1
|
Zhang Y, Helman A, Mead OG, Tighe S, Zhu Y, Tseng SCG. Processing Methods Affect Biological Properties of Amniotic Membrane Sheet Products. Cornea 2025; 44:671-678. [PMID: 40099678 PMCID: PMC12052046 DOI: 10.1097/ico.0000000000003849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 03/20/2025]
Abstract
ABSTRACT Amniotic membrane (AM) is widely used in ophthalmology because of its antiinflammatory, antiscarring, and wound healing promoting properties, which are due in part to a key matrix component, heavy chain-hyaluronan/pentraxin3. Herein, we assess various processing methods used to manufacture AM sheet products and their effect on the biological properties of AM mediated by heavy chain-hyaluronan/pentraxin3.
Collapse
Affiliation(s)
- Yuan Zhang
- R&D Department, BioTissue Holdings Inc, Miami, FL.
| | | | | | - Sean Tighe
- R&D Department, BioTissue Holdings Inc, Miami, FL.
| | - Yingting Zhu
- R&D Department, BioTissue Holdings Inc, Miami, FL.
| | | |
Collapse
|
2
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:105-118. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
3
|
Lulli M, Tartaro R, Papucci L, Magnelli L, Kaur IP, Caporossi T, Rizzo S, Mannini A, Giansanti F, Schiavone N. Effects of a human amniotic membrane extract on ARPE-19 cells. Mol Biol Rep 2024; 51:746. [PMID: 38874663 PMCID: PMC11178654 DOI: 10.1007/s11033-024-09647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Human Amniotic Membrane (hAM) is endowed with several biological activities and might be considered an optimal tool in surgical treatment for different ophthalmic pathologies. We pioneered the surgical use of hAM to treat retinal pathologies such as macular holes, tears, and retinal detachments, and to overcome photoreceptor damage in age-related macular degeneration. Although hAM contributed to improved outcomes, the mechanisms of its effects are not yet fully understood. The characterization and explanation of the effects of hAM would allow the adoption of this new natural product in different retinal pathologies, operative contexts, and hAM formulations. At this end, we studied the properties of a hAM extract (hAME) on the ARPE-19 cells. METHODS AND RESULTS A non-denaturing sonication-based technique was developed to obtain a suitable hAME. Viability, proliferation, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) were studied in hAME-treated ARPE-19 cells. The hAME was able to increase ARPE-19 cell viability even in the presence of oxidative stress (H2O2, TBHP). Moreover, hAME prevented the expression of EMT features, such as EMT-related proteins, fibrotic foci formation, and migration induced by different cytokines. CONCLUSIONS Our results demonstrate that the hAME retains most of the properties observed in the whole tissue by others. The hAME, other than providing a manageable research tool, could represent a cost-effective and abundant drug to treat retinal pathologies in the future.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Ruggero Tartaro
- Department of NEUROFARBA, Ophthalmology, University of Florence, Careggi, Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Indu Pal Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Tomaso Caporossi
- Vitreoretinal Surgery Unit, Isola Tiberina Gemelli Isola Hospital, Rome, Italy
- Catholic University Sacro Cuore, Rome, Italy
| | - Stanislao Rizzo
- Department of Ophthalmology, Catholic University of Sacred-Heart Foundation "Policlinico Universitario A. Gemelli" IRCCS, Rome, Italy
| | - Antonella Mannini
- Department of Experimental and Clinical Medicine - Internal Medicine Section, University of Florence, Florence, Italy.
| | - Fabrizio Giansanti
- Department of NEUROFARBA, Ophthalmology, University of Florence, Careggi, Florence, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|
4
|
Mysore Y, Hytti M, Deen AJ, Ranta-Aho S, Piippo N, Toppila M, Loukovaara S, Harju N, Kauppinen A. Epithelial-mesenchymal Transition (EMT) and the Effect of Atorvastatin on it in ARPE-19 cells. Cell Biochem Biophys 2024; 82:1523-1536. [PMID: 38777991 PMCID: PMC11344705 DOI: 10.1007/s12013-024-01305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Proliferative vitreoretinopathy (PVR) develops after an unsuccessful or complicated recovery from rhegmatogenous retinal detachment (RRD) surgery. Intraocular scar formation with the contribution of epithelial-mesenchymal transition (EMT) in RPE cells is prominent in the pathology of PVR. In the present study, the EMT process was experimentally induced in human retinal pigment epithelium (RPE; ARPE-19) cells, and the effect of atorvastatin on the process was studied. The mRNA and protein levels of mesenchymal markers actin alpha 2 (ACTA2) / alpha-smooth muscle actin (α-SMA) and fibronectin (FN), and epithelial markers occludin (OCLN) and zonula occludens-1 (ZO-1) were measured using quantitative real-time PCR (qRT-PCR) and western blot methods, respectively. In addition, α-SMA and FN were visualized using immunofluorescence staining. Cells were photographed under a phase contrast light microscope. Changes in the functionality of cells following the EMT process were studied using the IncuCyte scratch wound cell migration assay and the collagen cell invasion assay with confocal microscopy. The induction of EMT in ARPE-19 cells increased the expression of mesenchymal markers ACTA2/α-SMA and fibronectin and reduced the expression of epithelial marker OCLN both at mRNA and protein levels. The mRNA levels of ZO-1 were lower after EMT, as well. Increased levels of α-SMA and FN were confirmed by immunofluorescence staining. Atorvastatin further increased the mRNA levels of mesenchymal markers ACTA2 and FN as well as the protein levels of α-SMA and reduced the mRNA levels of epithelial markers OCLN and ZO-1 under the EMT process. EMT promoted wound closure and cell invasion into the 3D collagen matrix when compared to untreated control cells. These data present cellular changes upon the induction of the EMT process in ARPE-19 cells and the propensity of atorvastatin to complement the effect. More studies are needed to confirm the exact influence of the EMT process and atorvastatin treatment on the PVR development after RRD surgery.
Collapse
Affiliation(s)
- Yashavanthi Mysore
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital and School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sofia Ranta-Aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niina Piippo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sirpa Loukovaara
- Department of Ophthalmology, Unit of Vitreoretinal Surgery, Helsinki University Central Hospital, and Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
- Head and Neck Center, Ophthalmology Research Unit, Helsinki University Central Hospital, Helsinki, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Yang YC, Chien Y, Yarmishyn AA, Lim LY, Tsai HY, Kuo WC, Tsai PH, Yang SH, Hong SI, Chen SJ, Hwang DK, Yang YP, Chiou SH. Inhibition of oxidative stress-induced epithelial-mesenchymal transition in retinal pigment epithelial cells of age-related macular degeneration model by suppressing ERK activation. J Adv Res 2024; 60:141-157. [PMID: 37328058 PMCID: PMC11156608 DOI: 10.1016/j.jare.2023.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is related to the pathogenesis of various retinopathies including age-related macular degeneration (AMD). Oxidative stress is the major factor that induces degeneration of RPE cells associated with the etiology of AMD. OBJECTIVES Sodium iodate (NaIO3) generates intracellular reactive oxygen species (ROS) and is widely used to establish a model of AMD due to the selective induction of retinal degeneration. This study was performed to clarify the effects of multiple NaIO3-stimulated signaling pathways on EMT in RPE cells. METHODS The EMT characteristics in NaIO3-treated human ARPE-19 cells and RPE cells of the mouse eyes were analyzed. Multiple oxidative stress-induced modulators were investigated and the effects of pre-treatment with Ca2+ chelator, extracellular signal-related kinase (ERK) inhibitor, or epidermal growth factor receptor (EGFR) inhibitor on NaIO3-induced EMT were determined. The efficacy of post-treatment with ERK inhibitor on the regulation of NaIO3-induced signaling pathways was dissected and its role in retinal thickness and morphology was evaluated by using histological cross-sections and spectral domain optical coherence tomography. RESULTS We found that NaIO3 induced EMT in ARPE-19 cells and in RPE cells of the mouse eyes. The intracellular ROS, Ca2+, endoplasmic reticulum (ER) stress marker, phospho-ERK, and phospho-EGFR were increased in NaIO3-stimulated cells. Our results showed that pre-treatment with Ca2+ chelator, ERK inhibitor, or EGFR inhibitor decreased NaIO3-induced EMT, interestingly, the inhibition of ERK displayed the most prominent effect. Furthermore, post-treatment with FR180204, a specific ERK inhibitor, reduced intracellular ROS and Ca2+ levels, downregulated phospho-EGFR and ER stress marker, attenuated EMT of RPE cells, and prevented structural disorder of the retina induced by NaIO3. CONCLUSIONS ERK is a crucial regulator of multiple NaIO3-induced signaling pathways that coordinate EMT program in RPE cells. Inhibition of ERK may be a potential therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Ya-Chi Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lee-Yieng Lim
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hao-Yu Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wen-Chuan Kuo
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Sheng-Hsien Yang
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shao-I Hong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Jen Chen
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - De-Kuang Hwang
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Genomic Research Center, Academia Sinica, Taipei 115024, Taiwan.
| |
Collapse
|
6
|
Biswal MR, Paulson RJ, Vichare R, Lewin AS. Buspirone Enhances Cell Survival and Preserves Structural Integrity during Oxidative Injury to the Retinal Pigment Epithelium. Antioxidants (Basel) 2023; 12:2129. [PMID: 38136248 PMCID: PMC10740916 DOI: 10.3390/antiox12122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic oxidative stress impairs the normal functioning of the retinal pigment epithelium (RPE), leading to atrophy of this cell layer in cases of advance age-related macular degeneration (AMD). The purpose of our study was to determine if buspirone, a partial serotonin 1A (5-HT1A) receptor agonist, protected against oxidative stress-induced changes in the RPE. We exposed differentiated human ARPE-19 cells to paraquat to induce oxidative damage in culture, and utilized a mouse model with sodium iodate (NaIO3)-induced oxidative injury to evaluate the effect of buspirone. To investigate buspirone's effect on protective gene expression, we performed RT-PCR. Cellular toxicities and junctional abnormalities due to paraquat induction in ARPE-19 cells and buspirone's impact were assessed via WST-1 assays and ZO-1 immunostaining. We used spectral-domain optical coherence tomography (SD-OCT) and ZO-1 immunostaining of RPE/choroid for structural analysis. WST-1 assays showed dose-dependent protection of viability in buspirone-treated ARPE-19 cells in culture and preservation of RPE junctional integrity under oxidative stress conditions. In the NaIO3 model, daily intraperitoneal injection (i.p.) of buspirone (30 mg/kg) for 12 days improved the survival of photoreceptors compared to those of vehicle-treated eyes. ZO-1-stained RPE flat-mounts revealed the structural preservation of RPE from oxidative damage in buspirone-treated mice, as well as in buspirone-induced Nqo1, Cat, Sqstm1, Gstm1, and Sod2 genes in the RPE/choroid compared to untreated eyes. Since oxidative stress is implicated in the pathogenesis AMD, repurposing buspirone, which is currently approved for the treatment of anxiety, might be useful in treating or preventing dry AMD.
Collapse
Affiliation(s)
- Manas R. Biswal
- Department of Pharmaceutical Sciences, USF Taneja College of Pharmacy, Tampa, FL 33612, USA (R.V.)
| | - Ryan J. Paulson
- Department of Pharmaceutical Sciences, USF Taneja College of Pharmacy, Tampa, FL 33612, USA (R.V.)
| | - Riddhi Vichare
- Department of Pharmaceutical Sciences, USF Taneja College of Pharmacy, Tampa, FL 33612, USA (R.V.)
| | - Alfred S. Lewin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA;
| |
Collapse
|
7
|
Sen S, Kasikci M. Low-dose rosmarinic acid and thymoquinone accelerate wound healing in retinal pigment epithelial cells. Int Ophthalmol 2023; 43:3811-3821. [PMID: 37407754 DOI: 10.1007/s10792-023-02799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Thymoquinone (TQ) and rosmarinic acid (RA) are two biologically active compounds found in plants and that possess remarkable anti-oxidant and anti-inflammatory properties. The present study aimed to investigate the potential protective effects of RA and TQ, which have known anti-inflammatory and anti-oxidant effects, on retinal damage by establishing a wound healing model for retinal pigment epithelial cells (ARPE-19). METHOD To this end, IC50 doses of RA and TQ in ARPE-19 cells were calculated by MTT assay. Both agents were administered at IC50, IC50/2 and IC50/4 doses for wound healing assay, and wound closure percentages were analyzed. Since the best wound healing was found at IC50/4 dose (low dose) for both agents, other biochemical and molecular analyses were planned to be performed using these doses. Following low dose RA and TQ treatments, the cells were lysed and TGF-β1 and MMP-9 levels were analyzed by ELISA technique from the cell lysates obtained. In addition, the mRNA expression levels of TLR3, IFN-γ and VEGF were calculated by RT-PCR technique. RESULTS Low dose of RA and TQ dramatically increased wound healing. RA may have achieved this by increasing levels of MMP-9 and TLR-3. In contrast, the mRNA expression level of VEGF remained unchanged. TQ accelerated wound healing by increasing both the protein levels of TGF-β1 and MMP-9. Furthermore, low dose of TQ decreased both TLR3 and IFN-γ mRNA expression levels. CONCLUSION Low doses of RA and TQ were clearly demonstrated to have protective properties against possible damage to retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Serkan Sen
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
- Department of Ophthalmology, Mugla Education and Research Hospital, Mugla, Turkey
| | - Murat Kasikci
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
- Department of Ophthalmology, Mugla Education and Research Hospital, Mugla, Turkey.
| |
Collapse
|
8
|
McDonald M, Janik SB, Bowden FW, Chokshi A, Singer MA, Tighe S, Mead OG, Nanda S, Qazi MA, Dierker D, Shupe AT, McMurren BJ. Association of Treatment Duration and Clinical Outcomes in Dry Eye Treatment with Sutureless Cryopreserved Amniotic Membrane. Clin Ophthalmol 2023; 17:2697-2703. [PMID: 37720008 PMCID: PMC10505017 DOI: 10.2147/opth.s423040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background While sutureless, cryopreserved amniotic membrane (cAM) has been shown to significantly improve signs and symptoms of dry eye disease (DED), no studies have assessed the association of cAM treatment duration to the differential response in clinical outcomes. Methods A multi-center, retrospective study was conducted on patients with moderate-to-severe DED who were treated with self-retained cAM (Prokera® Slim) for 2 to 7 days. The primary outcome measure was DEWS severity score assessed at 1 week, 1 month, and 3 months. Secondary outcome measures included ocular discomfort, visual symptoms, corneal staining, and visual acuity. Results A total of 89 eyes (77 patients) with moderate-to-severe DED (DEWS severity 3.24 ± 0.56) received treatment with self-retained cAM for 2 days (n = 10), 3 days (n = 15), 4 days (n = 12), 5 days (n = 19), 6 days (n = 6), or 7 days (n = 27). DEWS scores significantly improved at 1 week, 1 month, and 3 months for all treatment duration groups, with no significant difference observed between groups at any timepoint. In addition to an improvement in DEWS severity scores, those receiving cAM treatment for 2 days demonstrated a significant improvement in corneal staining, visual symptoms, and ocular discomfort at 1 week, 1 month, and 3 months. Conclusion This retrospective study suggests that a single placement of self-retained cAM for 2 days can significantly improve signs and symptoms of DED with a lasting benefit observed for up to 3 months.
Collapse
Affiliation(s)
| | | | | | | | | | - Sean Tighe
- BioTissue Holdings, Inc, Miami, FL, USA
- Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | | | - Seema Nanda
- Nanda Dry Eye & Vision Institute, Houston, TX, USA
| | | | | | | | | |
Collapse
|
9
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
10
|
Carpineto P, Licata AM, Ciancaglini M. Proliferative Vitreoretinopathy: A Reappraisal. J Clin Med 2023; 12:5287. [PMID: 37629329 PMCID: PMC10455099 DOI: 10.3390/jcm12165287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) remains the main cause of failure after retinal detachment (RD) surgery. Despite the development of modern technologies and sophisticated techniques for the management of RD, the growth of fibrocellular membranes within the vitreous cavity and on both sides of the retinal surface, as well as intraretinal fibrosis, can compromise surgical outcomes. Since 1983, when the term PVR was coined by the Retina Society, a lot of knowledge has been obtained about the physiopathology and risk factors of PVR, but, despite the proposal of a lot of therapeutic challenges, surgical skills seem to be the only effective way to manage PVR complications.
Collapse
Affiliation(s)
- Paolo Carpineto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Arturo Maria Licata
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Ciancaglini
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
11
|
Sripathi SR, Hu MW, Turaga RC, Mikeasky R, Satyanarayana G, Cheng J, Duan Y, Maruotti J, Wahlin KJ, Berlinicke CA, Qian J, Esumi N, Zack DJ. IKKβ Inhibition Attenuates Epithelial Mesenchymal Transition of Human Stem Cell-Derived Retinal Pigment Epithelium. Cells 2023; 12:1155. [PMID: 37190063 PMCID: PMC10136838 DOI: 10.3390/cells12081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-β) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied. Here, we demonstrate that BAY651942, a small molecule inhibitor of nuclear factor kapa-B kinase subunit beta (IKKβ) that selectively targets NF-κB signaling, can modulate TGF-β/TNF-α-induced RPE-EMT. Next, we performed RNA-seq studies on BAY651942 treated hRPE monolayers to dissect altered biological pathways and signaling events. Further, we validated the effect of IKKβ inhibition on RPE-EMT-associated factors using a second IKKβ inhibitor, BMS345541, with RPE monolayers derived from an independent stem cell line. Our data highlights the fact that pharmacological inhibition of RPE-EMT restores RPE identity and may provide a promising approach for treating retinal diseases that involve RPE dedifferentiation and EMT.
Collapse
Affiliation(s)
- Srinivasa R. Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Henderson Ocular Stem Cell Laboratory, Retina Foundation of the Southwest, Dallas, TX 75231, USA
| | - Ming-Wen Hu
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ravi Chakra Turaga
- Caris Life Sciences, 350 W Washington St., Tempe, AZ 85281, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Rebekah Mikeasky
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ganesh Satyanarayana
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Emory Eye Center, Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yukan Duan
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noriko Esumi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Epiretinal Amniotic Membrane in Complicated Retinal Detachment: a Clinical and In Vitro Safety Assessment. Ophthalmol Ther 2023; 12:1635-1648. [PMID: 36905569 PMCID: PMC10164220 DOI: 10.1007/s40123-023-00695-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
INTRODUCTION Amniotic membrane (AM) is a popular treatment for external ocular diseases. First intraocular implantations in other diseases reported promising results. Here, we review three cases of intravitreal epiretinal human AM (iehAM) transplantation as an adjunct treatment for complicated retinal detachment and analyze clinical safety. Possible cellular rejection reactions against the explanted iehAM were evaluated and its influence was assessed on three retinal cell lines in vitro. METHODS Three patients with complicated retinal detachment and implanted iehAM during pars plana vitrectomy are retrospectively presented. After removal of the iehAM at subsequent surgery, tissue-specific cellular responses were studied by light microscopy and immunohistochemical staining. We investigated the influence of AM in vitro on retinal pigment epithelial cells (ARPE-19), Müller cells (Mio-M1), and differentiated retinal neuroblasts (661W) . An anti-histone DNA ELISA for cell apoptosis, a BrdU ELISA for cell proliferation, a WST-1 assay for cell viability, and a live/dead assay for cell death were performed. RESULTS Despite the severity of the retinal detachment, stable clinical outcomes were obtained in all three cases. Immunostaining of the explanted iehAM showed no evidence of cellular immunological rejection. In vitro, there was no statistical significant change in cell death or cell viability nor were proliferative effects detected on ARPE-19, Müller cells, and retinal neuroblasts exposed to AM. CONCLUSION iehAM was a viable adjuvant with many potential benefits for treatment of complicated retinal detachment. Our investigations could not detect any signs of rejection reactions or toxicity. Further studies are needed to evaluate this potential in more detail.
Collapse
|
13
|
Experimental Models to Study Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:ijms24054509. [PMID: 36901938 PMCID: PMC10003383 DOI: 10.3390/ijms24054509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Proliferative vitreoretinal diseases (PVDs) encompass proliferative vitreoretinopathy (PVR), epiretinal membranes, and proliferative diabetic retinopathy. These vision-threatening diseases are characterized by the development of proliferative membranes above, within and/or below the retina following epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) and/or endothelial-mesenchymal transition of endothelial cells. As surgical peeling of PVD membranes remains the sole therapeutic option for patients, development of in vitro and in vivo models has become essential to better understand PVD pathogenesis and identify potential therapeutic targets. The in vitro models range from immortalized cell lines to human pluripotent stem-cell-derived RPE and primary cells subjected to various treatments to induce EMT and mimic PVD. In vivo PVR animal models using rabbit, mouse, rat, and swine have mainly been obtained through surgical means to mimic ocular trauma and retinal detachment, and through intravitreal injection of cells or enzymes to induce EMT and investigate cell proliferation and invasion. This review offers a comprehensive overview of the usefulness, advantages, and limitations of the current models available to investigate EMT in PVD.
Collapse
|
14
|
Sharma R, Nappi V, Empeslidis T. The developments in amniotic membrane transplantation in glaucoma and vitreoretinal procedures. Int Ophthalmol 2023; 43:1771-1783. [PMID: 36715957 PMCID: PMC10149474 DOI: 10.1007/s10792-022-02570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/12/2022] [Indexed: 01/31/2023]
Abstract
The main reasons why Amniotic Membrane (AM) is transplanted in Ophthalmology are: to provide a substrate for cellular growth and to provide tectonic support or as a biological bandage and barrier that protects the wound to facilitate an environment for wound healing. The application of AM is well-documented in corneal disorders of various aetiologies [1], however, research within the field has highlighted how it can be used in conjunctival disorders and most recently, in glaucoma and vitreoretinal procedures. This review explores the preservation modalities of AM and summarises the current literature regarding AM transplantation in Glaucoma and Vitreoretinal conditions. AM transplantation in conjunction with trabeculectomy was reported to be used in two different surgical techniques. They differ in relation to the position of the implant: below the scleral flap or over the entire exposed sclera. The results of these studies suggest that AM transplant is a safe procedure that helps in the improvement of the intraocular pressure when associated with trabeculectomies. Moreover, it enhances trabeculectomies success rates when used along with mitomycin C [2]. The use of AM is also described for managing leaking blebs. It is mentioned to be a suitable alternative to conjunctival advancement. Regarding AM transplantation in glaucoma shunt or valve surgeries, the current literature is relatively limited. However, AM has been described as a good tectonic support for shunt procedures [3]. Successful results are described in the literature for surgical treatments using AM plug for vitreoretinal procedures. In particular macular hole closure and rhegmatogenous retinal detachment. In conclusion, AM transplant is a very promising and versatile adjutant therapy. However, further studies are also required for a better understanding and refinement of surgical techniques.
Collapse
Affiliation(s)
- Rohit Sharma
- Eye Department, University Hospitals Derby & Burton NHS trust, Burton, UK. .,School of Medicine, University of Nottingham, Nottingham, UK.
| | - Vivian Nappi
- Ophthalmology Department, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | |
Collapse
|
15
|
Han H, Yang Y, Han Z, Wang L, Dong L, Qi H, Liu B, Tian J, Vanhaesebroeck B, Kazlauskas A, Zhang G, Zhang S, Lei H. NFκB-Mediated Expression of Phosphoinositide 3-Kinase δ Is Critical for Mesenchymal Transition in Retinal Pigment Epithelial Cells. Cells 2023; 12:207. [PMID: 36672142 PMCID: PMC9857235 DOI: 10.3390/cells12020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-β2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-β2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-β2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-β2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-β2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-β2-induced EMT, uncovering hindrance of TGF-β2-induced expression of p110δ as a novel approach to inhibit PVR.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750101, China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Bing Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510180, China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | | | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| |
Collapse
|
16
|
Zhang H, Wang R, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Feng S, Peng Y, Liu Z, Cheng Q. Molecular insight into pentraxin-3: Update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [PMID: 36240615 DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Ruixuan Wang
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; Department of Neurosurgery, and Department of Cellular & Molecular Physiology,Yale University School of Medicine, USA; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Jason Hu
- Department of Neonatology, Yale University School of Medicine, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| |
Collapse
|
17
|
Dong L, Han H, Huang X, Ma G, Fang D, Qi H, Han Z, Wang L, Tian J, Vanhaesebroeck B, Zhang G, Zhang S, Lei H. Idelalisib inhibits experimental proliferative vitroretinopathy. J Transl Med 2022; 102:1296-1303. [PMID: 35854067 DOI: 10.1038/s41374-022-00822-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a fibrotic eye disease that develops after rhegmatogenous retinal detachment surgery and open-globe traumatic injury. Idelalisib is a specific inhibitor of phosphoinositide 3-kinase (PI3K) δ. While PI3Kδ is primarily expressed in leukocytes, its expression is also considerably high in retinal pigment epithelial (RPE) cells, which play a crucial part in the PVR pathogenesis. Herein we show that GeoMx Digital Spatial Profiling uncovered strong expression of fibronectin in RPE cells within epiretinal membranes from patients with PVR, and that idelalisib (10 μM) inhibited Akt activation, fibronectin expression and collagen gel contraction induced by transforming growth factor (TGF)-β2 in human RPE cells. Furthermore, we discovered that idelalisib at a vitreal concentration of 10 μM, a non-toxic dose to the retina, prevented experimental PVR induced by intravitreally injected RPE cells in rabbits assessed by experienced ophthalmologists using an indirect ophthalmoscope plus a + 30 D fundus lens, electroretinography, optical coherence tomography and histological analysis. These data suggested idelalisib could be harnessed for preventing patients from PVR.
Collapse
Affiliation(s)
- Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Haote Han
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xionggao Huang
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Gaoen Ma
- Department of Ophthalmology, the third Hospital of Xinxiang Medical University, Xinxiang, China
| | - Dong Fang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Zhuo Han
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Luping Wang
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingkui Tian
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | | | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
18
|
Gelat B, Rathaur P, Malaviya P, Patel B, Trivedi K, Johar K, Gelat R. The intervention of epithelial-mesenchymal transition in homeostasis of human retinal pigment epithelial cells: a review. J Histotechnol 2022; 45:148-160. [DOI: 10.1080/01478885.2022.2137665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brijesh Gelat
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Pooja Rathaur
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Binita Patel
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, India
| | - Krupali Trivedi
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rahul Gelat
- Institute of Teaching and Research in Ayurveda (ITRA), Gujarat Ayurved University, Jamnagar, India
| |
Collapse
|
19
|
Han XD, Jiang XG, Yang M, Chen WJ, Li LG. miRNA‑124 regulates palmitic acid‑induced epithelial‑mesenchymal transition and cell migration in human retinal pigment epithelial cells by targeting LIN7C. Exp Ther Med 2022; 24:481. [PMID: 35761801 PMCID: PMC9214593 DOI: 10.3892/etm.2022.11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
The present study revealed that palmitic acid (PA) treatment induced epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, which are involved in the progression of proliferative vitreoretinopathy (PVR). ARPE-19 cells were treated with PA followed by miRNA screening and EMT marker detection using qRT-PCR. Then, miR-124 mimic or inhibitor was transfected into ARPE-19 cells to explore the role of miR-124 on the EMT of ARPE-19 cells using transwell assay. The underlying mechanism of miRNA were predicted by bioinformatics method and confirmed by luciferase activity reporter assay. Furthermore, gain-of-function strategy was also used to explore the role of LIN7C in the EMT of ARPE-19 cells. The expression of miRNA or mRNA expression was determined by qRT-PCR and the protein expression was determined using western blot assay. The result presented that PA reduced the expression of E-cadherin/ZO-1 whilst increasing the expression of fibronectin/α-SMA. In addition, PA treatment enhanced the expression of microRNA (miR)-124 in ARPE-19 cells. Overexpression of miR-124 enhanced PA-induced upregulation of E-cadherin and ZO-1 expression and downregulation of fibronectin and α-SMA. Moreover, miR-124 mimic also enhanced the migration of ARPE-19 cells induced by PA treatment. Inversely, miR-124 inhibitor presented opposite effect on PA-induced EMT and cell migration in ARPE-19 cells. Luciferase activity reporter assay confirmed that Lin-7 homolog C (LIN7C) was a direct target of miR-124 in ARPE-19 cells. Overexpression of LIN7C was found to suppress the migration ability and expression of fibronectin and α-SMA, while increasing expression of E-cadherin and ZO-1; miR-124 mimic abrogated the inhibitive effect of LIN7C on the EMT of ARPE-19 cells and PA further enhanced this abolishment. Collectively, these findings suggest that miR-124/LIN7C can modulate EMT and cell migration in RPE cells, which may have therapeutic implications in the management of PVR diseases.
Collapse
Affiliation(s)
- Xiao-Dong Han
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Xu-Guang Jiang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Min Yang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Wen-Jun Chen
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Li-Gang Li
- Department of Cataracts, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
20
|
Shahlaee A, Woeller CF, Philp NJ, Kuriyan AE. Translational and clinical advancements in management of proliferative vitreoretinopathy. Curr Opin Ophthalmol 2022; 33:219-227. [PMID: 35220328 DOI: 10.1097/icu.0000000000000840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Despite advancement in the surgical instrumentation and techniques, proliferative vitreoretinopathy (PVR) remains the most common cause for failure of rhegmatogenous retinal detachment (RRD) repair. This review discusses ongoing translational and clinical advancements in PVR. RECENT FINDINGS PVR represents an exaggerated and protracted scarring process that can occur after RRD. The primary cell types involved are retinal pigment epithelium, glial, and inflammatory cells. They interact with growth factors and cytokines derived from the breakdown of the blood-retinal barrier that trigger a cascade of cellular processes, such as epithelial-mesenchymal transition, cell migration, chemotaxis, proliferation, elaboration of basement membrane and collagen and cellular contraction, leading to overt retinal pathology. Although there are currently no medical therapies proven to be effective against PVR in humans, increased understanding of the risks factors and pathophysiology have helped guide investigations for molecular targets of PVR. The leading therapeutic candidates are drugs that mitigate growth factors, inflammation, and proliferation are the leading therapeutic candidates. SUMMARY Although multiple molecular targets have been investigated to prevent and treat PVR, none have yet demonstrated substantial evidence of clinical benefit in humans though some show promise. Advancements in our understanding of the pathophysiology of PVR may help develop a multipronged approach for this condition.
Collapse
Affiliation(s)
- Abtin Shahlaee
- Mid Atlantic Retina, Retina Service of Wills Eye Hospital
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Nancy J Philp
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ajay E Kuriyan
- Mid Atlantic Retina, Retina Service of Wills Eye Hospital
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Pu Q, Ma Q, Li J, Li G, Li XY. Soft substrate stiffness modifies corneal epithelial stem cell phenotype through hippo-YAP/notch pathway crosstalk. Med Hypotheses 2021; 156:110687. [PMID: 34627046 DOI: 10.1016/j.mehy.2021.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Corneal disease remains to be one of the leading causes of blindness in the world and limbal stem cell (LSC) therapy is a promising therapy for LSC deficiency, which is associated with the diseased corneal epithelium repair. Soft substrate could effectively promote the stemness maintenance of LSC and thus modification of cell culture substrate would help in the potential LSC deficiency therapy. Both Hippo-Yes-associated protein (YAP) and Notch pathway have been reported to affect the LSC function, however, the detailed mechanisms remain unclear. Instead of some soft but biologically toxic substrates, we present a hypothesis on the application of soft substrate generated by HA/PTX3, an FDA approved nontoxic drug, on the LSC culture in this current study. Soft substrate could help in the stemness maintenance and thus promote the LSC deficiency treatment. In more detailed mechanism detection, we hypothesize that soft substrate would block the activation of Hippo-YAP pathway and thus decrease the activity of Notch pathway. This proposed hypothesis should be evaluated by both a series of in-vitro experiments based on soft and stiff substrates and in-vivo treatment with LSC cultured in different conditions. Advanced experiments on related cellular behaviors and detailed molecular mechanisms would provide us more knowledge on the molecular mechanism detection as well as cell transplantation therapy.
Collapse
Affiliation(s)
- Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qian Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jing Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
22
|
Han H, Yang Y, Liu B, Tian J, Dong L, Qi H, Zhu W, Wang J, Lei H. Chalcomoracin prevents vitreous-induced activation of AKT and migration of retinal pigment epithelial cells. J Cell Mol Med 2021; 25:9102-9111. [PMID: 34432370 PMCID: PMC8500972 DOI: 10.1111/jcmm.16590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 01/17/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells are the major cell type in the epi- or sub-retinal membranes in the pathogenesis of proliferative vitreoretinopathy (PVR), which is a blinding fibrotic eye disease and still short of effective medicine. The purpose of this study is to demonstrate whether Chalocomoracin (CMR), a novel purified compound from fungus-infected mulberry leaves, is able to inhibit vitreous-induced signalling events and cellular responses intrinsic to PVR. Our studies have revealed that the CMR IC50 for ARPE-19 cells is 35.5 μmol/L at 72 hours, and that 5 μmol/L CMR inhibits vitreous-induced Akt activation and p53 suppression; in addition, we have discovered that this chemical effectively blocks vitreous-stimulated proliferation, migration and contraction of ARPE-19 cells, suggesting that CMR is a promising PVR prophylactic.
Collapse
Affiliation(s)
- Haote Han
- Institute of Cancer and Basic MedicineChinese Academy of SciencesZhejiang Cancer HospitalCancer Hospital of the University of Chinese Academy of SciencesHangzhouChina
- College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
- Schepens Eye Research Institute of Massachusetts Eye and EarBostonMAUSA
- Department of OphthalmologyHarvard Medical SchoolBostonMAUSA
| | - Yanhui Yang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Bing Liu
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jingkui Tian
- Institute of Cancer and Basic MedicineChinese Academy of SciencesZhejiang Cancer HospitalCancer Hospital of the University of Chinese Academy of SciencesHangzhouChina
- College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| | - Lijun Dong
- Shenzhen Eye HospitalShenzhen Eye InstituteJinan UniversityShenzhenChina
| | - Hui Qi
- Shenzhen Eye HospitalShenzhen Eye InstituteJinan UniversityShenzhenChina
| | - Wei Zhu
- Institute of Cancer and Basic MedicineChinese Academy of SciencesZhejiang Cancer HospitalCancer Hospital of the University of Chinese Academy of SciencesHangzhouChina
- College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| | - Jiantao Wang
- Shenzhen Eye HospitalShenzhen Eye InstituteJinan UniversityShenzhenChina
| | - Hetian Lei
- Shenzhen Eye HospitalShenzhen Eye InstituteJinan UniversityShenzhenChina
| |
Collapse
|
23
|
Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT. Mol Cell Proteomics 2021; 20:100131. [PMID: 34455105 PMCID: PMC8482521 DOI: 10.1016/j.mcpro.2021.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
Stress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell–based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag–based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration–associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease. Proteomics data were integrated with prior transcriptomic (RNA-Seq) data on RPE-EMT. Dysregulated RPE-EMT proteome shares commonality with malignancy-associated EMT. Altered RPE-EMT proteome signatures correlated with known AMD-associated risk factors. Protein kinases and phosphatases crosstalk modulate RPE-EMT.
Collapse
|
24
|
Domínguez-López A, Magaña-Guerrero FS, Buentello-Volante B, Bautista-Hernández LA, Reyes-Grajeda JP, Bautista-de Lucio VM, Garfias Y. Amniotic membrane conditioned medium (AMCM) reduces inflammatory response on human limbal myofibroblast, and the potential role of lumican. Mol Vis 2021; 27:370-383. [PMID: 34447239 PMCID: PMC8370574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/13/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Viral infections such as herpetic keratitis (HSK) activate the innate immune response in the cornea triggering opacity and loss of vision. This condition is performed mainly by myofibroblasts that exacerbate secretion of inflammatory cytokines. Amniotic membrane transplantation (AMT) reduces ocular opacity and scarring inhibiting secretion of inflammatory cytokines and proliferation of myofibroblasts. We previously reported that the amniotic membrane (AM) favors an anti-inflammatory microenvironment inhibiting the secretion of inflammatory cytokines, expression of innate immune receptors, and translocation of nuclear NF-κB on human limbal myofibroblasts (HLMs). The aim of the present study was to determine whether the soluble factors of the AM decrease the immune response of HLMs stimulated with polyinosinic-polycytidylic acid sodium salt (poly I:C). METHODS The AM was incubated in Dulbecco's modified eagle medium (DMEM)/F12, and the supernatant was collected to obtain amniotic membrane conditioned medium (AMCM). HLMs were isolated from cadaveric sclera-corneal rims. HLMs were cultured in DMEM/F12 or AMCM and stimulated or not with poly I:C (10 µg/ml) for 12 h to analyze synthesis of CCL2, CCL5, CXCL10, MDA5, RIG-1, and TLR3 or for 2 h to analyze translocation of nuclear NF-kB, IRF3, and IRF7. The proteins contained on AMCM were analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and the acquired peptide ions were analyzed with the Mascot program using both National Center for Biotechnology Information (NCBI) and expressed sequence tag (EST) databases. RESULTS AMCM downregulated the mRNA levels of CCL2, CCL5, CXCL10, MDA5, RIG-1, and TLR3. In addition, AMCM decreased secretion of CCL2, CCL5, and CXCL10 and translocation of nuclear NF-κB. Interestingly, AMCM increased translocation of nuclear IRF3 and synthesis and secretion of type I IFN-β. We also identified small leucine-rich proteoglycan lumican in the AMCM. The administration of rh-lumican to poly I:C-stimulated HLMs reduced the mRNA levels of CCL2, CCL5, and CXCL10. CONCLUSIONS These results suggest that the AM can trigger an anti-inflammatory response on HLMs through soluble factors, and that lumican could play an important role in these effects.
Collapse
Affiliation(s)
- Alfredo Domínguez-López
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Mexico City, Mexico,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | | | | | | | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Mexico City, Mexico,Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
25
|
The secretome mouse provides a genetic platform to delineate tissue-specific in vivo secretion. Proc Natl Acad Sci U S A 2021; 118:2005134118. [PMID: 33431665 DOI: 10.1073/pnas.2005134118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
At present, it remains difficult to deconvolute serum in order to identify the cell or tissue origin of a given circulating protein. Here, by exploiting the properties of proximity biotinylation, we describe a mouse model that enables the elucidation of the in vivo tissue-specific secretome. As an example, we demonstrate how we can readily identify in vivo endothelial-specific secretion as well as how this model allows for the characterization of muscle-derived serum proteins that either increase or decrease with exercise. This genetic platform should, therefore, be of wide utility in understanding normal and disease physiology and for the rational design of tissue-specific disease biomarkers.
Collapse
|
26
|
Plumbagin Inhibits Proliferation, Migration, and Invasion of Retinal Pigment Epithelial Cells Induced by FGF-2. Tissue Cell 2021; 72:101547. [PMID: 33964605 DOI: 10.1016/j.tice.2021.101547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a serious ophthalmic disease and characterized by the formation of proliferative membranes by retinal pigment epithelial (RPE) cells. In PVR, the contraction and traction of the fibrocellular membranes cause retinal detachment, which can cause reduction surgery for retinal detachment to fail. Fibroblast growth factor-2 (FGF-2) causes RPE cells to form extracellular matrix (ECM), promotes chemotaxis, mitosis, and positively promotes the disease process of PVR. Plumbagin (PLB) is a plant small molecule naphthoquinone compound. It has the functions in anti-tumor, anti-inflammatory, inhibit proliferation. We tried to investigate the possible effects of PLB on the biological behavior of ARPE-19 cells induced by FGF-2 and its underlying mechanisms. Our study confirmed that proliferation, migration, and invasion of ARPE-19 cells induced by FGF-2 (10 ng/ml) were significantly inhibited by PLB. PLB also significantly inhibits the expression of MMP-2/-9, collagen I Alpha 1 (Col1A1), collagen IV Alpha 1 (Col4A1), collagen VI Alpha 1 (Col6A1), and the phosphorylation of FGF receptor (FGFR)-1, FGFR-2, ERK, p38, JNK of FGF-2-induced ARPE-19 cells. In summary, PLB inhibits FGF-2-stimulated proliferation, migration, and invasion of ARPE-19 cells, which may take place through inhibiting the expression of MMP-2/-9, Col1A1, Col4A1, Col6A1, and the mitogen-activated protein kinase (MAPK) pathway. PLB may have a preventive effect on proliferation, migration, and invasion of FGF-2-induced ARPE-19 cells.
Collapse
|
27
|
Chen Y, Wu B, He JF, Chen J, Kang ZW, Liu D, Luo J, Fang K, Leng X, Tian H, Xu J, Jin C, Zhang J, Wang J, Zhang J, Ou Q, Lu L, Gao F, Xu GT. Effectively Intervening Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells With a Combination of ROCK and TGF-β Signaling Inhibitors. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 33861322 PMCID: PMC8083104 DOI: 10.1167/iovs.62.4.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a key pathological event in proliferative retinal diseases such as proliferative vitreoretinopathy (PVR). This study aimed to explore a new method to reverse EMT in RPE cells to develop an improved therapy for proliferative retinal diseases. METHODS In vitro, human embryonic stem cell-derived RPE cells were passaged and cultured at low density for an extended period of time to establish an EMT model. At different stages of EMT after treatment with known molecules or combinations of molecules, the morphology was examined, transepithelial electrical resistance (TER) was measured, and expression of RPE- and EMT-related genes were examined with RT-PCR, Western blotting, and immunofluorescence. In vivo, a rat model of EMT in RPE cells was established via subretinal injection of dispase. Retinal function was examined by electroretinography (ERG), and retinal morphology was examined. RESULTS EMT of RPE cells was effectively induced by prolonged low-density culture. After EMT occurred, only the combination of the Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor Y27632 and the TGF-β receptor inhibitor RepSox (RY treatment) effectively suppressed and reversed the EMT process, even in cells in an intermediate state of EMT. In dispase-treated Sprague-Dawley rats, RY treatment maintained the morphology of RPE cells and the retina and preserved retinal function. CONCLUSIONS RY treatment might promote mesenchymal-epithelial transition (MET), the inverse process of EMT, to maintain the epithelial-like morphology and function of RPE cells. This combined RY therapy could be a new strategy for treating proliferative retinal diseases, especially those involving EMT of RPE cells.
Collapse
Affiliation(s)
- Yi Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Binxin Wu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jian Feng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyao Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Zi Wei Kang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Junjie Luo
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Kexin Fang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxu Leng
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Chen SY, Zhu Y, Zhang Y, Hsu D, Tseng SCG. HC-HA/PTX3 from amniotic membrane reverts senescent limbal niche cells to Pax6+ neural crest progenitors to support limbal epithelial progenitors. Stem Cells 2021; 39:280-295. [PMID: 33373496 PMCID: PMC7986837 DOI: 10.1002/stem.3323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Quiescence and self‐renewal of human corneal epithelial progenitor/stem cells (LEPC) are regulated by the limbal niche, presumably through close interaction with limbal (stromal) niche cells (LNC). Paired box homeotic gene 6 (Pax6), a conserved transcription factor essential for eye development, is essential for proper differentiation of limbal and corneal epithelial stem cells. Pax6 haploinsufficiency causes limbal stem cell deficiency, which leads to subsequent corneal blindness. We previously reported that serial passage of nuclear Pax6+ LNC resulted in the gradual loss of nuclear Pax6+ and neural crest progenitor status, the latter of which was reverted upon recovery of Pax6. These findings suggest Pax6 plays a pivotal role in supporting the self‐renewal of LEPC in limbal niche. Herein, we show that HC‐HA/PTX3, a unique matrix purified from amniotic membrane (AM) and consists of heavy chain 1of inter‐α‐trypsin inhibitor covalently linked to hyaluronic acid and complexed with pentraxin 3, is capable of reverting senescent LNC to nuclear Pax6+ neural crest progenitors that support self‐renewal of LEPC. Such reversion is causally linked to early cell aggregation mediated by activation of C‐X‐C chemokine receptor type 4 (CXCR4)‐mediated signaling followed by activation of bone morphogenetic protein (BMP) signaling. Furthermore, CXCR4‐mediated signaling, but not BMP signaling, controls recovery of the nuclear Pax6+ neural crest progenitors. These findings not only explain why AM helps in vivo and ex vivo expansion of human LEPC, but they also illuminate the potential role of HC‐HA/PTX3 as a surrogate matrix niche that complements stem cell‐based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Szu-Yu Chen
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | - Yingting Zhu
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | - Yuan Zhang
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | - David Hsu
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | | |
Collapse
|
29
|
Sharma R, Bose D, Maminishkis A, Bharti K. Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? Annu Rev Pharmacol Toxicol 2020; 60:553-572. [PMID: 31914900 DOI: 10.1146/annurev-pharmtox-010919-023245] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pluripotent stem cells (PSCs) are a potential replacement tissue source for degenerative diseases. Age-related macular degeneration (AMD) is a blinding disease triggered by degeneration of the retinal pigment epithelium (RPE), a monolayer tissue that functionally supports retinal photoreceptors. Recently published clinical and preclinical studies have tested PSC-derived RPE as a potential treatment for AMD. Multiple approaches have been used to manufacture RPE cells, to validate them functionally, to confirm their safety profile, and to deliver them to patients either as suspension or as a monolayer patch. Since most of these studies are at an early regulatory approval stage, the primary outcome has been to determine the safety of RPE transplants in patients. However, preliminary signs of efficacy were observed in a few patients. Here, we review the current progress in the PSC-derived RPE transplantation field and provide a comparative assessment of various approaches under development as potential therapeutics for AMD.
Collapse
Affiliation(s)
- Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Devika Bose
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
30
|
Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J. Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020; 8:e10136. [PMID: 33150072 PMCID: PMC7583629 DOI: 10.7717/peerj.10136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain the polarity of RPE cells, and are required for cellular functions. In proliferative vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo epithelial-mesenchymal transition (EMT), and ultimately transform into myofibroblasts, leading to the formation of fibrocellular membranes on both surfaces of the detached retina and on the posterior hyaloids, which causes tractional retinal detachment. In PVR, RPE cells are crucial contributors, and multiple signaling pathways, including the SMAD-dependent pathway, Rho pathway, MAPK pathways, Jagged/Notch pathway, and the Wnt/β-catenin pathway are activated. These pathways mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This review summarizes the current body of knowledge on the polarized phenotype of RPE, the role of cell-cell contact, and the molecular mechanisms underlying the RPE EMT in PVR, emphasizing key insights into potential approaches to prevent PVR.
Collapse
Affiliation(s)
- Hui Zou
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Chenli Shan
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Ma
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinsong Zhao
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Pan Y, Xie Z, Cen S, Li M, Liu W, Tang S, Ye G, Li J, Zheng G, Li Z, Yu W, Wang P, Wu Y, Shen H. Long noncoding RNA repressor of adipogenesis negatively regulates the adipogenic differentiation of mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin Transl Med 2020; 10:e227. [PMID: 33252864 PMCID: PMC7648959 DOI: 10.1002/ctm2.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stem cells that can differentiate via osteogenesis and adipogenesis. The mechanism underlying MSC lineage commitment still remains incompletely elucidated. Understanding the regulatory mechanism of MSC differentiation will help researchers induce MSCs toward specific lineages for clinical use. In this research, we intended to figure out the long noncoding RNA (lncRNA) that plays a central role in MSC fate determination and explore its application value in tissue engineering. METHODS The expression pattern of lncRNAs during MSC osteogenesis/adipogenesis was detected by microarray and qRT-PCR. Lentivirus and siRNAs were constructed to regulate the expression of lncRNA repressor of adipogenesis (ROA). MSC osteogenesis/adipogenesis was evaluated by western blot and alizarin red/oil red staining. An adipokine array was used to select the paracrine/autocrine factor PTX3, followed by RNA interference or recombinant human protein stimulation to confirm its function. The activation of signaling pathways was also detected by western blot, and a small molecule inhibitor, SCH772984, was used to inhibit the activation of the ERK pathway. The interaction between ROA and hnRNP A1 was detected by RNA pull-down and RIP assays. Luciferase reporter and chromatin immunoprecipitation assays were used to confirm the binding of hnRNP A1 to the PTX3 promotor. Additionally, an in vivo adipogenesis experiment was conducted to evaluate the regulatory value of ROA in tissue engineering. RESULTS In this study, we demonstrated that MSC adipogenesis is regulated by lncRNA ROA both in vitro and in vivo. Mechanistically, ROA inhibits MSC adipogenesis by downregulating the expression of the key autocrine/paracrine factor PTX3 and the downstream ERK pathway. This downregulation was achieved through transcription inhibition by impeding hnRNP A1 from binding to the promoter of PTX3. CONCLUSIONS ROA negatively regulates MSC adipogenesis through the hnRNP A1-PTX3-ERK axis. ROA may be an effective target for modulating MSCs in tissue engineering.
Collapse
Affiliation(s)
- Yiqian Pan
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shuizhong Cen
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenjie Liu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Su'an Tang
- Clinical Research CenterZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guiwen Ye
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhaofeng Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenhui Yu
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yanfeng Wu
- Center for BiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
32
|
Walkden A. Amniotic Membrane Transplantation in Ophthalmology: An Updated Perspective. Clin Ophthalmol 2020; 14:2057-2072. [PMID: 32801614 PMCID: PMC7383023 DOI: 10.2147/opth.s208008] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Aim The aim of this paper is to provide a succinct literature review of the different clinical applications for AMT usage in an ophthalmic setting, ranging from commonly used applications to less mainstream approaches. The hope is that this review enables the reader to have a better understanding of the biological properties of amnion as well as the indications and scenarios in which AMT can be used, whilst presenting relevant evidence from within the literature which may be of interest. We also provide an update on the methods of preservation of amniotic membrane and the application methodologies. Methods Literature search. A PubMed search was performed using the search terms “amniotic membrane transplant”, “amnion AND cornea”, amnion AND ophthalmology”, “amnion AND ocular surface” and “Amnion AND eye”. A full review of the literature using the PubMed database was conducted up until 01/05/20. The articles used were written in English, with all articles accessed in full. Both review articles and original articles were used for this review. All full publications related to ophthalmology were considered.
Collapse
Affiliation(s)
- Andrew Walkden
- Manchester Royal Eye Hospital, Manchester University Foundation Trust, Manchester, UK.,University of Manchester Faculty of Medical and Human Sciences, Manchester, Greater Manchester, UK
| |
Collapse
|
33
|
Addition of High Molecular Weight Hyaluronic Acid to Fibroblast-Like Stromal Cells Modulates Endogenous Hyaluronic Acid Metabolism and Enhances Proteolytic Processing and Secretion of Versican. Cells 2020; 9:cells9071681. [PMID: 32668663 PMCID: PMC7407811 DOI: 10.3390/cells9071681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
We have examined the effect of exogenous linear chain high molecular weight hyaluronic acid (HMW HA) on endogenously synthesized hyaluronic acid (HA) and associated binding proteins in primary cultures of fibroblast-like stromal cells that were obtained by collagenase digestion of the murine peripatellar fat pad. The cultures were expanded in DMEM that was supplemented with fetal bovine serum and basic fibroblast growth factor (bFGF) then exposed to macrophage-colony-stimulating factor (MCSF) to induce macrophage properties, before activation of inflammatory pathways using E. coli lipopolysaccharide (LPS). Under all culture conditions, a significant amount of endogenously synthesized HA localized in LAMP1-positive lysosomal vesicles. However, this intracellular pool was depleted after the addition of exogenous HMW HA and was accompanied by enhanced proteolytic processing and secretion of de novo synthesized versican, much of which was associated with endosomal compartments. No changes were detected in synthesis, secretion, or proteolytic processing of aggrecan or lubricin (PRG4). The addition of HMW HA also modulated a range of LPS-affected genes in the TLR signaling and phagocytosis pathways, as well as endogenous HA metabolism genes, such as Has1, Hyal1, Hyal2, and Tmem2. However, there was no evidence for association of endogenous or exogenous HMW HA with cell surface CD44, TLR2 or TLR4 protein, suggesting that its physiochemical effects on pericelluar pH and/or ionic strength might be the primary modulators of signal transduction and vesicular trafficking by this cell type. We discuss the implications of these findings in terms of a potential in vivo effect of therapeutically applied HMW HA on the modification of osteoarthritis-related joint pathologies, such as pro-inflammatory and degradative responses of multipotent mesenchymal cells residing in the synovial membrane, the underlying adipose tissue, and the articular cartilage surface.
Collapse
|
34
|
Fan J, Shen W, Lee SR, Mathai AE, Zhang R, Xu G, Gillies MC. Targeting the Notch and TGF-β signaling pathways to prevent retinal fibrosis in vitro and in vivo. Am J Cancer Res 2020; 10:7956-7973. [PMID: 32724452 PMCID: PMC7381727 DOI: 10.7150/thno.45192] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: The Notch and transforming growth factor-β (TGFβ) signaling pathways are two intracellular mechanisms that control fibrosis in general but whether they play a major role in retinal fibrosis is less clear. Here we study how these two signaling pathways regulate Müller cell-dominated retinal fibrosis in vitro and in vivo. Methods: Human MIO-M1 Müller cells were treated with Notch ligands and TGFβ1, either alone or in combination. Western blots were performed to study changes in γ-secretase proteases, Notch downstream effectors, endogenous TGFβ1, phosphorylated Smad3 (p-Smad3) and extracellular matrix (ECM) proteins. We also studied the effects of RO4929097, a selective γ-secretase inhibitor, on expression of ECM proteins after ligand stimulation. Müller cell viability was studied by AlamarBlue and cytotoxicity by lactate cytotoxicity assays. Finally, we studied changes in Notch and TGFβ signaling and tested the effect of intravitreal injections of the Notch pathway inhibitor RO4929097 on retinal fibrosis resulted from Sodium iodate (NaIO3)-induced retinal injury in mice. We also studied the safety of intravitreal injections of RO4929097 in normal mice. Results: Treatment of Müller cells with Notch ligands upregulated γ-secretase proteases and Notch downstream effectors, with increased expression of endogenous TGFβ1, TGFβ receptors and p-Smad3. TGFβ1 upregulated the expression of proteins associated with both signaling pathways in a similar manner. Notch ligands and TGFβ1 had additive effects on overexpression of ECM proteins in Müller cells which were inhibited by RO4929097. Notch and TGFβ ligands stimulated Müller cell proliferation which was inhibited by RO4929097 without damaging the cells. NaIO3-induced retinal injury activated both Notch and TGFβ signaling pathways in vivo. Intravitreal injection of RO4929097 prevented Müller cell gliosis and inhibited overexpression of ECM proteins in this murine model. We found no safety concerns for up to 17 days after an intravitreal injection of RO4929097. Conclusions: Inhibiting Notch signaling might be an effective way to prevent retinal fibrosis. This study is of clinical significance in developing a treatment for preventing fibrosis in proliferative vitreoretinopathy, proliferative diabetic retinopathy and wet age-related macular degeneration.
Collapse
|
35
|
Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y, Sundstrom JM. Role of Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Dysfunction. Front Cell Dev Biol 2020; 8:501. [PMID: 32671066 PMCID: PMC7329994 DOI: 10.3389/fcell.2020.00501] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells maintain the health and functional integrity of both photoreceptors and the choroidal vasculature. Loss of RPE differentiation has long been known to play a critical role in numerous retinal diseases, including inherited rod-cone degenerations, inherited macular degeneration, age-related macular degeneration, and proliferative vitreoretinopathy. Recent studies in post-mortem eyes have found upregulation of critical epithelial-mesenchymal transition (EMT) drivers such as TGF-β, Wnt, and Hippo. As RPE cells become less differentiated, they begin to exhibit the defining characteristics of mesenchymal cells, namely, the capacity to migrate and proliferate. A number of preclinical studies, including animal and cell culture experiments, also have shown that RPE cells undergo EMT. Taken together, these data suggest that RPE cells retain the reprogramming capacity to move along a continuum between polarized epithelial cells and mesenchymal cells. We propose that movement along this continuum toward a mesenchymal phenotype be defined as RPE Dysfunction. Potential mechanisms include impaired tight junctions, accumulation of misfolded proteins and dysregulation of several key pathways and molecules, such as TGF-β pathway, Wnt pathway, nicotinamide, microRNA 204/211 and extracellular vesicles. This review synthesizes the evidence implicating EMT of RPE cells in post-mortem eyes, animal studies, primary RPE, iPSC-RPE and ARPE-19 cell lines.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Jasmine S Geathers
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Stephanie L Grillo
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Sarah R Weber
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Weiwei Wang
- Department of Medicine, The University of Texas Health Science Center at San Antonio, Houston, TX, United States
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
36
|
Tighe S, Mead OG, Lee A, Tseng SCG. Basic science review of birth tissue uses in ophthalmology. Taiwan J Ophthalmol 2020; 10:3-12. [PMID: 32309118 PMCID: PMC7158924 DOI: 10.4103/tjo.tjo_4_20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/12/2020] [Indexed: 12/31/2022] Open
Abstract
The birth tissue is predominantly comprised of amniotic membrane (AM) and umbilical cord (UC), which share the same cell origin as the fetus. These versatile biological tissues have been used to treat a wide range of conjunctival and corneal conditions since 1940. The therapeutic benefits of the birth tissue stem from its anti-inflammatory and anti-scarring properties that orchestrate regenerative healing. Although the birth tissue also contains many cytokines, growth factors, and proteins, the heavy chain 1-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) matrix has been identified to be a major active tissue component responsible for AM/UC's multifactorial therapeutic actions. HC-HA/PTX3 complex is abundantly present in fresh and cryopreserved AM/UC, but not in dehydrated tissue. In this review, we discuss the tissue anatomy, the molecular mechanism of action based on HC-HA/ PTX3 to explain their therapeutic potentials, and the various forms available in ophthalmology.
Collapse
Affiliation(s)
- Sean Tighe
- R&D Department, TissueTech Inc., Miami, Florida, USA
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Amy Lee
- R&D Department, TissueTech Inc., Miami, Florida, USA
| | - Scheffer C. G. Tseng
- R&D Department, TissueTech Inc., Miami, Florida, USA
- Ocular Surface Center and Ocular Surface Research Education Foundation, Miami, FL, USA
| |
Collapse
|
37
|
Xin T, Han H, Wu W, Huang X, Cui J, Matsubara JA, Song J, Wang F, Colyer M, Lei H. Idelalisib inhibits vitreous-induced Akt activation and proliferation of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res 2019; 190:107884. [PMID: 31786159 DOI: 10.1016/j.exer.2019.107884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding fibrotic eye disease that develops in 8-10% of patients who undergo primary retinal detachment-reparative surgery and in 40-60% of patients with open-globe injury. At present, there is no pharmacological treatment for this devastating disease. Vitreal growth factors activate their respective receptors of cells in the vitreous, trigger their downstream signaling transduction (e.g. phosphoinositide 3 kinases (PI3Ks)/Akt), and drive cellular responses intrinsic to the pathogenesis of PVR. PI3Ks play a central role in experimental PVR. However, which isoform(s) are involved in PVR pathogenesis remain unknown. Herein, we show that p110δ, a catalytic subunit of receptor-regulated PI3K isoform δ, is highly expressed in epiretinal membranes from patients with PVR, and that idelalisib, a specific inhibitor of PI3Kδ, effectively inhibits vitreous-induced Akt activation, proliferation, migration and contraction of retinal pigment epithelial cells derived from an epiretinal membrane of a PVR patient. Small molecules of kinase inhibitors have shown great promise as a class of therapeutics for a variety of human diseases. The data herein suggest that idelalisib is a promising PVR prophylactic.
Collapse
Affiliation(s)
- Tianyi Xin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haote Han
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wenyi Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xionggao Huang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jing Cui
- The University of British Columbia, Canada
| | | | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marcus Colyer
- Department of Surgery, Walter Reed-Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen, Guangdong Province, PR China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
38
|
Heffer AM, Proaño J, Roztocil E, Phipps RP, Feldon SE, Huxlin KR, Sime PJ, Libby RT, Woeller CF, Kuriyan AE. The polyether ionophore salinomycin targets multiple cellular pathways to block proliferative vitreoretinopathy pathology. PLoS One 2019; 14:e0222596. [PMID: 31527897 PMCID: PMC6748436 DOI: 10.1371/journal.pone.0222596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/02/2019] [Indexed: 11/21/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is characterized by membranes that form in the vitreous cavity and on both surfaces of the retina, which results in the formation of tractional membranes that can cause retinal detachment and intrinsic fibrosis of the retina, leading to retina foreshortening. Currently, there are no pharmacologic therapies that are effective in inhibiting or preventing PVR formation. One of the key aspects of PVR pathogenesis is retinal pigment epithelial (RPE) cell epithelial mesenchymal transition (EMT). Here we show that the polyether ionophore compound salinomycin (SNC) effectively inhibits TGFβ-induced EMT of RPE cells. SNC blocks the activation of TGFβ-induced downstream targets alpha smooth muscle actin (αSMA) and collagen 1 (Col1A1). Additionally, SNC inhibits TGFβ-induced RPE cell migration and contraction. We show that SNC functions to inhibit RPE EMT by targeting both the pTAK1/p38 and Smad2 signaling pathways upon TGFβ stimulation. Additionally, SNC is able to inhibit αSMA and Col1A1 expression in RPE cells that have already undergone TGFβ-induced EMT. Together, these results suggest that SNC could be an effective therapeutic compound in both the prevention and treatment of PVR.
Collapse
Affiliation(s)
- Alison M. Heffer
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- * E-mail: (AH); (AK); (CFW)
| | - Jacob Proaño
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
| | - Richard P. Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Krystel R. Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Patricia J. Sime
- Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- * E-mail: (AH); (AK); (CFW)
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- * E-mail: (AH); (AK); (CFW)
| |
Collapse
|
39
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Dvoriantchikova G, Seemungal RJ, Ivanov D. The epigenetic basis for the impaired ability of adult murine retinal pigment epithelium cells to regenerate retinal tissue. Sci Rep 2019; 9:3860. [PMID: 30846751 PMCID: PMC6405859 DOI: 10.1038/s41598-019-40262-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/12/2019] [Indexed: 11/12/2022] Open
Abstract
The epigenetic plasticity of amphibian retinal pigment epithelium (RPE) allows them to regenerate the entire retina, a trait known to be absent in mammals. In this study, we investigated the epigenetic plasticity of adult murine RPE to identify possible mechanisms that prevent mammalian RPE from regenerating retinal tissue. RPE were analyzed using microarray, ChIP-seq, and whole-genome bisulfite sequencing approaches. We found that the majority of key genes required for progenitor phenotypes were in a permissive chromatin state and unmethylated in RPE. We observed that the majority of non-photoreceptor genes had promoters in a repressive chromatin state, but these promoters were in unmethylated or low-methylated regions. Meanwhile, the majority of promoters for photoreceptor genes were found in a permissive chromatin state, but were highly-methylated. Methylome states of photoreceptor-related genes in adult RPE and embryonic retina (which mostly contain progenitors) were very similar. However, promoters of these genes were demethylated and activated during retinal development. Our data suggest that, epigenetically, adult murine RPE cells are a progenitor-like cell type. Most likely two mechanisms prevent adult RPE from reprogramming and differentiating into retinal neurons: 1) repressive chromatin in the promoter regions of non-photoreceptor retinal neuron genes; 2) highly-methylated promoters of photoreceptor-related genes.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rajeev J Seemungal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
41
|
Abstract
Proliferative vitreoretinopathy (PVR) is the most common cause for failure of rhegmatogenous retinal detachment repair and is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both sides of the retinal surface as well as intraretinal fibrosis. Currently, PVR is thought to be an abnormal wound healing response that is primarily driven by inflammatory, retinal, and RPE cells. At this time, surgery is the only management option for PVR as there is no proven pharmacologic agent for the treatment or prevention of PVR. Laboratory research to better understand PVR pathophysiology and clinical trials of various agents to prevent PVR formation are ongoing.
Collapse
Affiliation(s)
- Sana Idrees
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
42
|
Krishna L, Dhamodaran K, Subramani M, Ponnulagu M, Jeyabalan N, Krishna Meka SR, Jayadev C, Shetty R, Chatterjee K, Khora SS, Das D. Protective Role of Decellularized Human Amniotic Membrane from Oxidative Stress-Induced Damage on Retinal Pigment Epithelial Cells. ACS Biomater Sci Eng 2018; 5:357-372. [DOI: 10.1021/acsbiomaterials.8b00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murugeswari Ponnulagu
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Nallathambi Jeyabalan
- Grow Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-retinal Services, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Debashish Das
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| |
Collapse
|
43
|
Wang J, Xia Y, Zuo Q, Chen T. Molecular mechanisms underlying the antimetastatic activity of bufalin. Mol Clin Oncol 2018; 8:631-636. [PMID: 29732152 DOI: 10.3892/mco.2018.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Bufalin is a monomer compound extract from Chansu, which is a traditional Chinese medicine obtained from the skin and parotid venom glands of toads, such as Bufo bufo gargarizans Cantor and Bufo melanostictus Schneider. Chansu had been used in traditional Chinese medicine for >1,000 years due to its cardiac, anti-inflammatory and anticancer properties. Previous studies identified bufalin as the main anticancer compound of Chansu, and recent evidence has corroborated its anticancer properties. Bufalin inhibits cancer cell proliferation, induces cell cycle arrest, induces cancer cell apoptosis, inhibits neovascularization, induces cell differentiation, inhibits cancer metastasis and invasion, and enhances chemotherapeutic drug sensitivity. However, the function and mechanism of bufalin in metastatic cancer cells have not yet been expounded. The aim of the present review was to discuss the recent progress and prospects of bufalin in the prevention of cancer metastasis, particularly in inhibiting epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jie Wang
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yue Xia
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingshong Zuo
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Teng Chen
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|