergistic effects of chemotherapy and improved PDT/PTT.
Collapse
Affiliation(s)
- Ying Yang
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Modern Bio-manufacture
- Anhui University
- Hefei 230601
- P. R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Modern Bio-manufacture
- Anhui University
- Hefei 230601
- P. R. China
| | - Chen Tian
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Modern Bio-manufacture
- Anhui University
- Hefei 230601
- P. R. China
| | - Hailing Guo
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Modern Bio-manufacture
- Anhui University
- Hefei 230601
- P. R. China
| | - Yuhua Shen
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Modern Bio-manufacture
- Anhui University
- Hefei 230601
- P. R. China
| | - Manzhou Zhu
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Modern Bio-manufacture
- Anhui University
- Hefei 230601
- P. R. China
| |
Collapse
|
46
|
Jiang Q, Zeng W, Zhang C, Meng Z, Wu J, Zhu Q, Wu D, Zhu H. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag 2S core@shell structures with gradually varying shell thickness. Sci Rep 2017; 7:17782. [PMID: 29259303 PMCID: PMC5736611 DOI: 10.1038/s41598-017-18220-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag2S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag2S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag2S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag2S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.
Collapse
Affiliation(s)
- Qian Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Wenxia Zeng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Canying Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Zhaoguo Meng
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Jiawei Wu
- College of Energy and Machenical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Qunzhi Zhu
- College of Energy and Machenical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Daxiong Wu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China.
| | - Haitao Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China.
| |
Collapse
|
47
|
Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Seo H, Dae Lee K, Oh J. Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol 2017; 38:745-761. [PMID: 29124966 DOI: 10.1080/07388551.2017.1398713] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent years, marine natural pigments have emerged as a powerful alternative in the various fields of food, cosmetic, and pharmaceutical industries because of their excellent biocompatibility, bioavailability, safety, and stability. Marine organisms are recognized as a rich source of natural pigments such as chlorophylls, carotenoids, and phycobiliproteins. Numerous studies have shown that marine natural pigments have considerable medicinal potential and promising applications in human health. In this review, we summarize the marine natural pigments as potential sources for therapeutic applications, including: antioxidant, anticancer, antiangiogenic, anti-obesity, anti-inflammatory activities, drug delivery, photothermal therapy (PTT), photodynamic therapy (PDT), photoacoustic imaging (PAI), and wound healing. Marine natural pigments will offer a better platform for future theranostic applications.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Subramaniyan Bharathiraja
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Madhappan Santha Moorthy
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Sudip Mondal
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Hansu Seo
- b Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus) , Pukyong National University , Busan , Republic of Korea
| | - Kang Dae Lee
- c Department of Otolaryngology Head and Neck Surgery , Kosin University Gospel Hospital, Kosin University College of Medicine , Busan , Republic of Korea
| | - Junghwan Oh
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea.,b Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus) , Pukyong National University , Busan , Republic of Korea
| |
Collapse
|
48
|
Phan TTV, Bui NQ, Moorthy MS, Lee KD, Oh J. Synthesis and In Vitro Performance of Polypyrrole-Coated Iron-Platinum Nanoparticles for Photothermal Therapy and Photoacoustic Imaging. NANOSCALE RESEARCH LETTERS 2017; 12:570. [PMID: 29046993 PMCID: PMC5647319 DOI: 10.1186/s11671-017-2337-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/08/2017] [Indexed: 05/24/2023]
Abstract
Multifunctional nano-platform for the combination of photo-based therapy and photoacoustic imaging (PAI) for cancer treatment has recently attracted much attention to nanotechnology development. In this study, we developed iron-platinum nanoparticles (FePt NPs) with the polypyrrole (PPy) coating as novel agents for combined photothermal therapy (PTT) and PAI. The obtained PPy-coated FePt NPs (FePt@PPy NPs) showed excellent biocompatibility, photothermal stability, and high near-infrared (NIR) absorbance for the combination of PTT and PAI. In vitro investigation experimentally demonstrated the effectiveness of FePt@PPy NPs in killing cancer cells with NIR laser irradiation. Moreover, the phantom test of PAI used in conjunction with FePt@PPy NPs showed a strong photoacoustic signal. Thus, the novel FePt@PPy NPs could be considered as promising multifunctional nanoparticles for further applications of photo-based diagnosis and treatment.
Collapse
Affiliation(s)
- Thi Tuong Vy Phan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nhat Quang Bui
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Madhappan Santha Moorthy
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology - Head and Neck Surgery, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
49
|
Promising bio-composites of polypyrrole and chitosan: Surface protective and in vitro biocompatibility performance on 316L SS implants. Carbohydr Polym 2017; 173:121-130. [DOI: 10.1016/j.carbpol.2017.05.083] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/20/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
|
50
|
Manivasagan P, Bharathiraja S, Moorthy MS, Oh YO, Seo H, Oh J. Marine Biopolymer-Based Nanomaterials as a Novel Platform for Theranostic Applications. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1311914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | | | - Madhappan Santha Moorthy
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yun-Ok Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Hansu Seo
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|