1
|
Cucini C, Boschi S, Funari R, Cardaioli E, Iannotti N, Marturano G, Paoli F, Bruttini M, Carapelli A, Frati F, Nardi F. De novo assembly and annotation of Popillia japonica's genome with initial clues to its potential as an invasive pest. BMC Genomics 2024; 25:275. [PMID: 38475721 PMCID: PMC10936072 DOI: 10.1186/s12864-024-10180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.
Collapse
Affiliation(s)
- Claudio Cucini
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Sara Boschi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rebecca Funari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Elena Cardaioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Nicola Iannotti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Francesco Paoli
- Council for Agricultural Research and Agricultural Economy Analysis (CREA), Florence, Italy
| | - Mirella Bruttini
- Department of Medical Biotechnologies, Medical Biotech Hub and Competence Centre, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
2
|
Cicconardi F, Milanetti E, Pinheiro de Castro EC, Mazo-Vargas A, Van Belleghem SM, Ruggieri AA, Rastas P, Hanly J, Evans E, Jiggins CD, Owen McMillan W, Papa R, Di Marino D, Martin A, Montgomery SH. Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. Nat Commun 2023; 14:5620. [PMID: 37699868 PMCID: PMC10497600 DOI: 10.1038/s41467-023-41412-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, Leuven, Belgium
| | | | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joseph Hanly
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, PR, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, Puerto Rico
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
3
|
Weiland SO, Detcharoen M, Schlick‐Steiner BC, Steiner FM. Analyses of locomotion, wing morphology, and microbiome in Drosophila nigrosparsa after recovery from antibiotics. Microbiologyopen 2022; 11:e1291. [PMID: 35765190 PMCID: PMC9179132 DOI: 10.1002/mbo3.1291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
Antibiotics, such as tetracycline, have been frequently used to cure arthropods of Wolbachia endosymbionts. After the symbionts have been removed, the hosts must recover for some generations from the side effects of the antibiotics. However, most studies do not assess the direct and indirect longer-term effects of antibiotics used to remove Wolbachia, which may question the exact contribution of this endosymbiont to the effects observed. Here, we used the fly Drosophila nigrosparsa treated or not with tetracycline for three generations followed by two generations of recovery to investigate the effects of this antibiotic on the fly locomotion, wing morphology, and the gut microbiome. We found that antibiotic treatment did not affect fly locomotion two generations after being treated with the antibiotic. In addition, gut-microbiome restoration was tested as a more efficient solution to reduce the potential side effects of tetracycline on the microbiome. There was no significant difference in alpha diversity between gut restoration and other treatments, but the abundance of some bacterial taxa differed significantly between the gut-restoration treatment and the control. We conclude that in D. nigrosparsa the recovery period of two generations after being treated with the antibiotic is sufficient for locomotion, and suggest a general assessment of direct and indirect effects of antibiotics after a particular recovery time.
Collapse
Affiliation(s)
| | - Matsapume Detcharoen
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
- Division of Biological Science, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
| | | | | |
Collapse
|
4
|
Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain. Sci Rep 2021; 11:11336. [PMID: 34059765 PMCID: PMC8166886 DOI: 10.1038/s41598-021-90857-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Wolbachia are maternally inherited endosymbionts that infect nearly half of all arthropod species. Wolbachia manipulate their hosts to maximize their transmission, but they can also provide benefits such as nutrients and resistance against viruses to their hosts. The Wolbachia strain wMel was recently found to increase locomotor activities and possibly trigger cytoplasmic incompatibility in the transinfected fly Drosophila nigrosparsa. Here, we investigated, in females of both D. melanogaster and D. nigrosparsa, the gene expression between animals uninfected and infected with wMel, using RNA sequencing to see if the two Drosophila species respond to the infection in the same or different ways. A total of 2164 orthologous genes were used. The two fly species responded to the infection in different ways. Significant changes shared by the fly species belong to the expression of genes involved in processes such as oxidation-reduction process, iron-ion binding, and voltage-gated potassium-channel activity. We discuss our findings also in the light of how Wolbachia survive within both the native and the novel host.
Collapse
|
5
|
Cicconardi F, Krapf P, D'Annessa I, Gamisch A, Wagner HC, Nguyen AD, Economo EP, Mikheyev AS, Guénard B, Grabherr R, Andesner P, Wolfgang A, Di Marino D, Steiner FM, Schlick-Steiner BC. Genomic Signature of Shifts in Selection in a Subalpine Ant and Its Physiological Adaptations. Mol Biol Evol 2021; 37:2211-2227. [PMID: 32181804 PMCID: PMC7403626 DOI: 10.1093/molbev/msaa076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how organisms adapt to extreme environments is fundamental and can provide insightful case studies for both evolutionary biology and climate-change biology. Here, we take advantage of the vast diversity of lifestyles in ants to identify genomic signatures of adaptation to extreme habitats such as high altitude. We hypothesized two parallel patterns would occur in a genome adapting to an extreme habitat: 1) strong positive selection on genes related to adaptation and 2) a relaxation of previous purifying selection. We tested this hypothesis by sequencing the high-elevation specialist Tetramorium alpestre and four other phylogenetically related species. In support of our hypothesis, we recorded a strong shift of selective forces in T. alpestre, in particular a stronger magnitude of diversifying and relaxed selection when compared with all other ants. We further disentangled candidate molecular adaptations in both gene expression and protein-coding sequence that were identified by our genome-wide analyses. In particular, we demonstrate that T. alpestre has 1) a higher level of expression for stv and other heat-shock proteins in chill-shock tests and 2) enzymatic enhancement of Hex-T1, a rate-limiting regulatory enzyme that controls the entry of glucose into the glycolytic pathway. Together, our analyses highlight the adaptive molecular changes that support colonization of high-altitude environments.
Collapse
Affiliation(s)
| | - Patrick Krapf
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Ilda D'Annessa
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR (SCITEC-CNR), Milan, Italy
| | - Alexander Gamisch
- Department of Ecology, University of Innsbruck, Innsbruck, Austria.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Herbert C Wagner
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andrew D Nguyen
- Department of Entomology and Nematology, University of Florida, Gainesville, FL
| | - Evan P Economo
- Biodiversity & Biocomplexity Unit, Okinawa Institute of Science & Technology, Onna, Japan
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science & Technology, Onna, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Reingard Grabherr
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Philipp Andesner
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Daniele Di Marino
- Department of Life and Environmental Sciences - New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | | | | |
Collapse
|
6
|
Ni L. The Structure and Function of Ionotropic Receptors in Drosophila. Front Mol Neurosci 2021; 13:638839. [PMID: 33597847 PMCID: PMC7882480 DOI: 10.3389/fnmol.2020.638839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Ionotropic receptors (IRs) are a highly divergent subfamily of ionotropic glutamate receptors (iGluR) and are conserved across Protostomia, a major branch of the animal kingdom that encompasses both Ecdysozoa and Lophothrochozoa. They are broadly expressed in peripheral sensory systems, concentrated in sensory dendrites, and function in chemosensation, thermosensation, and hygrosensation. As iGluRs, four IR subunits form a functional ion channel to detect environmental stimuli. Most IR receptors comprise individual stimulus-specific tuning receptors and one or two broadly expressed coreceptors. This review summarizes the discoveries of the structure of IR complexes and the expression and function of each IR, as well as discusses the future direction for IR studies.
Collapse
Affiliation(s)
- Lina Ni
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Wicher D, Miazzi F. Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors. Cell Tissue Res 2021; 383:7-19. [PMID: 33502604 PMCID: PMC7873100 DOI: 10.1007/s00441-020-03363-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/19/2020] [Indexed: 10/27/2022]
Abstract
The majority of insect olfactory receptors belong to two distinct protein families, the ionotropic receptors (IRs), which are related to the ionotropic glutamate receptor family, and the odorant receptors (ORs), which evolved from the gustatory receptor family. Both receptor types assemble to heteromeric ligand-gated cation channels composed of odor-specific receptor proteins and co-receptor proteins. We here present in short the current view on evolution, function, and regulation of IRs and ORs. Special attention is given on how their functional properties can meet the environmental and ecological challenges an insect has to face.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| | - Fabio Miazzi
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| |
Collapse
|
8
|
Zarubin M, Yakhnenko A, Kravchenko E. Transcriptome analysis of Drosophila melanogaster laboratory strains of different geographical origin after long-term laboratory maintenance. Ecol Evol 2020; 10:7082-7093. [PMID: 32760513 PMCID: PMC7391317 DOI: 10.1002/ece3.6410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 01/18/2023] Open
Abstract
Positive selection may be the main factor of the between-population divergence in gene expression. Expression profiles of two Drosophila melanogaster laboratory strains of different geographical origin and long-term laboratory maintenance were analyzed using microchip arrays encompassing probes for 18,500 transcripts. The Russian strain D18 and the North American strain Canton-S were compared. A set of 223 known or putative genes demonstrated significant changes in expression levels between these strains. Differentially expressed genes (DEG) were enriched in response to DDT (p = .0014), proteolysis (p = 2.285E-5), transmembrane transport (p = 1.03E-4), carbohydrate metabolic process (p = .0317), protein homotetramerization (p = .0444), and antibacterial humoral response (p = 425E-4). The expression in subset of genes from different categories was verified by qRT-PCR. Analysis of transcript abundance between Canton-S and D18 strains allowed to select several genes to estimate their participation in latitude adaptation. Expression of selected genes was analyzed in five D. melanogaster lines of different geographic origins by qRT-PCR, and we found two candidate genes that may be associated with latitude adaptation in adult flies-smp-30 and Cda9. Quite possible that several alleles of these genes may be important for insect survival in the environments of global warming. It is interesting that the number of genes involved in local adaptation demonstrates expression level appropriate to their geographical origin even after decades of laboratory maintenance.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| | - Alena Yakhnenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
- Laboratory of Analytical and Bioorganic ChemistryLimnological InstituteSiberian Branch of the Russian Academy of ScienceIrkutskRussia
| | - Elena Kravchenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| |
Collapse
|
9
|
Detcharoen M, Arthofer W, Jiggins FM, Steiner FM, Schlick‐Steiner BC. Wolbachia affect behavior and possibly reproductive compatibility but not thermoresistance, fecundity, and morphology in a novel transinfected host, Drosophila nigrosparsa. Ecol Evol 2020; 10:4457-4470. [PMID: 32489610 PMCID: PMC7246211 DOI: 10.1002/ece3.6212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 11/11/2022] Open
Abstract
Wolbachia, intracellular endosymbionts, are estimated to infect about half of all arthropod species. These bacteria manipulate their hosts in various ways for their maximum benefits. The rising global temperature may accelerate species migration, and thus, horizontal transfer of Wolbachia may occur across species previously not in contact. We transinfected and then cured the alpine fly Drosophila nigrosparsa with Wolbachia strain wMel to study its effects on this species. We found low Wolbachia titer, possibly cytoplasmic incompatibility, and an increase in locomotion of both infected larvae and adults compared with cured ones. However, no change in fecundity, no impact on heat and cold tolerance, and no change in wing morphology were observed. Although Wolbachia increased locomotor activities in this species, we conclude that D. nigrosparsa may not benefit from the infection. Still, D. nigrosparsa can serve as a host for Wolbachia because vertical transmission is possible but may not be as high as in the native host of wMel, Drosophila melanogaster.
Collapse
|
10
|
Kinzner MC, Gamisch A, Hoffmann AA, Seifert B, Haider M, Arthofer W, Schlick-Steiner BC, Steiner FM. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133753. [PMID: 31425981 DOI: 10.1016/j.scitotenv.2019.133753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Climate warming is threatening biodiversity worldwide. Climate specialists such as alpine species are especially likely to be vulnerable. Adaptation by rapid evolution is the only long-term option for survival of many species, but the adaptive evolutionary potential of heat resistance has not been assessed in an alpine invertebrate. Here, we show that the alpine fly Drosophila nigrosparsa cannot readily adapt to heat stress. Heat-exposed flies from a regime with increased ambient temperature and a regime with increased temperature plus artificial selection for heat tolerance were less heat tolerant than the control group. Increased ambient temperature affected negatively both fitness and competitiveness. Ecological niche models predicted the loss of three quarters of the climatically habitable areas of this fly by the end of this century. Our findings suggest that, alongside with other climate specialists, species from mountainous regions are highly vulnerable to climate warming and unlikely to adapt through evolutionary genetic changes.
Collapse
Affiliation(s)
| | - Alexander Gamisch
- Department of Ecology, University of Innsbruck, Innsbruck, Austria; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Brigitta Seifert
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marlene Haider
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
11
|
Tratter Kinzner M, Kinzner MC, Kaufmann R, Hoffmann AA, Arthofer W, Schlick-Steiner BC, Steiner FM. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Wang Y, Zhang J, Chen Q, Zhao H, Wang J, Wen M, Xi J, Ren B. Identification and evolution of olfactory genes in the small poplar longhorn beetle Saperda populnea. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:58-68. [PMID: 29626726 DOI: 10.1016/j.cbd.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/03/2018] [Accepted: 03/17/2018] [Indexed: 01/26/2023]
Abstract
Saperda populnea is a serious pest of poplar and willow trees in the Palaearctic region, causing extensive damage to forests and the lumber industry. Until recently, there is no safe and effective chemical method to control this pest due to the lack of sufficient knowledge on the molecular basis of its olfactory genes, moreover, the evolutionary history of the olfactory gene family in subfamily Lamiinae is still fully unknown. Our RNA sequencing of the antennae of S. populnea identified 43 odorant binding proteins (OBPs), 15 chemosensory proteins (CSPs), 56 odorant receptors (ORs) and 24 inotropic receptors (IRs) in S. populnea. The RT-PCR results showed several genes were expressed in a sex specific manner, suggesting that these genes might play key role in their olfactory-sensing and sex-related behaviors. Further evolutionary studies were performed on these olfactory genes, overall comparison of the Ka/Ks values of orthologous genes in S. populnea and two other Lamiinae species showed three main conclusions: 1. olfactory genes have evolved more rapidly than the non-olfactory genes in the tested long horn beetles; 2. the IR gene family are under a strong purifying selection; 3. the OBPs of Monochamus alternatus evolved more rapidly than the other two species, which is speculated to be correlated with differentiation of selective pressure in different geographic origins. Detailed evolutionary studies on each olfactory genes showed that several OBPs and ORs are under significantly purifying/relaxed selective pressure, and several positive selection sites were also detected, modeling of SpopOR14 and SpopOBP4/5 showed that most of the positive selection sites were distributed at the N-terminus of SpopOR14, while the positive selection sites in SpopOBP4/5 were located in H-bond donors, results suggest that these sites are more likely to be linked with the selectivity of modeled olfactory genes. The research provided a better understanding of the molecular basis and evolutionary history of the olfactory genes in Lamiinae, through elaborating the mechanism whereby amino structural evolution affects specific variants in OBPs and ORs.
Collapse
Affiliation(s)
- Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jian Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China; Institute of Forest Protection, Jilin Provincial Academy of Forestry, Changchun, Jilin, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiatong Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, Jilin, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
13
|
Wiegmann BM, Richards S. Genomes of Diptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:116-124. [PMID: 29602357 DOI: 10.1016/j.cois.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Diptera (true flies) are among the most diverse holometabolan insect orders and were the first eukaryotic order to have a representative genome fully sequenced. 110 fly species have publically available genome assemblies and many hundreds of population-level genomes have been generated in the model organisms Drosophila melanogaster and the malaria mosquito Anopheles gambiae. Comparative genomics carried out in a phylogenetic context is illuminating many aspects of fly biology, providing unprecedented insight into variability in genome structure, gene content, genetic mechanisms, and rates and patterns of evolution in genes, populations, and species. Despite the rich availability of genomic resources in flies, there remain many fly lineages to which new genome sequencing efforts should be directed. Such efforts would be most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.
Collapse
Affiliation(s)
- Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77006, United States
| |
Collapse
|
14
|
Arthofer W, Heussler C, Krapf P, Schlick-Steiner BC, Steiner FM. Identifying the minimum number of microsatellite loci needed to assess population genetic structure: A case study in fly culturing. Fly (Austin) 2018; 12:13-22. [PMID: 29166845 PMCID: PMC5927656 DOI: 10.1080/19336934.2017.1396400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci ("core sets") for long-time use in large-scale population screenings are compiled.
Collapse
Affiliation(s)
- Wolfgang Arthofer
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, Austria
| | - Carina Heussler
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, Austria
| | - Patrick Krapf
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, Austria
| | - Birgit C. Schlick-Steiner
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, Austria
| | - Florian M. Steiner
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, Austria
| |
Collapse
|
15
|
Jiang X, Krieger J, Breer H, Pregitzer P. Distinct Subfamilies of Odorant Binding Proteins in Locust (Orthoptera, Acrididae): Molecular Evolution, Structural Variation, and Sensilla-Specific Expression. Front Physiol 2017; 8:734. [PMID: 29018357 PMCID: PMC5623057 DOI: 10.3389/fphys.2017.00734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Odorant binding proteins (OBPs) play an important role in insect olfaction, facilitating transportation of odorant molecules in the sensillum lymph. While most of the researches are concentrated on Lepidopteran and Dipteran species, our knowledge about Orthopteran species is still very limited. In this study, we have investigated OBPs of the desert locust Schistocerca gregaria, a representative Orthopteran species. We have identified 14 transcripts from a S. gregaria antennal transcriptome encoding SgreOBPs, and recapitulated the phylogenetic relationship of SgreOBPs together with OBPs from three other locust species. Two conserved subfamilies of classic OBPs have been identified, named I-A and II-A, exhibiting both common and subfamily-specific amino acid motifs. Distinct evolutionary features were observed for subfamily I-A and II-A OBPs. Surface topology and interior cavity were elucidated for OBP members from the two subfamilies. Antennal topographic expression revealed distinct sensilla- and cellular- specific expression patterns for SgreOBPs from subfamily I-A and II-A. These findings give first insight into the repertoire of locust OBPs with respect to their molecular and evolutionary features as well as their expression in the antenna, which may serve as an initial step to unravel specific roles of distinct OBP subfamilies in locust olfaction.
Collapse
Affiliation(s)
- Xingcong Jiang
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Pablo Pregitzer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol Phylogenet Evol 2017; 112:230-243. [DOI: 10.1016/j.ympev.2017.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
|