1
|
Rathore P, Montz B, Hung SH, Pandey PK, Perry SL, Emrick T, Schiffman JD. Electrospinning of Self-Assembling Oligopeptides into Nanofiber Mats: The Impact of Peptide Composition and End Groups. Biomacromolecules 2025; 26:1604-1613. [PMID: 39907636 DOI: 10.1021/acs.biomac.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Low-molecular-weight oligopeptides can be electrospun into nanofiber mats. However, the mechanism underlying their electrospinnability is not well-understood. In this study, we used solid-phase peptide synthesis to produce the oligopeptide FFKK, to which the aromatic end-capping groups naphthalene, pyrene, and tetraphenylporphyrin were attached. Nuclear magnetic resonance, circular dichroism, and electrospray ionization mass spectrometry were used to characterize the oligopeptide structures. We investigated the effect of end-caps and oligopeptide concentration on their self-assembly as well as on their electrospinnability in fluorinated solvents. All oligopeptides with aromatic end-caps were amenable to electrospinning. Attenuated total reflectance Fourier transform infrared spectroscopy and microrheology results support the hypothesis that at sufficiently high concentrations, the self-assembled structures interact strongly, which facilitates electrospinning. Moreover, the results from this fundamental study can be extended to nonpeptidic small molecules possessing strong intermolecular interactions.
Collapse
Affiliation(s)
- Prerana Rathore
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Brian Montz
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Shao-Hsiang Hung
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Pankaj Kumar Pandey
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
2
|
Malajczuk CJ, Mancera RL. Molecular Simulation of the Binding of Amyloid Beta to Apolipoprotein A-I in High-Density Lipoproteins. Int J Mol Sci 2025; 26:1380. [PMID: 39941148 PMCID: PMC11818119 DOI: 10.3390/ijms26031380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Disrupted clearance of amyloid beta (Aβ) from the brain enhances its aggregation and formation of amyloid plaques in Alzheimer's disease. The most abundant protein constituent of circulating high-density lipoprotein (HDL) particles, apoA-I, readily crosses the blood-brain barrier from periphery circulation, exhibits low-micromolar binding affinity for soluble, neurotoxic forms of Aβ, and modulates Aβ aggregation and toxicity in vitro. Its highly conserved N-terminal sequence, 42LNLKLLD48 ('LN'), has been proposed as a binding region for Aβ. However, high-resolution structural characterisation of the mechanism of HDL-Aβ interaction is very difficult to attain. Molecular dynamics simulations were conducted to investigate for the first time the interaction of Aβ and the 'LN' segment of apoA-I. Favourable binding of Aβ by HDLs was found to be driven by hydrophobic and hydrogen-bonding interactions predominantly between the 'LN' segment of apoA-I and Aβ. Preferential binding of Aβ may proceed in small, protein-rich HDLs whereby solvent-exposed hydrophobic 'LN' segments of apoA-I interact specifically with Aβ, stabilising it on the HDL surface in a possibly non-amyloidogenic conformation, facilitating effective Aβ clearance. These findings rationalise the potentially therapeutic role of HDLs in reducing Aβ aggregation and toxicity, and of peptide mimics of the apoA-I interacting region in blocking Aβ aggregation.
Collapse
Affiliation(s)
| | - Ricardo L. Mancera
- Curtin Medical School and Curtin Medical Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
| |
Collapse
|
3
|
Theodoropoulou MK, Vraila KD, Papandreou NC, Nasi GI, Iconomidou VA. Co-Localized in Amyloid Plaques Cathepsin B as a Source of Peptide Analogs Potential Drug Candidates for Alzheimer's Disease. Biomolecules 2024; 15:28. [PMID: 39858424 PMCID: PMC11762647 DOI: 10.3390/biom15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid-β (Aβ) peptides. The oligomeric form of Aβ is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides Aβ, other proteins are co-localized within amyloid plaques. Peptide analogs corresponding to the "aggregation-prone" regions (APRs) of these proteins could exhibit high-affinity binding to Aβ and significant inhibitory potential against the Aβ oligomerization process. The peptide analogs of co-localized protease, Cathepsin B, may act as such potent inhibitors. In silico studies on the complexes of the oligomeric state of Aβ and Cathepsin B peptide analogs were performed utilizing molecular docking and molecular dynamics simulations, revealing that these analogs disrupt the β-sheet-rich core of Aβ oligomers, a critical structural feature of their stability. Of the four peptide analogs evaluated, two demonstrated considerable potential by effectively destabilizing oligomers while maintaining low self-aggregation propensity, i.e., a crucial consideration for therapeutic safety. These findings point out the potential of APR-derived peptide analogs from co-localized proteins as innovative agents against AD, paving the way for further exploration in peptide-based therapeutic development.
Collapse
Affiliation(s)
| | | | | | | | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece; (M.K.T.); (K.D.V.); (N.C.P.); (G.I.N.)
| |
Collapse
|
4
|
Guo RW, Xie WJ, Yu B, Song C, Ji XM, Wang XY, Zhang M, Zhang X. Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice. Zool Res 2024; 45:924-936. [PMID: 39021081 PMCID: PMC11298676 DOI: 10.24272/j.issn.2095-8137.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 07/20/2024] Open
Abstract
Amyloid beta (Aβ) monomers aggregate to form fibrils and amyloid plaques, which are critical mechanisms in the pathogenesis of Alzheimer's disease (AD). Given the important role of Aβ1-42 aggregation in plaque formation, leading to brain lesions and cognitive impairment, numerous studies have aimed to reduce Aβ aggregation and slow AD progression. The diphenylalanine (FF) sequence is critical for amyloid aggregation, and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings. In this study, we examined the effects of a moderate-intensity rotating magnetic field (RMF) on Aβ aggregation and AD pathogenesis. Results indicated that the RMF directly inhibited Aβ amyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro. Using the AD mouse model APP/PS1, RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments, including exploration and spatial and non-spatial memory abilities. Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation, attenuated microglial activation, and reduced oxidative stress in the APP/PS1 mouse brain. These findings suggest that RMF holds considerable potential as a non-invasive, high-penetration physical approach for AD treatment.
Collapse
Affiliation(s)
- Ruo-Wen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Wen-Jing Xie
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin-Miao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin-Yu Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Mei Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China. E-mail:
| |
Collapse
|
5
|
Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Kumsri N, Arpornsuwan T. Secretomic changes of amyloid beta peptides on Alzheimer's disease related proteins in differentiated human SH-SY5Y neuroblastoma cells. PeerJ 2024; 12:e17732. [PMID: 39035166 PMCID: PMC11260076 DOI: 10.7717/peerj.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes physical damage to neuronal connections, leading to brain atrophy. This disruption of synaptic connections results in mild to severe cognitive impairments. Unfortunately, no effective treatment is currently known to prevent or reverse the symptoms of AD. The aim of this study was to investigate the effects of three synthetic peptides, i.e., KLVFF, RGKLVFFGR and RIIGL, on an AD in vitro model represented by differentiated SH-SY5Y neuroblastoma cells exposed to retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). The results demonstrated that RIIGL peptide had the least significant cytotoxic activity to normal SH-SY5Y while exerting high cytotoxicity against the differentiated cells. The mechanism of RIIGL peptide in the differentiated SH-SY5Y was investigated based on changes in secretory proteins compared to another two peptides. A total of 380 proteins were identified, and five of them were significantly detected after treatment with RIIGL peptide. These secretory proteins were found to be related to microtubule-associated protein tau (MAPT) and amyloid-beta precursor protein (APP). RIIGL peptide acts on differentiated SH-SY5Y by regulating amyloid-beta formation, neuron apoptotic process, ceramide catabolic process, and oxidative phosphorylation and thus has the potentials to treat AD.
Collapse
Affiliation(s)
- Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitithorn Kumsri
- Undergraduate Student of Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Teerakul Arpornsuwan
- Medical Technology Research and Service Unit, Health Care Service Center, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
6
|
Suyama K, Murashima M, Maeda I, Nose T. Enhancement of Aggregate Formation Through Aromatic Compound Adsorption in Elastin-like Peptide (FPGVG) 5 Analogs. Biomacromolecules 2023; 24:5265-5276. [PMID: 37865930 DOI: 10.1021/acs.biomac.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Elastin-like peptides (ELPs) exhibit temperature-dependent reversible self-assembly. Repetitive sequences derived from elastin, such as Val-Pro-Gly-Val-Gly (VPGVG), are essential for the self-assembly of ELPs. Previously, we developed (FPGVG)5 (F5), in which the first valine residue in the VPGVG sequence was replaced with phenylalanine, which showed strong self-aggregation ability. This suggests that interactions through the aromatic amino acid residues of ELPs could play an important role in self-assembly. In this study, we investigated the thermoresponsive behavior of F5 analogs in the presence of aromatic compounds. Turbidimetry, spectroscopy, and fluorescence measurements demonstrated that aromatic compounds interacted with F5 analogs below the transition temperature and enhanced the self-assembly ability of ELPs by stabilizing amyloid-like structures. Furthermore, quantitative high-performance liquid chromatography analyses showed that the F5 analogs could adsorb and remove hydrophobic aromatic compounds from aqueous solutions during aggregate formation. These results suggested that the F5 analogs can be applicable as scavengers of aromatic compounds.
Collapse
Affiliation(s)
- Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masayuki Murashima
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka 820-8502, Fukuoka, Japan
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Parisi E, Adorinni S, Garcia AM, Kralj S, De Zorzi R, Marchesan S. Self-assembling tripeptide forming water-bound channels and hydrogels. J Pept Sci 2023; 29:e3524. [PMID: 37226306 DOI: 10.1002/psc.3524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
D-Ser(tBu)-L-Phe-L-Trp is described as a self-assembling tripeptide that yields nanofibrillar hydrogels at physiological conditions (phosphate buffer at pH 7.4). The peptide is characterized by several spectroscopic methods, such as circular dichroism and fluorescence, oscillatory rheometry, and transmission electron microscopy. Single-crystal X-ray diffraction reveals supramolecular packing into water-bound channels and allows the visualization of the intermolecular interactions holding together peptide stacks.
Collapse
Affiliation(s)
- Evelina Parisi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Simone Adorinni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ana M Garcia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Lacham-Hartman S, Moshe R, Ben-Zichri S, Shmidov Y, Bitton R, Jelinek R, Papo N. APPI-Derived Cyclic Peptide Enhances Aβ42 Aggregation and Reduces Aβ42-Mediated Membrane Destabilization and Cytotoxicity. ACS Chem Neurosci 2023; 14:3385-3397. [PMID: 37579500 DOI: 10.1021/acschemneuro.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
An amyloid precursor protein inhibitor (APPI) and amyloid beta 42 (Aβ42) are both subdomains of the human transmembrane amyloid precursor protein (APP). In the brains of patients with Alzheimer's disease (AD), Aβ42 oligomerizes into aggregates of various sizes, with intermediate, low-molecular-weight Aβ42 oligomers currently being held to be the species responsible for the most neurotoxic effects associated with the disease. Strategies to ameliorate the toxicity of these intermediate Aβ42 oligomeric species include the use of short, Aβ42-interacting peptides that either inhibit the formation of the Aβ42 oligomeric species or promote their conversion to high-molecular-weight aggregates. We therefore designed such an Aβ42-interacting peptide that is based on the β-hairpin amino acid sequence of the APPI, which exhibits high similarity to the β-sheet-like aggregation site of Aβ42. Upon tight binding of this 20-mer cyclic peptide to Aβ42 (in a 1:1 molar ratio), the formation of Aβ42 aggregates was enhanced, and consequently, Aβ42-mediated cell toxicity was ameliorated. We showed that in the presence of the cyclic peptide, interactions of Aβ42 with both plasma and mitochondrial membranes and with phospholipid vesicles that mimic these membranes were inhibited. Specifically, the cyclic peptide inhibited Aβ42-mediated mitochondrial membrane depolarization and reduced Aβ42-mediated apoptosis and cell death. We suggest that the cyclic peptide modulates Aβ42 aggregation by enhancing the formation of large aggregates─as opposed to low-molecular-weight intermediates─and as such has the potential for further development as an AD therapeutic.
Collapse
Affiliation(s)
- Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Reut Moshe
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
Chuang WH, Chou YT, Chen YH, Kuo TH, Liaw WF, Lu TT, Kao CF, Wang YM. Neuroprotective Effect of NO-Delivery Dinitrosyl Iron Complexes (DNICs) on Amyloid Pathology in the Alzheimer's Disease Cell Model. ACS Chem Neurosci 2023; 14:2922-2934. [PMID: 37533298 DOI: 10.1021/acschemneuro.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. β-amyloid1-42 (Aβ1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aβ aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aβ1-42. This study found that DNIC-COOH protected neuronal cells from Aβ-induced cytotoxicity, potentiated neuronal functions, and facilitated Aβ1-42 degradation through the NO-sGC-cGMP-AKT-GSK3β-CREB/MMP-9 pathway.
Collapse
Affiliation(s)
- Wen-Han Chuang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Ting Chou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ting-Han Kuo
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Department of Dentistry, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Natarajan A, Rangan K, Vadrevu R. Self-assembly of a peptide sequence, EKKE, composed of exclusively charged amino acids: Role of charge in morphology and lead binding. J Pept Sci 2023; 29:e3451. [PMID: 36098076 DOI: 10.1002/psc.3451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
The self-assembly of peptides is influenced by their amino acid sequence and other factors including pH, charge, temperature, and solvent. Herein, we explore whether a four-residue sequence, EKKE, consisting of exclusively charged amino acids shows the propensity to form self-assembled ordered nanostructures and whether the overall charge plays any role in morphological and functional properties. From a combination of experimental data provided by Thioflavin T fluorescence, Congo red absorbance, circular dichroism spectroscopy, dynamic light scattering, field emission-scanning electron microscopy, atomic force microscopy, and confocal microscopy, it is clear that the all-polar peptide and charged EKKE sequence shows a pH-dependent tendency to form amyloid-like structures, and the self-assembled entities under acidic, basic and neutral conditions exhibit morphological variation. Additionally, the ability of the self-assembled amyloid nanostructures to bind to the toxic metal, lead (Pb2+ ), was demonstrated from the analysis of the ultraviolet absorbance and X-ray photoelectron spectroscopy data. The modulation at the sequence level for the amyloid-forming EKKE scaffold can further extend its potential role not only in the remediation of other toxic metals but also towards biomedical applications.
Collapse
Affiliation(s)
- Aishwarya Natarajan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
11
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Najib Ullah SNM, Abul Barkat M, Beg S. Chiral-engineered supraparticles: Emerging tools for drug delivery. Drug Discov Today 2023; 28:103420. [PMID: 36309193 DOI: 10.1016/j.drudis.2022.103420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023]
Abstract
The handedness of chiral-engineered supraparticles (CE-SPs) influences their interactions with cells and proteins, as evidenced by the increased penetration of breast, cervical, and myeloma cell membranes by d-chirality-coordinated SPs. Quartz crystal dissipation and isothermal titration calorimetry have been used to investigate such chiral-specific interactions. d-SPs are more thermodynamically stable compared with l-SPs in terms of their adhesion. Proteases and other endogenous proteins can be shielded by the opposite chirality of d-SPs, resulting in longer half-lives. Incorporating nanosystems with d-chirality increases uptake by cancer cells and prolongs in vivo stability, demonstrating the importance of chirality in biomaterials. Thus, as we discuss here, chiral nanosystems could enhance drug delivery systems, tumor markers, and biosensors, among other biomaterial-based technologies, by allowing for better control over their features.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Science, SIHAS, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | | | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
12
|
Wang GY, Lu B, Cui X, Li G, Zhang K, Zhang QS, Cui X, Qi GF, Liang QL, Luo XB, Xu HG, Xiao L, Wang L, Li L. An intelligent peptide recognizes and traps Mycobacterium tuberculosis to inhibit macrophage phagocytosis. J Mater Chem B 2022; 11:180-187. [PMID: 36484315 DOI: 10.1039/d2tb01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis is a major public health concern worldwide, and it is a serious threat to human health for a long period. Macrophage phagocytosis of Mycobacterium tuberculosis (M. tuberculosis) is a crucial process for granuloma formation, which shelters the bacteria and gives them an opportunity for re-activation and spread. Herein, we report an intelligent anti-microbial peptide that can recognize and trap the M. tuberculosis, inhibiting the macrophage phagocytosis process. The peptide (Bis-Pyrene-KLVFF-WHSGTPH, in abbreviation as BFH) first self-assembles into nanoparticles, and then forms nanofibers upon recognizing and binding M. tuberculosis. Subsequently, BFH traps M. tuberculosis by the in situ formed nanofibrous networks and the trapped M. tuberculosis are unable to invade host cells (macrophages). The intelligent anti-microbial peptide can significantly inhibit the phagocytosis of M. tuberculosis by macrophages, thereby providing a favorable theoretical basis for inhibiting the formation of tuberculosis granulomas.
Collapse
Affiliation(s)
- Gui-Yuan Wang
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Bin Lu
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Xu Cui
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Guang Li
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Qing-Shi Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xin Cui
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Gao-Feng Qi
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Qi-Lin Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiao-Bo Luo
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Huan-Ge Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Li Xiao
- Institute of Respiratory and Critical Medicine, the Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Litao Li
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| |
Collapse
|
13
|
Perugini V, Santin M. The Real-Time Validation of the Effectiveness of Third-Generation Hyperbranched Poly(ɛ-lysine) Dendrons-Modified KLVFF Sequences to Bind Amyloid-β 1-42 Peptides Using an Optical Waveguide Light-Mode Spectroscopy System. SENSORS (BASEL, SWITZERLAND) 2022; 22:9561. [PMID: 36502262 PMCID: PMC9736926 DOI: 10.3390/s22239561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The aggregation of cytotoxic amyloid peptides (Aβ1-42) is widely recognised as the cause of brain tissue degeneration in Alzheimer's disease (AD). Indeed, evidence indicates that the deposition of cytotoxic Aβ1-42 plaques formed through the gradual aggregation of Aβ1-42 monomers into fibrils determines the onset of AD. Thus, distinct Aβ1-42 inhibitors have been developed, and only recently, the use of short linear peptides has shown promising results by either preventing or reversing the process of Aβ1-42 aggregation. Among them, the KLVFF peptide sequence, which interacts with the hydrophobic region of Aβ16-20, has received widespread attention due to its ability to inhibit fibril formation of full-length Aβ1-42. In this study, hyperbranched poly-L-lysine dendrons presenting sixteen KLVFF at their uppermost molecular branches were designed with the aim of providing the KLVFF sequence with a molecular scaffold able to increase its stability and of improving Aβ1-42 fibril formation inhibitory effect. These high-purity branched KLVFF were used to functionalise the surface of the metal oxide chip of the optical waveguide lightmode spectroscopy sensor showing the more specific, accurate and rapid measurement of Aβ1-42 than that detected by linear KLVFF peptides.
Collapse
|
14
|
Trebesova H, Olivero G, Marchi M, Grilli M. The Anti-Aggregative Peptide KLVFF Mimics Aβ1-40 in the Modulation of Nicotinic Receptors: Implications for Peptide-Based Therapy. Biomedicines 2022; 10:biomedicines10092231. [PMID: 36140331 PMCID: PMC9496455 DOI: 10.3390/biomedicines10092231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, the inhibition of beta-amyloid (Aβ) aggregation has emerged as a potential strategy for Alzheimer’s disease. KLVFF, a small peptide corresponding to the aminoacidic sequence 16-20 of Aβ, reduces Aβ fibrillation dose dependently. Therefore, the toxic and functional characterization of its brain activity is fundamental for clarifying its potential therapeutic role. Accordingly, we studied the modulatory role of KLVFF on the cholinergic receptors regulating dopamine and noradrenaline release in rat synaptosomes. Nicotinic receptors on dopaminergic nerve terminals in the nucleus acccumbens are inhibited by KLVFF, which closely resembles full-length Aβ1-40. Moreover, KLVFF entrapped in synaptosomes does not modify the nicotinic receptor’s function, suggesting that external binding to the receptor is required for its activity. The cholinergic agent desformylflustrabromine counteracts the KLVFF effect. Remarkably, muscarinic receptors on dopaminergic terminals and nicotinic receptors regulating noradrenaline release in the hippocampus are completely insensitive to KLVFF. Based on our findings, KLVFF mimics Aβ1-40 as a negative modulator of specific nicotinic receptor subtypes affecting dopamine transmission in the rat brain. Therefore, new pharmacological strategies using the anti-aggregative properties of KLVFF need to be evaluated for potential interference with nicotinic receptor-mediated transmission.
Collapse
|
15
|
Pramanik U, Khamari L, Rai S, Mahato P, Nandy A, Yadav R, Agrawal S, Mukherjee S. Macrocyclic Cavitand β-Cyclodextrin Inhibits the Alcohol-induced Trypsin Aggregation. Chemphyschem 2022; 23:e202200155. [PMID: 35608331 DOI: 10.1002/cphc.202200155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Trypsin, the most abundant pancreatic protein, aids in protein digestion by hydrolysis and exhibits aggregation propensity in presence of alcohol which can further lead to pancreatitis and eventually pancreatic cancer. Herein, by several experimental and theoretical approaches, we unearth the inhibition of alcohol-induced aggregation of Trypsin by macrocyclic cavitand, β-cyclodextrin (β-CD). β-CD interacts with the native protein and shows inhibitory effect in a dose dependent manner. Moreover, the secondary structures and morphologies of Trypsin in presence of β-CD also clearly emphasize the inhibition of fibril formation. From Fluorescence Correlation Spectroscopy, we observed an enhancement in diffusion time of Nile Red with ~ 2.5 times increase in hydrodynamic radius, substantiating the presence of fibrillar structure. Trypsin also shows reduction in its functional activity due to alcohol-induced aggregation. Our simulation data reports the probable residues responsible for fibril formation which was validated by molecular docking studies.
Collapse
Affiliation(s)
- Ushasi Pramanik
- IISER Bopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Laxmikanta Khamari
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Saurabh Rai
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Paritosh Mahato
- IISER Bopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Atanu Nandy
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Rahul Yadav
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Sameeksha Agrawal
- IISER Bopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Saptarshi Mukherjee
- Indian Institute of Science Education and Research Bhopal, Chemistry, Indore By-Pass Road, Bhauri, 462066, Bhopal, INDIA
| |
Collapse
|
16
|
Bellotto O, Pierri G, Rozhin P, Polentarutti M, Kralj S, D'Andrea P, Tedesco C, Marchesan S. Dipeptide self-assembly into water-channels and gel biomaterial. Org Biomol Chem 2022; 20:6211-6218. [PMID: 35575102 DOI: 10.1039/d2ob00622g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dipeptides are convenient building blocks for supramolecular gel biomaterials that can be produced on a large scale at low cost and do not persist in the environment. In the case of unprotected sequences, hydrophobicity is a key requirement to enable gelation, with Phe-Phe standing out for its self-assembling ability. Conversely, more hydrophilic sequences such as homochiral dipeptides Phe-Val and Val-Phe neither fibrillate nor gel aqueous buffers and their crystal structures reveal amphipathic layers. In this work, we test emerging rules for the design of self-assembling dipeptides using heterochiral Phe-Val and Val-Phe. Each dipeptide is characterized by 1H- and 13C-NMR, LC-MS, circular dichroism, infrared and Raman spectroscopies, rheology, electron microscopy, and single-crystal X-ray diffraction. In particular, D-Phe-L-Val is the first heterochiral dipeptide to self-assemble into supramolecular water-channels whose cavity is defined by four peptide molecules arranged head-to-tail. This minimalistic sequence is devoid of amyloid character as probed by thioflavin T fluorescence and it displays excellent biocompatibility in vitro. The dataset provided, through comparison with the literature, significantly advances the definition of molecular design rules for minimalistic unprotected dipeptides that self-assemble into water-channels and biocompatible gels, to assist with the future development of supramolecular biomaterials with fine control over nanomorphological features for a variety of applications.
Collapse
Affiliation(s)
- Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Giovanni Pierri
- University of Salerno, Dept. of Chemistry & Biologi "A. Zambelli", Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Petr Rozhin
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | | | - Slavko Kralj
- Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia.,University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Paola D'Andrea
- University of Trieste, Life Sciences Dept., Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Consiglia Tedesco
- University of Salerno, Dept. of Chemistry & Biologi "A. Zambelli", Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Silvia Marchesan
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
17
|
Scarel E, Bellotto O, Rozhin P, Kralj S, Tortora M, Vargiu AV, De Zorzi R, Rossi B, Marchesan S. Single-atom substitution enables supramolecular diversity from dipeptide building blocks. SOFT MATTER 2022; 18:2129-2136. [PMID: 35179536 DOI: 10.1039/d1sm01824h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dipeptides are popular building blocks for supramolecular gels that do not persist in the environment and may find various applications. In this work, we show that a simple substitution on the aromatic side-chain of phenylalanine with either fluorine or iodine enables supramolecular diversity upon self-assembly at neutral pH, leading to hydrogels or crystals. Each building block is characterized by 1H- and 13C-NMR spectroscopy, LC-MS, circular dichroism, and molecular models. The supramolecular behaviour is monitored with a variety of techniques, including circular dichroism, oscillatory rheology, transmission electron microscopy, attenuated total reflectance Fourier-transformed infrared spectroscopy, visible Raman spectroscopy, synchrotron-radiation single-crystal X-ray diffraction and UV Resonance Raman spectroscopy, allowing key differences to be pinpointed amongst the halogenated analogues.
Collapse
Affiliation(s)
- Erica Scarel
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Petr Rozhin
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Slavko Kralj
- Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia
- University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Mariagrazia Tortora
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Attilio V Vargiu
- University of Cagliari, Physics Dept., 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Silvia Marchesan
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
18
|
Phongpradist R, Thongchai W, Thongkorn K, Lekawanvijit S, Chittasupho C. Surface Modification of Curcumin Microemulsions by Coupling of KLVFF Peptide: A Prototype for Targeted Bifunctional Microemulsions. Polymers (Basel) 2022; 14:443. [PMID: 35160433 PMCID: PMC8838555 DOI: 10.3390/polym14030443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Curcumin is one of the most promising natural therapeutics for use against Alzheimer's disease. The major limitations of curcumin are its low oral bioavailability and difficulty in permeating the blood-brain barrier. Therefore, designing a delivery system of curcumin to overcome its limitations must be employed. KLVFF, a peptide known as an amyloid blocker, was used in this study as a targeting moiety to develop a targeted drug delivery system. A prototype of transnasal KLVFF conjugated microemulsions containing curcumin (KLVFF-Cur-ME) for the nose-to-brain delivery was fabricated. The KLVFF-Cur-ME was developed by a titration method. A conjugation of KLVFF was performed through a carbodiimide reaction, and the conjugation efficiency was confirmed by FTIR and DSC technique. KLVFD-Cur-ME was characterized for the drug content, globule size, zeta potential, and pH. A transparent and homogeneous KLVFF-Cur-ME is achieved with a drug content of 80.25% and a globule size of 76.1 ± 2.5 nm. The pH of KLVFF-Cur-ME is 5.33 ± 0.02, indicating non-irritation to nasal tissues. KLVFD-Cur-ME does not show nasal ciliotoxicity. An ex vivo diffusion study revealed that KLVFF-Cur-ME partitions the porcine nasal mucosa through diffusion, following the Higuchi model. This investigation demonstrates the successful synthesis of a bifunctional KLVFF-Cur-ME as a novel prototype to deliver anti-Aβ aggregation via an intranasal administration.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wisanu Thongchai
- Chemistry Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand;
| | - Kriangkrai Thongkorn
- Department of Companion Animals and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Suree Lekawanvijit
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
19
|
Preetham HD, Muddegowda U, Sharath Kumar KS, Rangappa S, Rangappa KS. Identification of β-aminopyrrolidine containing peptides as β-amyloid aggregation inhibitors for Alzheimer's disease. J Pept Sci 2022; 28:e3386. [PMID: 34981876 DOI: 10.1002/psc.3386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is caused by a series of events initiated by the production and aggregation of the amyloid β-protein (Aβ). In the early stages of the disease, Aβ is released in a soluble form then progressively forms oligomeric, multimeric, and fibrillar aggregates, triggering neurodegeneration. Thus, development of inhibitors that initiate reverse Aβ aggregation is thought to be a logical approach in treating AD. In this context, we developed β-aminopyrrolidine containing 12 mer peptide 3 which is very potent in inhibiting the Aβ aggregation and also reducing Aβ(42)-induced cytotoxicity.
Collapse
Affiliation(s)
- Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Umashankara Muddegowda
- Department of Studies in Chemistry, Karnataka State Open University, Mysuru, Karnataka, India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya, Karnataka, India
| | | |
Collapse
|
20
|
Vrancx C, Vadukul DM, Suelves N, Contino S, D'Auria L, Perrin F, van Pesch V, Hanseeuw B, Quinton L, Kienlen-Campard P. Mechanism of Cellular Formation and In Vivo Seeding Effects of Hexameric β-Amyloid Assemblies. Mol Neurobiol 2021; 58:6647-6669. [PMID: 34608607 PMCID: PMC8639606 DOI: 10.1007/s12035-021-02567-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
The β-amyloid peptide (Aβ) is found as amyloid fibrils in senile plaques, a typical hallmark of Alzheimer's disease (AD). However, intermediate soluble oligomers of Aβ are now recognized as initiators of the pathogenic cascade leading to AD. Studies using recombinant Aβ have shown that hexameric Aβ in particular acts as a critical nucleus for Aβ self-assembly. We recently isolated hexameric Aβ assemblies from a cellular model, and demonstrated their ability to enhance Aβ aggregation in vitro. Here, we report the presence of similar hexameric-like Aβ assemblies across several cellular models, including neuronal-like cell lines. In order to better understand how they are produced in a cellular context, we investigated the role of presenilin-1 (PS1) and presenilin-2 (PS2) in their formation. PS1 and PS2 are the catalytic subunits of the γ-secretase complex that generates Aβ. Using CRISPR-Cas9 to knockdown each of the two presenilins in neuronal-like cell lines, we observed a direct link between the PS2-dependent processing pathway and the release of hexameric-like Aβ assemblies in extracellular vesicles. Further, we assessed the contribution of hexameric Aβ to the development of amyloid pathology. We report the early presence of hexameric-like Aβ assemblies in both transgenic mice brains exhibiting human Aβ pathology and in the cerebrospinal fluid of AD patients, suggesting hexameric Aβ as a potential early AD biomarker. Finally, cell-derived hexameric Aβ was found to seed other human Aβ forms, resulting in the aggravation of amyloid deposition in vivo and neuronal toxicity in vitro.
Collapse
Affiliation(s)
- Céline Vrancx
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Devkee M Vadukul
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Nuria Suelves
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Sabrina Contino
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Ludovic D'Auria
- Neurochemistry Unit, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Florian Perrin
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Unit, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Bernard Hanseeuw
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, Université de Liège, 4000, Liège, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
21
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Zheng X, Zhang J, Lu C, Zhuang Y, Zhang X. Rational Design of Peptide Inhibitor Against Amyloidogenesis-Correlated Membrane Disruption by Merozoite Surface Protein 2. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Kumar V, Viswanathan GKK, Ralhan K, Gazit E, Segal D. Amyloidogenic Properties of Peptides Derived from the VHL Tumor Suppressor Protein. ChemMedChem 2021; 16:3565-3568. [PMID: 34431623 DOI: 10.1002/cmdc.202100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Indexed: 11/12/2022]
Abstract
The von Hippel-Lindau tumor suppressor protein (pVHL) is involved in maintaining cellular oxygen homeostasis through the regulated degradation of HIF-α. The intrinsically disordered nature of pVHL makes it prone to aggregation that impairs its function, and this is further aggravated in mutant versions of the protein, thus promoting tumor development. By using in silico analysis, we predicted six peptide fragments from pVHL to be amyloidogenic. This was verified for two of the peptides by biophysical approaches, which demonstrated self-assembly and formation of β-sheet-rich aggregates, which, under transmission electron microscopy, atomic force microscopy, and X-ray diffraction, displayed typical fibrillar amyloid characteristics. These motifs may serve as proxies for exploring the nature of pVHL aggregation.
Collapse
Affiliation(s)
- Vijay Kumar
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Guru Krishna Kumar Viswanathan
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Krittika Ralhan
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Daniel Segal
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| |
Collapse
|
24
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. Int J Mol Sci 2021; 22:8896. [PMID: 34445599 PMCID: PMC8396286 DOI: 10.3390/ijms22168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Not long ago, self-reactive immune activity was considered as pathological trait. A paradigm shift has now led to the recognition of autoimmune processes as part of natural maintenance of molecular homeostasis. The immune system is assigned further roles beneath the defense against pathogenic organisms. Regarding the humoral immune system, the investigation of natural autoantibodies that are frequently found in healthy individuals has led to further hypotheses involving natural autoimmunity in other processes as the clearing of cellular debris or decrease in inflammatory processes. However, their role and origin have not been entirely clarified, but accumulating evidence links their formation to immune reactions against the gut microbiome. Antibodies targeting highly conserved proteins of the commensal microflora are suggested to show self-reactive properties, following the paradigm of the molecular mimicry. Here, we discuss recent findings, which demonstrate potential links of the commensal microflora to the immunological homeostasis and highlight the possible implications for various diseases. Furthermore, specific components of the immune system, especially antibodies, have become a focus of attention for the medical management of various diseases and provide attractive treatment options in the future. Nevertheless, the development and optimization of such macromolecules still represents a very time-consuming task, shifting the need to more medical agents with simple structural properties and low manufacturing costs. Synthesizing only the biologically active sites of antibodies has become of great interest for the pharmaceutical industry and offers a wide range of therapeutic application areas as it will be discussed in the present review article.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center, 55131 Mainz, Germany; (V.M.B.); (C.S.); (N.P.)
| |
Collapse
|
25
|
de Mello LR, Porosk L, Lourenço TC, Garcia BBM, Costa CAR, Han SW, de Souza JS, Langel Ü, da Silva ER. Amyloid-like Self-Assembly of a Hydrophobic Cell-Penetrating Peptide and Its Use as a Carrier for Nucleic Acids. ACS APPLIED BIO MATERIALS 2021; 4:6404-6416. [PMID: 35006917 DOI: 10.1021/acsabm.1c00601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a topical subject potentially exploitable for creating nanotherapeutics for the delivery of bioactive loads. These compounds are often classified into three major categories according to their physicochemical characteristics: cationic, amphiphilic, and hydrophobic. Among them, the group of hydrophobic CPPs has received increasing attention in recent years due to toxicity concerns posed by highly cationic CPPs. The hexapeptide PFVYLI (P, proline; F, phenylalanine; V, valine; Y, tyrosine; L, leucine; and I, isoleucine), a fragment derived from the C-terminal portion of α1-antitrypsin, is a prototypal example of hydrophobic CPP. This sequence shows reduced cytotoxicity and a capacity of nuclear localization, and its small size readily hints at its suitability as a building block to construct nanostructured materials. In this study, we examine the self-assembling properties of PFVYLI and investigate its ability to form noncovalent complexes with nucleic acids. By using a combination of biophysical tools including synchrotron small-angle X-ray scattering and atomic force microscopy-based infrared spectroscopy, we discovered that this CPP self-assembles into discrete nanofibrils with remarkable amyloidogenic features. Over the course of days, these fibrils coalesce into rodlike crystals that easily reach the micrometer range. Despite lacking cationic residues in the composition, PFVYLI forms noncovalent complexes with nucleic acids that retain β-sheet pairing found in amyloid aggregates. In vitro vectorization experiments performed with double-stranded DNA fragments indicate that complexes promote the internalization of nucleic acids, revealing that tropism toward cell membranes is preserved upon complexation. On the other hand, transfection assays with splice-correction oligonucleotides (SCOs) for luciferase expression show limited bioactivity across a narrow concentration window, suggesting that the propensity to form amyloidogenic aggregates may trigger endosomal entrapment. We anticipate that the findings presented here open perspectives for using this archetypical hydrophobic CPP in the fabrication of nanostructured scaffolds, which potentially integrate properties of amyloids and translocation capabilities of CPPs.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ly Porosk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Thiago C Lourenço
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Bianca B M Garcia
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Carlos A R Costa
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-861, Brazil
| | - Sang W Han
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Juliana S de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210580, Brazil
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
26
|
Naveh Tassa S, Ben Zichri S, Lacham-Hartman S, Oren O, Slobodnik Z, Eremenko E, Toiber D, Jelinek R, Papo N. A Mechanism for the Inhibition of Tau Neurotoxicity: Studies with Artificial Membranes, Isolated Mitochondria, and Intact Cells. ACS Chem Neurosci 2021; 12:1563-1577. [PMID: 33904703 DOI: 10.1021/acschemneuro.1c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is currently believed that molecular agents that specifically bind to and neutralize the toxic proteins/peptides, amyloid β (Aβ42), tau, and the tau-derived peptide PHF6, hold the key to attenuating the progression of Alzheimer's disease (AD). We thus tested our previously developed nonaggregating Aβ42 double mutant (Aβ42DM) as a multispecific binder for three AD-associated molecules, wild-type Aβ42, the tauK174Q mutant, and a synthetic PHF6 peptide. Aβ42DM acted as a functional inhibitor of these molecules in in vitro assays and in neuronal cell-based models of AD. The double mutant bound both cytotoxic tauK174Q and synthetic PHF6 and protected neuronal cells from the accumulation of tau in cell lysates and mitochondria. Aβ42DM also reduced toxic intracellular levels of calcium and the overall cell toxicity induced by overexpressed tau, synthetic PHF6, Aβ42, or a combination of PHF6and Aβ42. Aβ42DM inhibited PHF6-induced overall mitochondrial dysfunction: In particular, Aβ42DM inhibited PHF6-induced damage to submitochondrial particles (SMPs) and suppressed PHF6-induced elevation of the ζ-potential of inverted SMPs (proxy for the inner mitochondrial membrane, IMM). PHF6 reduced the lipid fluidity of cardiolipin/DOPC vesicles (that mimic the IMM) but not DOPC (which mimics the outer mitochondrial membrane), and this effect was inhibited by Aβ42DM. This inhibition may be explained by the conformational changes in PHF6 induced by Aβ42DM in solution and in membrane mimetics. On this basis, the paper presents a mechanistic explanation for the inhibitory activity of Aβ42DM against Aβ42- and tau-induced membrane permeability and cell toxicity and provides confirmatory evidence for its protective function in neuronal cells.
Collapse
Affiliation(s)
- Segev Naveh Tassa
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shani Ben Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Zeev Slobodnik
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ekaterina Eremenko
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Tau/Aβ chimera peptides: A Thioflavin-T and MALDI-TOF study of Aβ amyloidosis in the presence of Cu(II) or Zn(II) ions and total lipid brain extract (TLBE) vesicles. Chem Phys Lipids 2021; 237:105085. [PMID: 33895131 DOI: 10.1016/j.chemphyslip.2021.105085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Currently, Alzheimer's Disease (AD) is a complex neurodegenerative condition, with limited therapeutic options. Several factors, like Amyloid β (Aβ) aggregation, tau protein hyperphosphorylation, bio-metals dyshomeostasis and oxidative stress contribute to AD pathogenesis. These pathogenic processes might occur in the aqueous phase but also on neuronal membranes. Thus, investigating the connection between Aβ and biomembranes, becomes important for unveiling the molecular mechanism underlying Aβ amyloidosis as a critical event in AD pathology. In this work, the interaction of two peptides, made up with hybrid sequences from Tau protein 9-16 (EVMEDHAG) or 26-33 (QGGYTMHQ) N-terminal domain and Aβ16-20 (KLVFF) hydrophobic region, with full length Aβ40 or Aβ42 peptides is reported. The studied "chimera" peptides Ac-EVMEDHAGKLVFF-NH2 (τ9-16-KL) and Ac-QGGYTMHQKLVFF-NH2 (τ26-33-KL) are endowed with Aβ recognition and metal ion interaction capabilities provided by the tau or Aβ sequences, respectively. These peptides were characterized in previous study along with their metal dependent interaction and amyloidogenesis, either in the presence or absence of metal ion and artificial membranes made up with Total Lipid Brain Extract (TLBE) components, (Sciacca et al., 2020). In the present paper, the ability of the two peptides to inhibit Aβ aggregation is studied using composite experimental conditions including aqueous solution, the presence of metal ions (Cu or Zn), the presence of lipid vesicles mimicking neuronal membranes as well as the co-presence of metals and TLBE artificial membranes. We used Thioflavine-T (ThT) fluorescence or MALDI-TOF spectrometry analysis of Aβ limited proteolysis to respectively monitor the Aβ aggregation kinetic or validation of the Aβ interacting regions. We demonstrate that τ9-16-KL and τ26-33-KL peptides differently affect Aβ aggregation kinetics, with the tau sequence playing a crucial role. The results are discussed in terms of chimera's peptides hydrophobicity and electrostatic driven interactions at the aqueous/membrane interface.
Collapse
|
28
|
Siwy CM, Delfing BM, Lockhart C, Smith AK, Klimov DK. Partitioning of Aβ Peptide Fragments into Blood-Brain Barrier Mimetic Bilayer. J Phys Chem B 2021; 125:2658-2676. [PMID: 33656350 DOI: 10.1021/acs.jpcb.0c11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used all-atom replica-exchange umbrella sampling molecular dynamics simulations to investigate the partitioning of the charged tetrapeptide KLVF and its neutral apolar counterpart VVIA into the blood-brain barrier (BBB)-mimetic bilayer. Our findings allowed us to reconstruct the partitioning mechanism for these two Aβ peptide fragments. Despite dissimilar sequences, their permeation shares significant common features. Computations of free energies and permeabilities show that partitioning of both peptides is highly unfavorable, ruling out passive transport. The peptides experience multiple rotational transitions within the bilayer and typically cause considerable lipid disorder and bilayer thinning. Near the bilayer midplane, they lose almost entirely their solvation shell and the interactions with the lipid headgroups. The peptides cause complex reorganization within the proximal bilayer region. Upon insertion, they induce striking cholesterol influx reversed by its depletion and the influx of DMPC when the peptides reach the midplane. The differences in partitioning mechanisms are due to the much higher polarity of KLVF peptide, the permeation of which is more unfavorable and which exclusively assumes vertical orientations within the bilayer. In contrast, VVIA positions itself flat between the leaflets, causing minor disorder and even thickening of the BBB-mimetic bilayer. Due to the high density of the cholesterol-rich BBB bilayer, the unfavorable work associated with the peptide insertion provides a significant, but not dominant, contribution to the partition free energy, which is still governed by dehydration and loss of peptide-headgroup interactions. Comparison with experiments indicates that KLVF and VVIA permeation is similar to that of proline tetrapeptide, mannitol, or cimetidine, all of which exhibit no passive transport.
Collapse
Affiliation(s)
- Christopher M Siwy
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Bryan M Delfing
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Amy K Smith
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
29
|
Clover TM, O’Neill CL, Appavu R, Lokhande G, Gaharwar AK, Posey AE, White MA, Rudra JS. Self-Assembly of Block Heterochiral Peptides into Helical Tapes. J Am Chem Soc 2020; 142:19809-19813. [PMID: 32338879 PMCID: PMC7606833 DOI: 10.1021/jacs.9b09755] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Patterned substitution of d-amino acids into the primary sequences of self-assembling peptides influences molecular-level packing and supramolecular morphology. We report that block heterochiral analogs of the model amphipathic peptide KFE8 (Ac-FKFEFKFE-NH2), composed of two FKFE repeat motifs with opposite chirality, assemble into helical tapes with dimensions greatly exceeding those of their fibrillar homochiral counterparts. At sufficient concentrations, these tapes form hydrogels with reduced storage moduli but retain the shear-thinning behavior and consistent mechanical recovery of the homochiral analogs. Varying the identity of charged residues (FRFEFRFE and FRFDFRFD) produced similarly sized nonhelical tapes, while a peptide with nonenantiomeric l- and d-blocks (FKFEFRFD) formed helical tapes closely resembling those of the heterochiral KFE8 analogs. A proposed energy-minimized model suggests that a kink at the interface between l- and d-blocks leads to the assembly of flat monolayers with nonidentical surfaces that display alternating stacks of hydrophobic and charged groups.
Collapse
Affiliation(s)
- Tara M. Clover
- Department
of Pharmacology and Toxicology, University
of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Conor L. O’Neill
- Department
of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rajagopal Appavu
- Department
of Pharmacology and Toxicology, University
of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Giriraj Lokhande
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Ammon E. Posey
- Department
of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center
for Science & Engineering of Living Systems (CSELS), McKelvey
School of Engineering, Washington University
in St. Louis, One Brookings
Drive, Campus Box 1097, St. Louis, Missouri 63130, United
States
| | - Mark A. White
- Sealy
Center for Structural Biology and Molecular Biophysics and Department
of Biochemistry and Molecular Biology, University
of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jai S. Rudra
- Department
of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
30
|
Tandem-Homodimer of a β-Sheet-Forming Short Peptide Inhibits Random-to-β Structural Transition of Its Original Monomer. Processes (Basel) 2020. [DOI: 10.3390/pr8111421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is an increasing interest in designing fibrillogenesis modulators for treating amyloid β (Aβ)-peptide-associated diseases. The use of Aβ fragment peptides and their derivatives, as well as nonpeptidyl natural products, is one promising approach to prevent Aβ fibrillation. In this study, we demonstrate that tandem-homodimers (TDs) of a β-sheet-forming short peptide in which the amino acid sequence is duplicated in series and joined via an amino alkanoic acid linker of different chain lengths, preventing the random-to-β structural transition of the original monomer. Ape5-TD, containing 5-amino pentanoate, most potently prevented this transition for at least five days by generating disordered aggregates with reduced tryptic stability. The linkers in the TDs generated this inhibitory activity, probably due to their bent conformations and hydrophobicity, appropriate for accommodating and twisting the monomers, resulting in irregular arrangements of the peptides. The present study could allow the design of a new class of protein/peptide fibrillogenesis modulators.
Collapse
|
31
|
Horvat S, Yu Y, Böjte S, Teßmer I, Lowman DW, Ma Z, Williams DL, Beilhack A, Albrecht K, Groll J. Engineering Nanogels for Drug Delivery to Pathogenic Fungi Aspergillus fumigatus by Tuning Polymer Amphiphilicity. Biomacromolecules 2020; 21:3112-3121. [PMID: 32603103 DOI: 10.1021/acs.biomac.0c00489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Invasive aspergillosis is a serious threat to immunodeficient and critically ill patients caused mainly by the fungus Aspergillus fumigatus. Here, poly(glycidol)-based nanogels (NGs) are proposed as delivery vehicles for antifungal agents for sustained drug release. NGs are formed by simple self-assembly of random copolymers, followed by oxidative cross-linking of thiol functionalities. We investigate the impact of copolymer amphiphilicity on NG interaction with mature fungal hyphae in order to select the optimal drug delivery system for model antifungal drug amphotericin B. The results show that drug-loaded NGs decrease minimal inhibitory concentration (MIC) for around four times and slow down the fungal biofilm synthesis at concentrations lower than MIC. Our results suggest that amphiphilicity of nanoparticle's polymer matrix is an important factor in understanding the action of nanocarriers toward fungal cells and should be considered in the development of nanoparticle-based antifungal therapy.
Collapse
Affiliation(s)
- Sonja Horvat
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Yidong Yu
- Department of Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Zinklesweg 10, 97078 Würzburg, Germany
| | - Szalbolcs Böjte
- Ingrid Tessmer's Lab, Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, Germany
| | - Ingrid Teßmer
- Ingrid Tessmer's Lab, Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, Germany
| | - Douglas W Lowman
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - Zuchao Ma
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - Andreas Beilhack
- Department of Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Zinklesweg 10, 97078 Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
32
|
Kumar S, Binder WH. Peptide-induced RAFT polymerization via an amyloid-β 17-20-based chain transfer agent. SOFT MATTER 2020; 16:6964-6968. [PMID: 32717010 DOI: 10.1039/d0sm01169j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We here describe the synthesis of a novel peptide/polymer-conjugate, embedding the amyloid-β (Aβ) protein core sequence Leu-Val-Phe-Phe (LVFF, Aβ17-20) via RAFT polymerization. Based on a novel chain transfer-agent, the "grafting-from" approach effectively generates the well-defined peptide-polymer conjugates with appreciably high monomer conversion rate, resulting in mechanically stiffer peptide-functional cross-linked polymeric hydrogels.
Collapse
Affiliation(s)
- Sonu Kumar
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany. and Department of Applied Sciences (Chemistry), Punjab Engineering College (Deemed to be University), Sector 12, Chandigarh, 160012, India
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany.
| |
Collapse
|
33
|
Ruiz-Arias Á, Paredes JM, Di Biase C, Cuerva JM, Giron MD, Salto R, González-Vera JA, Orte A. Seeding and Growth of β-Amyloid Aggregates upon Interaction with Neuronal Cell Membranes. Int J Mol Sci 2020; 21:ijms21145035. [PMID: 32708806 PMCID: PMC7404110 DOI: 10.3390/ijms21145035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, the prevalence of amyloid neurodegenerative diseases such as Alzheimer's disease (AD) has significantly increased in developed countries due to increased life expectancy. This amyloid disease is characterized by the presence of accumulations and deposits of β-amyloid peptide (Aβ) in neuronal tissue, leading to the formation of oligomers, fibers, and plaques. First, oligomeric intermediates that arise during the aggregation process are currently thought to be primarily responsible for cytotoxicity in cells. This work aims to provide further insights into the mechanisms of cytotoxicity by studying the interaction of Aβ aggregates with Neuro-2a (N2a) neuronal cells and the effects caused by this interaction. For this purpose, we have exploited the advantages of advanced, multidimensional fluorescence microscopy techniques to determine whether different types of Aβ are involved in higher rates of cellular toxicity, and we measured the cellular stress caused by such aggregates by using a fluorogenic intracellular biothiol sensor. Stress provoked by the peptide is evident by N2a cells generating high levels of biothiols as a defense mechanism. In our study, we demonstrate that Aβ aggregates act as seeds for aggregate growth upon interacting with the cellular membrane, which results in cell permeability and damage and induces lysis. In parallel, these damaged cells undergo a significant increase in intracellular biothiol levels.
Collapse
Affiliation(s)
- Álvaro Ruiz-Arias
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Jose M. Paredes
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Chiara Di Biase
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Juan M. Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain;
| | - María D. Giron
- Departamento de Bioquímica y Biología Molecular II, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (M.D.G.); (R.S.)
| | - Rafael Salto
- Departamento de Bioquímica y Biología Molecular II, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (M.D.G.); (R.S.)
| | - Juan A. González-Vera
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
| | - Angel Orte
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (Á.R.-A.); (J.M.P.); (C.D.B.); (J.A.G.-V.)
- Correspondence: ; Tel.: +34-958243825
| |
Collapse
|
34
|
Luo S, Feng J, Xiao L, Guo L, Deng L, Du Z, Xue Y, Song X, Sun X, Zhang Z, Fu Y, Gong T. Targeting self-assembly peptide for inhibiting breast tumor progression and metastasis. Biomaterials 2020; 249:120055. [PMID: 32315863 DOI: 10.1016/j.biomaterials.2020.120055] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022]
Abstract
The ubiquitous interactions between tumor cells and the surrounding microenvironment contribute to tumor metastasis, interrupting these communications has, therefore, a great potential for antimetastasis therapy. Here, we describe an in situ self-assembly strategy that limits direct contact between tumor cells and the tumor microenvironment (TME). In this strategy, the Lys-Leu-Val-Phe-Phe (KLVFF) peptide motifs are targeted to the tumor by hyaluronic acid (HA) functionalized liposomes and spontaneously undergo self-assembly to form nanofibers with a net-like structure wrapping around tumor cells. The fibrous nanostructures bury the membrane protrusions and thus hinder the migration and invasion of tumor cells, especially the transmigration through the fenestrated endothelium. The nanofibril coatings on tumor cells significantly block tumor cells induced platelet aggregation in vitro and prevent the adhesion of platelet around circulating tumor cells (CTCs) in vivo, thus limit the pro-metastasis effect of platelets and prevent the early metastasis. Furthermore, the nano-nets stably retain in the primary tumor site for over 72 h and effectively prevent the activation of intratumoral platelet, which suppress tumor progression and the spontaneous lung metastasis in 4T1 breast cancer mice model. Our study paves a promising avenue to combat tumor metastasis by regulating the interactions between tumor cells and the TME.
Collapse
Affiliation(s)
- Shi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiaxing Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Linyu Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ling Guo
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Lang Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhengwu Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xu Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Khalili Samani E, Mofid MR, Malakoutikhah M. The effect of terminal groups and halogenation of KLVFF peptide on its activity as an inhibitor of β-amyloid aggregation. J Pept Sci 2019; 26:e3227. [PMID: 31845472 DOI: 10.1002/psc.3227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023]
Abstract
The aggregation of Aβ peptide into amyloid fibrils in the brain is associated with Alzheimer's disease (AD). Inhibition of Aβ aggregation seemed a potential treatment for AD. It was previously shown that a short fragment of Aβ peptide (KLVFF, 16-20) bound Aβ inhibited its aggregation. In this work, using KLVFF peptide, we synthesized two peptide families and then evaluated their inhibitory capacities by conventional assays such as thioflavin T (ThT) fluorescence spectroscopy, turbidity measurement, and the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). The effect of peptide terminal groups on its inhibitory activity was first studied. Subsequently, the influence of halogenated amino acids on peptide anti-aggregation properties was investigated. We found that iodinated peptide with amine in the N and amide in the C termini, respectively, was the best inhibitor of Aβ fibers formation. Halogenated peptides seemed to decrease the number of Aβ fibrils; however, they did not reduce Aβ cytotoxicity. The data obtained in this work seemed promising in developing potential peptide drugs for treatment of AD.
Collapse
Affiliation(s)
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry School of Pharmacy and Pharmaceutical Sciences, and Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
36
|
Asadbegi M, Shamloo A. Identification of a Novel Multifunctional Ligand for Simultaneous Inhibition of Amyloid-Beta (Aβ 42) and Chelation of Zinc Metal Ion. ACS Chem Neurosci 2019; 10:4619-4632. [PMID: 31566950 DOI: 10.1021/acschemneuro.9b00468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc binding to β-amyloid structure could promote amyloid-β aggregation, as well as reactive oxygen species (ROS) production, as suggested in many experimental and theoretical studies. Therefore, the introduction of multifunctional drugs capable of chelating zinc metal ion and inhibiting Aβ aggregation is a promising strategy in the development of AD treatment. The present study has evaluated the efficacy of a new bifunctional peptide drug using molecular docking and molecular dynamics (MD) simulations. This drug comprises two different domains, an inhibitor domain, obtained from the C-terminal hydrophobic region of Aβ, and a Zn2+ chelating domain, derived from rapeseed meal, merge with a linker. The multifunctionality of the ligand was evaluated using a comprehensive set of MD simulations spanning up to 3.2 μs including Aβ relaxation, ligand-Zn2+ bilateral interaction, and, more importantly, ligand-Zn2+-Aβ42 trilateral interactions. Analysis of the results strongly indicated that the bifunctional ligand can chelate zinc metal ion and avoid Aβ aggregation simultaneously. The present study illustrated that the proposed ligand has considerable hydrophobic interactions and hydrogen bonding with monomeric Aβ in the presence of zinc metal ion. Therefore, in light of these considerable interactions and contacts, the α-helical structure of Aβ has been enhanced, while the β-sheet formation is prevented and the α-helix native structure is protected. Furthermore, the analysis of interactions between Aβ and ligand-zinc complex revealed that the zinc metal ion is coordinated to Met13, the ending residue of the ligand and merely one residue in Aβ. The results have proven the previous experimental and theoretical findings in the literature about Aβ interactions with zinc metal ion and also Aβ interactions with the first domain of the proposed ligand. Moreover, the current research has evaluated the chelation using MD simulation and linear interaction energy (LIE) methods, and the result has been satisfactorily verified with previous experimental and theoretical (DFT) studies.
Collapse
Affiliation(s)
- Mohsen Asadbegi
- Sharif University of Technology, School of Mechanical Engineering, Tehran 94305, Iran
| | - Amir Shamloo
- Sharif University of Technology, School of Mechanical Engineering, Tehran 94305, Iran
| |
Collapse
|
37
|
Som Chaudhury S, Sannigrahi A, Nandi M, Mishra VK, De P, Chattopadhyay K, Mishra S, Sil J, Das Mukhopadhyay C. A Novel PEGylated Block Copolymer in New Age Therapeutics for Alzheimer’s Disease. Mol Neurobiol 2019; 56:6551-6565. [DOI: 10.1007/s12035-019-1542-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
|
38
|
Castelletto V, Hamley IW, Seitsonen J, Ruokolainen J, Harris G, Bellmann-Sickert K, Beck-Sickinger AG. Conformation and Aggregation of Selectively PEGylated and Lipidated Gastric Peptide Hormone Human PYY3–36. Biomacromolecules 2018; 19:4320-4332. [DOI: 10.1021/acs.biomac.8b01209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Jani Seitsonen
- Department of Applied Physics, Aalto University School of Science,
P.O. Box 15100, FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science,
P.O. Box 15100, FI-00076 Aalto, Finland
| | - Gemma Harris
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Brüderstrasse 3, D 04103 Leipzig, Germany
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Brüderstrasse 3, D 04103 Leipzig, Germany
| |
Collapse
|
39
|
Bortolini C, Klausen LH, Hoffmann SV, Jones NC, Saadeh D, Wang Z, Knowles TPJ, Dong M. Rapid Growth of Acetylated Aβ(16-20) into Macroscopic Crystals. ACS NANO 2018; 12:5408-5416. [PMID: 29771495 DOI: 10.1021/acsnano.8b00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aberrant assembly of the amyloid-β (Aβ) is responsible for the development of Alzheimer's disease, but can also be exploited to obtain highly functional biomaterials. The short Aβ fragment, KLVFF (Aβ16-20), is crucial for Aβ assembly and considered to be an Aβ aggregation inhibitor. Here, we show that acetylation of KLVFF turns it into an extremely fast self-assembling molecule, reaching macroscopic ( i.e., mm) size in seconds. We show that KLVFF is metastable and that the self-assembly can be directed toward a crystalline or fibrillar phase simply through chemical modification, via acetylation or amidation of the peptide. Amidated KLVFF can form amyloid fibrils; we observed folding events of such fibrils occurring in as little as 60 ms. The ability of single KLVFF molecules to rapidly assemble as highly ordered macroscopic structures makes it a promising candidate for applications as a rapid-forming templating material.
Collapse
Affiliation(s)
- Christian Bortolini
- Interdisciplinary Nanoscience Center , Aarhus University , Aarhus 8000 , Denmark
- Department of Chemistry , University of Cambridge , Cambridge CB2 1TN , U.K
| | - Lasse Hyldgaard Klausen
- Interdisciplinary Nanoscience Center , Aarhus University , Aarhus 8000 , Denmark
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | | | - Nykola C Jones
- ISA, Department of Physics and Astronomy , Aarhus University , Aarhus 8000 , Denmark
| | - Daniela Saadeh
- Centre for Astronomy & Particle Theory , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Zegao Wang
- Interdisciplinary Nanoscience Center , Aarhus University , Aarhus 8000 , Denmark
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Cambridge CB2 1TN , U.K
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center , Aarhus University , Aarhus 8000 , Denmark
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
40
|
Pelin JNBD, Gatto E, Venanzi M, Cavalieri F, Oliveira CLP, Martinho H, Silva ER, Aguilar AM, Souza JS, Alves WA. Hybrid Conjugates Formed between Gold Nanoparticles and an Amyloidogenic Diphenylalanine-Cysteine Peptide. ChemistrySelect 2018. [DOI: 10.1002/slct.201801345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Juliane N. B. D. Pelin
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| | - Emanuela Gatto
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Italy
| | - Francesca Cavalieri
- Department of Chemical and Biomolecular Engineering; The University of Melbourne; Australia
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Italy
| | | | - Herculano Martinho
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| | - Emerson R. Silva
- Departamento de Biofísica; Universidade Federal de São Paulo; 04023-062 São Paulo Brazil
| | - Andrea M. Aguilar
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas; Universidade Federal de São Paulo; Diadema 09972-270 Brazil
| | - Juliana S. Souza
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| |
Collapse
|
41
|
Hamley IW, Castelletto V, Dehsorkhi A, Torras J, Aleman C, Portnaya I, Danino D. The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides. J Phys Chem B 2018; 122:1826-1835. [PMID: 29357666 DOI: 10.1021/acs.jpcb.7b11463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The secondary structure of proline-rich surfactant-like peptides is examined for the first time and is found to be influenced by charged end groups in peptides P6K, P6E, and KP6E and an equimolar mixture of P6K and P6E. The peptides exhibit a conformational transition from unordered to polyproline II (PPII) above a critical concentration, detected from circular dichroism (CD) measurements and unexpectedly from fluorescence dye probe measurements. Isothermal titration calorimetry (ITC) measurements provided the Gibbs energies of hydration of P6K and P6E, which correspond essentially to the hydration energies of the terminal charged residues. A detailed analysis of peptide conformation for these peptides was performed using density functional theory calculations, and this was used as a basis for hybrid quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations. Quantum mechanics simulations in implicit water show both peptides (and their 1:1 mixture) exhibit PPII conformations. However, hybrid QM/MM MD simulations suggest that some deviations from this conformation are present for P6K and P6E in peptide bonds close to the charged residue, whereas in the 1:1 mixture a PPII structure is observed. Finally, aggregation of the peptides was investigated using replica exchange molecular dynamics simulations. These reveal a tendency for the average aggregate size (as measured by the radius of gyration) to increase with increasing temperature, which is especially marked for P6K, although the fraction of the most populated clusters is larger for P6E.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights , Reading RG6 6AD, U.K
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights , Reading RG6 6AD, U.K
| | - Ashkan Dehsorkhi
- Department of Chemistry, University of Reading, Whiteknights , Reading RG6 6AD, U.K
| | - Juan Torras
- Departament d'Enginyeria Química (EEBE) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain
| | - Carlos Aleman
- Departament d'Enginyeria Química (EEBE) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain
| | - Irina Portnaya
- Department of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion , Haifa, Israel 32000
| | - Dganit Danino
- Department of Biotechnology and Food Engineering and the Russell Berrie Nanotechnology Institute, Technion , Haifa, Israel 32000
| |
Collapse
|
42
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 577] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
43
|
Castelletto V, Kaur A, Kowalczyk RM, Hamley IW, Reza M, Ruokolainen J. Supramolecular Hydrogel Formation in a Series of Self-Assembling Lipopeptides with Varying Lipid Chain Length. Biomacromolecules 2017; 18:2013-2023. [DOI: 10.1021/acs.biomac.7b00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- V. Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences. University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - A. Kaur
- School
of Chemistry, Pharmacy and Food Biosciences. University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - R. M. Kowalczyk
- School
of Chemistry, Pharmacy and Food Biosciences. University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - I. W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences. University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - M. Reza
- Department
of Applied Physics, Aalto University School of Science, Aalto FI-00076, Finland
| | - J. Ruokolainen
- Department
of Applied Physics, Aalto University School of Science, Aalto FI-00076, Finland
| |
Collapse
|