1
|
Osmakov DI, Khasanov TA, Maleeva EE, Pavlov VM, Palikov VA, Belozerova OA, Koshelev SG, Korolkova YV, Dyachenko IA, Kozlov SA, Andreev YA. Two Amino Acid Substitutions Improve the Pharmacological Profile of the Snake Venom Peptide Mambalgin. Toxins (Basel) 2025; 17:101. [PMID: 40137874 PMCID: PMC11946789 DOI: 10.3390/toxins17030101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Mambalgins are peptide inhibitors of acid-sensing ion channels type 1 (ASIC1) with potent analgesic effects in models of inflammatory and neuropathic pain. To optimize recombinant peptide production and enhance pharmacological properties, we developed a mutant analog of mambalgin-1 (Mamb) through molecular modeling and site-directed mutagenesis. The resulting peptide, Mamb-AL, features methionine-to-alanine and methionine-to-leucine substitutions, allowing for a more efficient recombinant production protocol in E. coli. Electrophysiological experiments demonstrated that Mamb-AL exhibits three-fold and five-fold greater inhibition of homomeric ASIC1a and ASIC1b channels, respectively, and a two-fold increase in inhibition of heteromeric ASIC1a/3 channels compared with Mamb. In a mouse model of acetic acid-induced writhing pain, Mamb-AL showed a trend toward stronger analgesic efficacy than the wild-type peptide. These improvements in both production efficiency and pharmacological properties make Mamb-AL a valuable tool for studying ASIC channels and a promising candidate for analgesic drug development.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Timur A. Khasanov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ekaterina E. Maleeva
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Vladimir M. Pavlov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.M.P.); (V.A.P.); (I.A.D.)
| | - Victor A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.M.P.); (V.A.P.); (I.A.D.)
| | - Olga A. Belozerova
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Sergey G. Koshelev
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Yuliya V. Korolkova
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Igor A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.M.P.); (V.A.P.); (I.A.D.)
| | - Sergey A. Kozlov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| |
Collapse
|
2
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Shi P, Zhang MJ, Liu A, Yang CL, Yue JY, Hu R, Mao Y, Zhang Z, Wang W, Jin Y, Liang LS. Acid-sensing ion channel 1a in the central nucleus of the amygdala regulates anxiety-like behaviors in a mouse model of acute pain. Front Mol Neurosci 2023; 15:1006125. [PMID: 36710934 PMCID: PMC9879607 DOI: 10.3389/fnmol.2022.1006125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Pain is commonly comorbid with anxiety; however, the neural and molecular mechanisms underlying the comorbid anxiety symptoms in pain (CASP) have not been fully elucidated. In this study, we explored the role of acid-sensing ion channel 1a (ASIC1a), located in GABAergic neurons from the central nucleus of the amygdala (GABACeA), in the regulation of CASP in an acute pain mouse model. We found that the mice displayed significant mechanical pain sensitization and anxiety-like behaviors one day post injection of complete Freud's adjuvant (CFA1D). Electrophysiological recordings from acute brain slices showed that the activity of GABACeA neurons increased in the CFA1D mice compared with that in the saline mice. In addition, chemogenetic inhibition of GABACeA neurons relieved mechanical pain sensitization and anxiety-like behaviors in the CFA1D mice. Interestingly, through pharmacological inhibition and genetic knockdown of ASIC1a in the central nucleus amygdala, we found that downregulation of ASIC1a relieved the hypersensitization of mechanical stimuli and alleviated anxiety-related behaviors, accompanied with reversing the hyperactivity of GABACeA neurons in the CFA 1D mice. In conclusion, our results provide novel insights that ASIC1a in GABACeA neurons regulates anxiety-like behaviors in a mouse model of acute pain.
Collapse
Affiliation(s)
- Pei Shi
- Department of Anesthesiology, Linyi People's Hospital, Shandong University, Jinan, China
| | - Ming-Jun Zhang
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia-Yin Yue
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, China
| | - Yu Mao
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Wei Wang, ✉
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Yan Jin, ✉
| | - Li-Shuang Liang
- Department of Pain, Qi lu Hospital of Shandong University, Jinan, China,Li-Shuang Liang, ✉
| |
Collapse
|
4
|
Viral vector-mediated expressions of venom peptides as novel gene therapy for anxiety and depression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
A feasibility study on yoga's mechanism of action for chronic low back pain: psychological and neurophysiological changes, including global gene expression and DNA methylation, following a yoga intervention for chronic low back pain. Pilot Feasibility Stud 2022; 8:142. [PMID: 35794661 PMCID: PMC9260994 DOI: 10.1186/s40814-022-01103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Yoga has been shown to reduce pain and improve function in populations with chronic low back pain (cLBP), yet the underlying molecular mechanisms remain elusive. This study examined the feasibility and acceptability of a yoga research protocol, including recruitment, retention, and data collection, and investigated the preliminary effects of yoga on psychological and neurophysiological functions, including gene expression and DNA methylation profiles, in participants with cLBP. METHODS A one-arm trial was conducted with 11 participants with cLBP who enrolled in a 12-week yoga intervention. Data on subjective pain characteristics, quantitative sensory testing, and blood for analysis of differentially expressed genes and CpG methylation was collected prior to the start of the intervention and at study completion. RESULTS Based on pre-determined feasibility and acceptability criteria, the yoga intervention was found to be feasible and highly acceptable to participants. There was a reduction in pain severity, interference, and mechanical pain sensitivity post-yoga and an increase in emotion regulation and self-efficacy. No adverse reactions were reported. Differential expression analysis demonstrated that the yoga intervention induced increased expression of antisense genes, some of which serve as antisense to known pain genes. In addition, there were 33 differentially hypomethylated positions after yoga (log2 fold change ≥ 1), with enrichment of genes involved in NIK/NF-kB signaling, a major pathway that modulates immune function and inflammation. DISCUSSION/CONCLUSIONS The study supports the feasibility and acceptability of the proposed protocol to test a specific mechanism of action for yoga in individuals with cLBP. These results also support the notion that yoga may operate through our identified psychological and neurophysiologic pathways to influence reduced pain severity and interference.
Collapse
|
6
|
Salvianolic acid B alleviates comorbid pain in depression induced by chronic restraint stress through inhibiting GABAergic neuron excitation via an ERK-CREB-BDNF axis-dependent mechanism. J Psychiatr Res 2022; 151:205-216. [PMID: 35500448 DOI: 10.1016/j.jpsychires.2022.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/21/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Pain comorbid with depression occurred frequently in clinical settings. This study aims to explore the molecular mechanism underlying antidepressant and analgetic effect of salvianolic acid B (SalB) in comorbid pain in depression induced by chronic restraint stress (CRS), which associates with GABAergic neuron activation in the amygdala and the ERK-CREB-BDNF signaling pathway. The differentially expressed genes related to comorbid pain in CRS-induced depression were screened through bioinformatics analysis. After CRS treatment for 3 weeks, depression-like behaviors were developed in GAD2-tdT mice. The retrograde tracer cholera toxin B subunit combined with retrograde tracer CTB-488 was injected into the parafascicular nucleus of thalamus to project GABAergic neurons to observe the labeling of neurons in the whole brain. After treatment with SalB and ERK-CREB-BDNF signaling pathway inhibitor, CRS mice showed a variety of depression-like behaviors, accompanied by enhanced activity of GABAergic neurons in the amygdala projecting to parafascicular nucleus of thalamus. BDNF underexpression occurred in the CRS mice. Overexpressed BDNF activated ERK-CREB-BDNF signaling pathway to alleviate comorbid pain in CRS-induced depression. After intraperitoneal injection of SalB, the depression-like behaviors and pain threshold in CRS mice were alleviated, the effects of which could be eliminated by ERK-CREB-BDNF signaling pathway antagonist. Collectively, SalB inhibits the excitation of GABAergic neurons in the amygdala and activates the ERK-CREB-BDNF signaling pathway through the parafascicular nucleus of thalamus, whereby alleviating comorbid pain in CRS-induced depression in mice.
Collapse
|
7
|
Zhu Y, Hu X, Wang L, Zhang J, Pan X, Li Y, Cao R, Li B, Lin H, Wang Y, Zuo L, Huang Y. Recent Advances in Acid-sensitive Ion Channels in Central Nervous System Diseases. Curr Pharm Des 2022; 28:1406-1411. [PMID: 35466865 DOI: 10.2174/1381612828666220422084159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Acid-sensitive ion channels (ASICs) are cationic channels activated by extracellular protons and widely distributed in the nervous system of mammals. It belongs to the ENaC/DEG family and has four coding genes: ASIC1, ASIC2, ASIC3, and ASIC4, which encode eight subunit proteins: ASIC1a, ASIC1b, ASIC1b2, ASIC2a, ASIC2b, ASIC3, ASIC4, and ASIC5. Different subtypes of ASICs have different distributions in the central nervous system, and they play an important role in various physiological and pathological processes of the central nervous system, including synaptic plasticity, anxiety disorders, fear conditioning, depression-related behavior, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, malignant Glioma, pain, and others. This paper reviewed the recent studies of ASICs on the central nervous system to improve the understanding of ASICs' physiological functions and pathological effects. This article also provides a reference for studying the molecular mechanisms and therapeutic measures of nervous system-related diseases.
Collapse
Affiliation(s)
- Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, 230031, China
| | - Xiaojie Hu
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Lili Wang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Jin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yangyang Li
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Rui Cao
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Huimin Lin
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yanan Wang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Longquan Zuo
- Department of Pharmacy, Hospital of Armed Police of Anhui Province, Hefei 230061, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
8
|
Liu J, Li D, Huang J, Cao J, Cai G, Guo Y, Wang G, Zhao S, Wang X, Wu S. Glutamatergic Neurons in the Amygdala Are Involved in Paclitaxel-Induced Pain and Anxiety. Front Psychiatry 2022; 13:869544. [PMID: 35492735 PMCID: PMC9049739 DOI: 10.3389/fpsyt.2022.869544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Paclitaxel is widely used as a first-line chemotherapy agent to treat malignant tumors. However, paclitaxel causes peripheral nerve fiber damage and neuropathic pain in some patients. In addition, patients received paclitaxel chemotherapy are often accompanied by negative emotions such as anxiety. The amygdala is critically involved in regulating pain signals, as well as anxiety. The purpose of this study is to clarify the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the amygdala in paclitaxel-induced pain and negative affective symptoms. Intraperitoneal injection of paclitaxel into mice caused mechanical and thermal allodynia, as measured by Von Frey test and Hargreaves test, and anxiety, as measured by open field test and elevated plus maze test. Immunofluorescence staining revealed that c-fos-positive neurons were significantly more in the basolateral amygdala (BLA) and central amygdala (CeA) in paclitaxel-treated mice than untreated mice. Furthermore, part of c-fos-positive neurons in the BLA were immunoreactive of CaMKII. Engineered Designer receptors exclusively activated by designer drugs (DREADD) receptor hM4Di or hM3Dq was selectively expressed on CaMKII neurons by injection of adeno-associated virus (AAV) vectors containing CaMKII and hM4Di or hM3Dq. Administration of DREADD agonist CNO to selectively inhibit the CaMKII neurons in the BLA significantly increased the paw withdrawal thresholds and paw withdrawal latencies. In addition, selectively inhibition of CaMKII neurons in the BLA alleviated anxiety behavior without affecting the motor activity. In summary, our findings suggest that CaMKII neurons in the amygdala are critical for neuropathic pain and anxiety behaviors induced by paclitaxel chemotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dangchao Li
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Cao
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuexian Guo
- Department of Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang Zhao
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuli Wang
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Salinas Castellanos LC, Uchitel OD, Weissmann C. Signaling Pathways in Proton and Non-proton ASIC1a Activation. Front Cell Neurosci 2021; 15:735414. [PMID: 34675777 PMCID: PMC8523820 DOI: 10.3389/fncel.2021.735414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases as well as pain conditions. Classically, ASICs are described as transiently activated by a reduced pH, followed by desensitization; the activation allows sodium influx, and in the case of ASIC1a-composed channels, also calcium to some degree. Several factors are emerging and extensively analyzed as modulators, activating, inhibiting, and potentiating specific channel subunits. However, the signaling pathways triggered by channel activation are only starting to be revealed.The channel has been recently shown to be activated through a mechanism other than proton-mediated. Indeed, the large extracellular loop of these channels opens the possibility that other non-proton ligands might exist. One such molecule discovered was a toxin present in the Texas coral snake venom. The finding was associated with the activation of the channel at neutral pH via the toxin and causing intense and unremitting pain.By using different pharmacological tools, we analyzed the downstream signaling pathway triggered either by the proton and non-proton activation for human, mouse, and rat ASIC1a-composed channels in in vitro models. We show that for all species analyzed, the non-protonic mode of activation determines the activation of the ERK signaling cascade at a higher level and duration compared to the proton mode.This study adds to the growing evidence of the important role ASIC1a channels play in different physiological and pathological conditions and also hints at a possible pathological mechanism for a sustained effect.
Collapse
Affiliation(s)
| | | | - Carina Weissmann
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE—UBA CONICET), Facultad de Ciencias, Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Liu B, Li N, He Z, Zhang X, Duan G. Emerging Role of Serum Glucocorticoid-Regulated Kinase 1 in Pathological Pain. Front Mol Neurosci 2021; 14:683527. [PMID: 34093127 PMCID: PMC8177009 DOI: 10.3389/fnmol.2021.683527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
Currently, the management of acute and chronic pain in clinical practice remains unsatisfactory due to the existence of limited effective treatments, and novel therapeutic strategies for pathological pain are urgently needed. In the past few decades, the role of serum and glucocorticoid-inducible kinase 1 (SGK1) in the development of pain and diurnal rhythms has been implicated in numerous studies. The expression levels of SGK1 mRNA and protein were found to be elevated in the spinal cord and brain in various pathological pain models. Blocking SGK1 significantly attenuated pain-like responses and the development of pathological pain. These studies provide strong evidence that SGK1 plays a role in the development of various types of pathological pain and that targeting SGK1 may be a novel therapeutic strategy for pain management. In this review article, we provide evidence from animal models for the potential role of SGK1 in the regulation of pathological pain caused by inflammation, nerve injury, psychiatric disorders, and chronic opioid exposure.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Li YC, Tian YQ, Wu YY, Xu YC, Zhang PA, Sha J, Xu GY. Upregulation of Spinal ASIC1 and NKCC1 Expression Contributes to Chronic Visceral Pain in Rats. Front Mol Neurosci 2021; 13:611179. [PMID: 33584200 PMCID: PMC7874109 DOI: 10.3389/fnmol.2020.611179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims: To determine whether acid-sensing ion channel 1 (ASIC1)–sodium-potassium-chloride cotransporter 1 (NKCC1) signaling pathway participates in chronic visceral pain of adult rats with neonatal maternal deprivation (NMD). Methods: Chronic visceral pain was detected by colorectal distension (CRD). Western blotting and Immunofluorescence were performed to detect the expression and location of ASIC1 and NKCC1. Whole-cell patch-clamp recordings were performed to record spinal synaptic transmission. Results: The excitatory synaptic transmission was enhanced and the inhibitory synaptic transmission was weakened in the spinal dorsal horn of NMD rats. ASIC1 and NKCC1 protein expression in the spinal dorsal horn was significantly up-regulated in NMD rats. Incubation of Amiloride reduced the amplitude of mEPSCs. Incubation of Bumetanide (BMT) increased the amplitude of mIPSCs. Intrathecal injection of ASIC1 or NKCC1 inhibitors reversed the threshold of CRD in NMD rats. Also, Amiloride treatment significantly reversed the expression of NKCC1 in the spinal dorsal horn of NMD rats. Conclusion: Our data suggest that the ASIC1-NKCC1 signaling pathway is involved in chronic visceral pain in NMD rats.
Collapse
Affiliation(s)
- Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yuan-Qing Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu-Cheng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jie Sha
- Department of Gastroenterology, Jingjiang People's Hospital, Jingjiang, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
13
|
Hu X, Liu Y, Wu J, Liu Y, Liu W, Chen J, Yang F. Inhibition of P2X7R in the amygdala ameliorates symptoms of neuropathic pain after spared nerve injury in rats. Brain Behav Immun 2020; 88:507-514. [PMID: 32311494 DOI: 10.1016/j.bbi.2020.04.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 12/26/2022] Open
Abstract
The amygdala circuitry and P2X7 receptor (P2X7R) have both been shown to play important roles in the modulation of neuropathic pain (NP). However, little is known about the functional role of P2X7R in the amygdala for the regulation of NP. This study aims to evaluate the alleviative effect of intra-amygdala microinfusion of a pharmacological antagonist of P2X7R (A-438079) on NP and explore its possible mechanism of action. Male Sprague-Dawley rats were used to construct the animal model of NP through spared nerve injury (SNI). The SNI rats randomly received chronic bilateral microinjection of A-438079 (100 pmol/side) or saline into the amygdalae via cannulas. Mechanical paw withdrawal threshold (MWT) and thermal withdrawal duration (TWD) were measured by von Frey monofilaments. Besides, tail suspension test (TST), forced swimming test (FST), open field test (OFT) and sucrose preference test (SPT) were performed to assess depression- and anxiety-like behaviors. Immunofluorescence assay was employed to determine the levels of glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule 1 (IBA-1) and connexin 43 (Cx43) in the spinal cord. In addition, the change of growth associated protein 43 (GAP43) level in the spinal cord was assessed by Western blot. Our data showed that chronic treatment with A-438079 increased MWT and decreased TWD on days 11-21 post-SNI while decreased depression-like and anxiety-like behaviors. A-438079 administration significantly attenuated the elevated immunoreactivities of IBA-1 and GFAP in microglia and astrocytes after SNI. Furthermore, the decreased expression of GAP-43 in the spinal cord due to SNI was significantly attenuated by A-438079. However, when A-438079 and a pharmacological agonist (BzATP) of P2X7R were given simultaneously, all the effects caused by A-438079 alone were reversed. In brief, our study revealed the protective role of inhibiting P2X7R in the amygdala against symptoms associated with NP, possibly attributing to its inhibitory effects on spinal microglia and astrocytes.
Collapse
Affiliation(s)
- Xiaoling Hu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Yiming Liu
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hunan Province 421001, China
| | - Junting Wu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Yu Liu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Wenjie Liu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Ji Chen
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China
| | - Fengrui Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hunan Province 421001, China; Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
14
|
Defaye M, Nourrisson C, Baudu E, Lashermes A, Meynier M, Meleine M, Wawrzyniak I, Bonnin V, Barbier J, Chassaing B, Godfraind C, Gelot A, Barnich N, Ardid D, Bonnet M, Delbac F, Carvalho FA, Poirier P. Fecal dysbiosis associated with colonic hypersensitivity and behavioral alterations in chronically Blastocystis-infected rats. Sci Rep 2020; 10:9146. [PMID: 32499543 PMCID: PMC7272397 DOI: 10.1038/s41598-020-66156-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Infectious gastroenteritis is a risk factor for the development of post-infectious Irritable Bowel Syndrome (PI-IBS). Recent clinical studies reported a higher prevalence of the intestinal parasite Blastocystis in IBS patients. Using a rat model, we investigated the possible association between Blastocystis infection, colonic hypersensitivity (CHS), behavioral disturbances and gut microbiota changes. METHODS Rats were orally infected with Blastocystis subtype 4 (ST4) cysts, isolated from human stool samples. Colonic sensitivity was assessed by colorectal distension and animal behavior with an automatic behavior recognition system (PhenoTyper), the Elevated Plus Maze test and the Forced Swimming tests. Feces were collected at different time points after infection to study microbiota composition by 16 S rRNA amplicon sequencing and for short-chain fatty acid (SFCA) analysis. RESULTS Blastocystis-infected animals had non-inflammatory CHS with increased serine protease activity. Infection was also associated with anxiety- and depressive-like behaviors. Analysis of fecal microbiota composition showed an increase in bacterial richness associated with altered microbiota composition. These changes included an increase in the relative abundance of Oscillospira and a decrease in Clostridium, which seem to be associated with lower levels of SCFAs in the feces from infected rats. CONCLUSIONS Our findings suggest that experimental infection of rats with Blastocystis mimics IBS symptoms with the establishment of CHS related to microbiota and metabolic shifts.
Collapse
Affiliation(s)
- Manon Defaye
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000, Clermont-Ferrand, France
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Céline Nourrisson
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000, Clermont-Ferrand, France
- Université Clermont Auvergne, CHU, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Elodie Baudu
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Amandine Lashermes
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Maëva Meynier
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Mathieu Meleine
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Virginie Bonnin
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Julie Barbier
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- INSERM, U1016, team "Mucosal microbiota in chronic inflammatory diseases", Paris, France
- Université de Paris, Paris, France
| | - Catherine Godfraind
- CHU Clermont-Ferrand, Service d'Anatomopathologie, 63003, Clermont-Ferrand, France
| | - Agathe Gelot
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Denis Ardid
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Mathilde Bonnet
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000, Clermont-Ferrand, France
| | | | - Philippe Poirier
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000, Clermont-Ferrand, France.
- Université Clermont Auvergne, CHU, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
15
|
Natale S, Anzilotti S, Petrozziello T, Ciccone R, Serani A, Calabrese L, Severino B, Frecentese F, Secondo A, Pannaccione A, Fiorino F, Cuomo O, Vinciguerra A, D'Esposito L, Sadile AG, Cabib S, Di Renzo G, Annunziato L, Molinaro P. Genetic Up-Regulation or Pharmacological Activation of the Na +/Ca 2+ Exchanger 1 (NCX1) Enhances Hippocampal-Dependent Contextual and Spatial Learning and Memory. Mol Neurobiol 2020; 57:2358-2376. [PMID: 32048166 DOI: 10.1007/s12035-020-01888-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 01/23/2023]
Abstract
The Na+/Ca2+ exchanger 1 (NCX1) participates in the maintenance of neuronal Na+ and Ca2+ homeostasis, and it is highly expressed at synapse level of some brain areas involved in learning and memory processes, including the hippocampus, cortex, and amygdala. Furthermore, NCX1 increases Akt1 phosphorylation and enhances glutamate-mediated Ca2+ influx during depolarization in hippocampal and cortical neurons, two processes involved in learning and memory mechanisms. We investigated whether the modulation of NCX1 expression/activity might influence learning and memory processes. To this aim, we used a knock-in mouse overexpressing NCX1 in hippocampal, cortical, and amygdala neurons (ncx1.4over) and a newly synthesized selective NCX1 stimulating compound, named CN-PYB2. Both ncx1.4over and CN-PYB2-treated mice showed an amelioration in spatial learning performance in Barnes maze task, and in context-dependent memory consolidation after trace fear conditioning. On the other hand, these mice showed no improvement in novel object recognition task which is mainly dependent on non-spatial memory and displayed an increase in the active phosphorylated CaMKIIα levels in the hippocampus. Interestingly, both of these mice showed an increased level of context-dependent anxiety.Altogether, these results demonstrate that neuronal NCX1 participates in spatial-dependent hippocampal learning and memory processes.
Collapse
Affiliation(s)
- Silvia Natale
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucia D'Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Simona Cabib
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, 00185, Rome, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
16
|
Zuo L, Zhu Y, Hu L, Liu Y, Wang Y, Hu Y, Wang H, Pan X, Li K, Du N, Huang Y. PI3-kinase/Akt pathway-regulated membrane transportation of acid-sensing ion channel 1a/Calcium ion influx/endoplasmic reticulum stress activation on PDGF-induced HSC Activation. J Cell Mol Med 2019; 23:3940-3950. [PMID: 30938088 PMCID: PMC6533492 DOI: 10.1111/jcmm.14275] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/14/2019] [Accepted: 01/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) allows Na+ and Ca2+ flow into cells. It is expressed during inflammation, in tumour and ischaemic tissue, in the central nervous system and non-neuronal injury environments. Endoplasmic reticulum stress (ERS) is caused by the accumulation of misfolded proteins that interferes with intracellular calcium homoeostasis. Our recent reports showed ASIC1a and ERS are involved in liver fibrosis progression, particularly in hepatic stellate cell (HSC) activation. In this study, we investigated the roles of ASIC1a and ERS in activated HSC. We found that ASIC1a and ERS-related proteins were up-regulated in carbon tetrachloride (CCl4 )-induced fibrotic mouse liver tissues, and in patient liver tissues with hepatocellular carcinoma with severe liver fibrosis. The results show silencing ASIC1a reduced the expression of ERS-related biomarkers GRP78, Caspase12 and IREI-XBP1. And, ERS inhibition by 4-PBA down-regulated the high expression of ASIC1a induced by PDGF, suggesting an interactive relationship. In PDGF-induced HSCs, ASIC1a was activated and migrated to the cell membrane, leading to extracellular calcium influx and ERS, which was mediated by PI3K/AKT pathway. Our work shows PDGF-activated ASIC1a via the PI3K/AKT pathway, induced ERS and promoted liver fibrosis progression.
Collapse
Affiliation(s)
- Longquan Zuo
- Department of Pharmacy, Hospital of Armed Police of Anhui Province, Hefei, China
| | - Yueqin Zhu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Lili Hu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Yanyi Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Yinghong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yamin Hu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Huan Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Kuayue Li
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Na Du
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
18
|
Jensen JR, Pitcher MH, Yuan ZX, Ramsden CE, Domenichiello AF. Concentrations of oxidized linoleic acid derived lipid mediators in the amygdala and periaqueductal grey are reduced in a mouse model of chronic inflammatory pain. Prostaglandins Leukot Essent Fatty Acids 2018; 135:128-136. [PMID: 30103924 PMCID: PMC6269101 DOI: 10.1016/j.plefa.2018.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
Chronic pain is both a global public health concern and a serious source of personal suffering for which current treatments have limited efficacy. Recently, oxylipins derived from linoleic acid (LA), the most abundantly consumed polyunsaturated fatty acid in the modern diet, have been implicated as mediators of pain in the periphery and spinal cord. However, oxidized linoleic acid derived mediators (OXLAMs) remain understudied in the brain, particularly during pain states. In this study, we employed a mouse model of chronic inflammatory pain followed by a targeted lipidomic analysis of the animals' amygdala and periaqueductal grey (PAG) using LC-MS/MS to investigate the effect of chronic inflammatory pain on oxylipin concentrations in these two brain nuclei known to participate in pain sensation and perception. From punch biopsies of these brain nuclei, we detected twelve OXLAMs in both the PAG and amygdala and one arachidonic acid derived mediator, 15-HETE, in the amygdala only. In the amygdala, we observed an overall decrease in the concentration of the majority of OXLAMs detected, while in the PAG the concentrations of only the epoxide LA derived mediators, 9,10-EpOME and 12,13-EpOME, and one trihydroxy LA derived mediator, 9,10,11-TriHOME, were reduced. This data provides the first evidence that OXLAM concentrations in the brain are affected by chronic pain, suggesting that OXLAMs may be relevant to pain signaling and adaptation to chronic pain in pain circuits in the brain and that the current view of OXLAMs in nociception derived from studies in the periphery is incomplete.
Collapse
Affiliation(s)
- J R Jensen
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - M H Pitcher
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, United States
| | - Z X Yuan
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - C E Ramsden
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, United States
| | - A F Domenichiello
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
19
|
Cryo-EM structure of the ASIC1a-mambalgin-1 complex reveals that the peptide toxin mambalgin-1 inhibits acid-sensing ion channels through an unusual allosteric effect. Cell Discov 2018; 4:27. [PMID: 29872539 PMCID: PMC5986765 DOI: 10.1038/s41421-018-0026-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal voltage-independent Na+ channels that are activated by extracellular acidification. ASICs play essential roles in a wide range of physiological processes, including sodium homeostasis, synaptic plasticity, neurodegeneration, and sensory transduction. Mambalgins, a family of three-finger toxins isolated from black mamba venom, specifically inhibit ASICs to exert strong analgesic effects in vivo, thus are thought to have potential therapeutic values against pain. However, the interaction and inhibition mechanism of mambalgin on ASICs remains elusive. Here, we report a cryo-electron microscopy (cryo-EM) structure of chicken ASIC1a (cASIC1a) in complex with mambalgin-1 toxin at 5.4 Å resolution. Our structure provides the first experimental evidence that mambalgin-1 interacts directly with the extracellular thumb domain of cASIC1a, rather than inserting into the acid-sensing pocket, as previously reported. Binding of mambalgin-1 leads to relocation of the thumb domain that could disrupt the acidic pocket of cASIC1a, illustrating an unusual inhibition mechanism of toxins on ASIC channels through an allosteric effect. These findings establish a structural basis for the toxicity of the mambalgins, and provide crucial insights for the development of new optimized inhibitors of ASICs.
Collapse
|
20
|
Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev 2018; 47:1592-1637. [PMID: 28933478 DOI: 10.1039/c7cs00411g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans perceive physical information about the surrounding environment through their senses. This physical information is registered by a collection of highly evolved and finely tuned molecular sensory receptors. A multitude of bioactive, structurally diverse ligands have evolved in nature that bind these molecular receptors. The complex, dynamic interactions between the ligands and the receptors lead to changes in our sensory perception or mood. Here, we review our current knowledge of natural products and their derived analogues that interact specifically with human G protein-coupled receptors, ion channels, and nuclear hormone receptors to modulate the sensations of taste, smell, temperature, pain, and itch, as well as mood and its associated behaviour. We discuss the molecular and structural mechanisms underlying such interactions and highlight cases where subtle differences in natural product chemistry produce drastic changes in functional outcome. We also discuss cases where a single compound triggers complex sensory or behavioural changes in humans through multiple mechanistic targets. Finally, we comment on the therapeutic potential of the reviewed area of research and draw attention to recent technological developments in genomics, metabolomics, and metabolic engineering that allow us to tap the medicinal properties of natural product chemistry without taxing nature.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
21
|
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Denmark Hill, London, SE5 9PJ, UK
| | - Eric B Gonzales
- TCU and UNTHSC School of Medicine (applicant for LCME accreditation), Department of Medical Education, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, BSB-14, Richardson, TX, 75080, USA.
| |
Collapse
|