1
|
Lapushkin VM, Lapushkina AA, Torshin SP. Effect of coated urea and NPK-fertilizers on spring wheat yield and nitrogen use efficiency. BRAZ J BIOL 2024; 84:e279269. [PMID: 38808785 DOI: 10.1590/1519-6984.279269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/01/2024] [Indexed: 05/30/2024] Open
Abstract
Among the factors that increase the efficiency of mineral fertilizers, due consideration has lately been given to the development and study of fertilizers with various granule coatings. This study is focused on the test of urea and NPK fertilizers, with granules coated with 50 and 100 μm monocalcium phosphate. Two-year greenhouse trials with spring wheat were carried out on soddy-podzolic light loamy soil. Coated fertilizers have proven to be more effective than traditional ones. For instance, using coated urea improved the yield 10-11% compared to conventional fertilizer. At the same time, the weight of one plant increased by 9-11% and the weight of the ear by 10%, the number of grains in the ear was by 4-7% bigger. Similar results were obtained with NPK fertilizer. Providing a thicker coating from 50 to 100 μm significantly increased the efficiency of both urea and NPK fertilizers.
Collapse
Affiliation(s)
- V M Lapushkin
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - A A Lapushkina
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - S P Torshin
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| |
Collapse
|
2
|
da Fonseca AB, Santos C, Nunes APP, Oliveira DP, de Melo MEA, Takayama T, Mansur BL, de Jesus Fernandes T, do Carmo Alexandrino G, Dias MAN, Guelfi D. Urease inhibitors technologies as strategy to mitigate agricultural ammonia emissions and enhance the use efficiency of urea-based fertilizers. Sci Rep 2023; 13:22739. [PMID: 38123658 PMCID: PMC10733344 DOI: 10.1038/s41598-023-50061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Experiments were conducted to evaluate the stability and degradation of NBPT under storage conditions and to quantify urease activity, ammonia losses by volatilization, and agronomic efficiency of urea treated with different urease inhibitors, measured in the field. Experiments included urea treated with 530 mg NBPT kg-1 (UNBPT) in contact with six P-sources (monoammonium phosphate-MAP; single superphosphate; triple superphosphate; P-Agrocote; P-Phusion; P-Policote), with two P-concentrations (30; 70%); the monitoring four N-technologies (SoILC; Limus; Nitrain; Anvol); and the application of conventional urea (UGRAN) or urea treated with urease inhibitors as topdressing in three maize fields, at three N rates. It is concluded that: the mixture of UNBPT and P-fertilizers is incompatible. When MAP granules were coated to control P-release (P-Agrocote), the degradation of NBPT was moderate (approximately 400 mg kg-1 at the end of the storage test). SoILC and Limus solvent technologies extended the NBPT half-life by up to 3.7 and 4.7 months, respectively. Under field, each inhibition technology reduced urease activity, and lowered the intensity of ammonia emission compared to UGRAN by 50-62%. Our results show that the concentration of NBPT is reduced by up to 53.7% for mixing with phosphates. In addition, even with coatings, the storage of mixtures of urea with NBPT and phosphates should be for a time that does not reduce the efficiency of the inhibitor after application, and this time under laboratory conditions was 168 h. The reduction of NBPT concentration in urea is reduced even in isolated storage, our results showed that the half-life time is variable according to the formulation used, being 4.7, 3.7, 2.8 and 2.7 days for Limus, SoILC, Nitrain and Anvol, respectively. The results of these NBPT formulations in the field showed that the average losses by volatilization in the three areas were: 15%, 16%, 17%, 19% and 39% of the N applied, for SoILC, Anvol, Nitrain, Limus and urea, respectively. The rate of nitrogen application affected all agronomic variables, with varied effects in Ingaí. Even without N, yields were higher than 9200 kg ha-1 of grains. The increase in nitrogen rates resulted in linear increases in production and N removal in Luminárias and Ingaí, but in Lavras, production decreased above 95.6 kg ha-1 of N. The highest production in Lavras (13,772 kg ha-1 of grains) occurred with 100 kg ha-1 of N. The application of Anvol reduced the removal of N in Ingaí.
Collapse
Affiliation(s)
- Adrianne Braga da Fonseca
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | - César Santos
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | - Ana Paula Pereira Nunes
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | - Damiany Pádua Oliveira
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | - Maria Elisa Araújo de Melo
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | - Thalita Takayama
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | - Bethânia Leite Mansur
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | | | - Gilson do Carmo Alexandrino
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil
| | | | - Douglas Guelfi
- Laboratory of Fertilizers Technologies-INNOVA FERT, Department of Soil Science, Federal University of Lavras-UFLA, P.O. Box 3037, Lavras, MG, 37203-202, Brazil.
| |
Collapse
|
3
|
Rana MA, Mahmood R, Nadeem F, Wang Y, Jin C, Liu X. Enhanced nitrogen use efficiency, growth and yield of wheat through soil urea hydrolysis inhibition by Vachellia nilotica extract. FRONTIERS IN PLANT SCIENCE 2022; 13:1039601. [PMID: 36452087 PMCID: PMC9702566 DOI: 10.3389/fpls.2022.1039601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Soil urease inhibition slows down the urea hydrolysis and prolongs nitrogen (N) stay in soil, resulting in an increased N uptake by plants. Apart from several chemical urease inhibitors, the urease inhibition potential of plant extracts is rarely reported. In our previous study, the soil urease inhibition by Vachellia nilotica leaf extract was reported; however, its role in relation to growth and yield of wheat (Triticum aestivum) under pot and field conditions remains unknown. The acetonic extracts of 10, 20, and 50 g Vachellia nilotica leaves were given code names viz. Vn.Fl-10, Vn.Fl-20 and Vn.Fl-50, respectively, and coated on 100 g of urea individually. The enhancements of growth (total number of tillers, number of productive tillers, number of spikelets per spike, number of grains per spike, and 1000-grains weight) and yield (biological yield, straw yield, and grain yield) parameters of wheat by Vn.Fl-20 and Vn.Fl-50 coated urea treatments were compared with uncoated urea in a pot experiment. The experiment indicated that the Vachellia nilotica extract coatings were effective at improving N persistence in soil, as reflected by increased grain and straw N concentrations as well as uptakes. The reproduction of the aforementioned results, at the half and full recommended dose of urea under field conditions, reconfirmed the effectiveness of Vachellia nillotica coatings. Moreover, the Vn.Fl-20 and Vn.Fl-50 coated urea, at the half as well as full recommended dose under field conditions, proved equally effective in terms of higher biological, straw, and grain yield, and grain N uptake. The increments in the total number of tillers, number of productive tillers, 1000-grain weight, biological yield, straw yield, grain yield, grain N concentration, grain N-, and straw N uptake along with nitrogen use efficiency (NUE) components, i.e. nitrogen partial factor productivity (NPFP), nitrogen agronomic efficiency (NAE), partial nitrogen balance (PNB), and nitrogen recovery efficiency (NRE) of wheat highlighted the superiority of Vn.Fl-20 coating over the hydroquinone (Hq) coating on urea at the full recommended dose under field conditions. Given the findings of this study, Vachellia nilotica leaf extract coating (Vn.Fl-20) can be used as a natural urease inhibitor to reduce urea hydrolysis and enhance wheat productivity.
Collapse
Affiliation(s)
| | - Rashid Mahmood
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Faisal Nadeem
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Yun Wang
- Center of Planting Technology Extension of Dongyang, Jinhua, China
| | - Chongwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xingxing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Li T, Wang Z, Wang C, Huang J, Feng Y, Shen W, Zhou M, Yang L. Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. CHEMOSPHERE 2022; 303:134944. [PMID: 35577135 DOI: 10.1016/j.chemosphere.2022.134944] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Good practices in controlling ammonia produced from the predominant agricultural contributor, crop farming, are the most direct yet effective approaches for mitigating ammonia emissions and further relieving air pollution. Of all the practices that have been investigated in recent decades, fertilizer amendment technologies are garnering increased attention as the low nitrogen use efficiency in most applied quick-acting fertilizers is the main cause of high ammonia emissions. This paper systematically reviews the fertilizer amendment technologies and associated mechanisms that have been developed for ammonia control, especially the technology development of inorganic additives-based complex fertilizers, coating-based enhanced efficiency fertilizers, organic waste-based resource fertilizers and microbial agent and algae-based biofertilizers, and their corresponding mechanisms in farmland properties shifting towards inhibiting ammonia volatilization and enhancing nitrogen use efficiency. The systematic analysis of the literature shows that both enhanced efficiency fertilizers technique and biofertilizers technique present outstanding ammonia inhibition performance with an average mitigation efficiency of 54% and 50.1%, respectively, which is mainly attributed to the slowing down in release and hydrolysis of nitrogen fertilizer, the enhancement in the adsorption and retention of NH4+/NH3 in soil, and the promotion in the microbial consumption of NH4+ in soil. Furthermore, a combined physical and chemical means, namely membrane/film-based mulching technology, for ammonia volatilization inhibition is also evaluated, which is capable of increasing the resistance of ammonia volatilization. Finally, the review addresses the challenges of mitigating agricultural ammonia emissions with the aim of providing an outlook for future research.
Collapse
Affiliation(s)
- Tianling Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China; Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD, 4222, Australia
| | - Zhengguo Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Chenxu Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Jiayu Huang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Weishou Shen
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, PR China
| | - Ming Zhou
- Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD, 4222, Australia.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| |
Collapse
|
5
|
Farooq MS, Wang X, Uzair M, Fatima H, Fiaz S, Maqbool Z, Rehman OU, Yousuf M, Khan MR. Recent trends in nitrogen cycle and eco-efficient nitrogen management strategies in aerobic rice system. FRONTIERS IN PLANT SCIENCE 2022; 13:960641. [PMID: 36092421 PMCID: PMC9453445 DOI: 10.3389/fpls.2022.960641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa L.) is considered as a staple food for more than half of the global population, and sustaining productivity under a scarcity of resources is challenging to meet the future food demands of the inflating global population. The aerobic rice system can be considered as a transformational replacement for traditional rice, but the widespread adaptation of this innovative approach has been challenged due to higher losses of nitrogen (N) and reduced N-use efficiency (NUE). For normal growth and developmental processes in crop plants, N is required in higher amounts. N is a mineral nutrient and an important constituent of amino acids, nucleic acids, and many photosynthetic metabolites, and hence is essential for normal plant growth and metabolism. Excessive application of N fertilizers improves aerobic rice growth and yield, but compromises economic and environmental sustainability. Irregular and uncontrolled use of N fertilizers have elevated several environmental issues linked to higher N losses in the form of nitrous oxide (N2O), ammonia (NH3), and nitrate (NO3 -), thereby threatening environmental sustainability due to higher warming potential, ozone depletion capacities, and abilities to eutrophicate the water resources. Hence, enhancing NUE in aerobic rice has become an urgent need for the development of a sustainable production system. This article was designed to investigate the major challenge of low NUE and evaluate recent advances in pathways of the N cycle under the aerobic rice system, and thereby suggest the agronomic management approaches to improve NUE. The major objective of this review is about optimizing the application of N inputs while sustaining rice productivity and ensuring environmental safety. This review elaborates that different soil conditions significantly shift the N dynamics via changes in major pathways of the N cycle and comprehensively reviews the facts why N losses are high under the aerobic rice system, which factors hinder in attaining high NUE, and how it can become an eco-efficient production system through agronomic managements. Moreover, it explores the interactive mechanisms of how proper management of N cycle pathways can be accomplished via optimized N fertilizer amendments. Meanwhile, this study suggests several agricultural and agronomic approaches, such as site-specific N management, integrated nutrient management (INM), and incorporation of N fertilizers with enhanced use efficiency that may interactively improve the NUE and thereby plant N uptake in the aerobic rice system. Additionally, resource conservation practices, such as plant residue management, green manuring, improved genetic breeding, and precision farming, are essential to enhance NUE. Deep insights into the recent advances in the pathways of the N cycle under the aerobic rice system necessarily suggest the incorporation of the suggested agronomic adjustments to reduce N losses and enhance NUE while sustaining rice productivity and environmental safety. Future research on N dynamics is encouraged under the aerobic rice system focusing on the interactive evaluation of shifts among activities and diversity in microbial communities, NUE, and plant demands while applying N management measures, which is necessary for its widespread adaptation in face of the projected climate change and scarcity of resources.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Hira Fatima
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Zubaira Maqbool
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Obaid Ur Rehman
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | | | | |
Collapse
|
6
|
Zhang C, Song X, Zhang Y, Wang D, Rees RM, Ju X. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH 3 and N 2 O emissions in global croplands. GLOBAL CHANGE BIOLOGY 2022; 28:4409-4422. [PMID: 35429205 DOI: 10.1111/gcb.16198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3 ) and nitrous oxide (N2 O) are two important air pollutants that have major impacts on climate change and biodiversity losses. Agriculture represents their largest source and effective mitigation measures of individual gases have been well studied. However, the interactions and trade-offs between NH3 and N2 O emissions remain uncertain. Here, we report the results of a two-year field experiment in a wheat-maize rotation in the North China Plain (NCP), a global hotspot of reactive N emissions. Our analysis is supported by a literature synthesis of global croplands, to understand the interactions between NH3 and N2 O emissions and to develop the most effective approaches to jointly mitigate NH3 and N2 O emissions. Field results indicated that deep placement of urea with nitrification inhibitors (NIs) reduced both emissions of NH3 by 67% to 90% and N2 O by 73% to 100%, respectively, in comparison with surface broadcast urea which is the common farmers' practice. But, deep placement of urea, surface broadcast urea with NIs, and application of urea with urease inhibitors probably led to trade-offs between the two gases, with a mitigation potential of -201% to 101% for NH3 and -112% to 89% for N2 O. The literature synthesis showed that deep placement of urea with NIs had an emission factor of 1.53%-4.02% for NH3 and 0.22%-0.36% for N2 O, which were much lower than other fertilization regimes and the default values recommended by IPCC guidelines. This would translate to a reduction of 3.86-5.47 Tg N yr-1 of NH3 and 0.41-0.50 Tg N yr-1 of N2 O emissions, respectively, when adopting deep placement of urea with NIs (relative to current practice) in global croplands. We conclude that the combination of NIs and deep placement of urea can successfully tackle the trade-offs between NH3 and N2 O emissions, therefore avoiding N pollution swapping in global croplands.
Collapse
Affiliation(s)
- Chong Zhang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaotong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqian Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Dan Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | | | - Xiaotang Ju
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
7
|
Nie J, Zhou J, Zhao J, Wang X, Liu K, Wang P, Wang S, Yang L, Zang H, Harrison MT, Yang Y, Zeng Z. Soybean Crops Penalize Subsequent Wheat Yield During Drought in the North China Plain. FRONTIERS IN PLANT SCIENCE 2022; 13:947132. [PMID: 35837461 PMCID: PMC9274277 DOI: 10.3389/fpls.2022.947132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 05/09/2023]
Abstract
Contemporary wisdom suggests that inclusion of legumes into crop rotations benefit subsequent cereal crop yields. To investigate whether this maxim was generically scalable, we contrast summer soybean-winter wheat (SW) with summer maize-winter wheat (MW) rotation systems in an extensive field campaign in the North China Plain (NCP). We identify heretofore unseen interactions between crop rotation, synthetic N fertilizer application, and stored soil water. In the year with typical rainfall, inclusion of soybean within rotation had no effect on wheat ear number and yield, while N fertilization penalized wheat yields by 6-8%, mainly due to lower dry matter accumulation after anthesis. In contrast, in dry years prior crops of soybean reduced the rate and number of effective ears in wheat by 5-27 and 14-17%, respectively, leading to 7-23% reduction in wheat yield. Although N fertilization increased the stem number before anthesis in dry years, there was no corresponding increase in ear number and yield of wheat in such years, indicating compensating reduction in yield components. We also showed that N fertilization increased wheat yield in MW rather than SW as the former better facilitated higher dry matter accumulation after flowering in dry years. Taken together, our results suggest that soybean inclusion reduced soil available water for subsequent wheat growth, causing yield penalty of subsequent wheat under drought conditions. We call for more research into factors influencing crop soil water, including initial state, crop water requirement, and seasonal climate forecasts, when considering legumes into rotation systems. Graphical AbstractResponse of wheat population and yield to soybean inclusion under limited-irrigation.
Collapse
Affiliation(s)
- Jiangwen Nie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiquan Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Peixin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shang Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lei Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Huadong Zang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Yadong Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Yadong Yang,
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Agronomic Assessment of a Controlled-Release Polymer-Coated Urea-Based Fertilizer in Maize. PLANTS 2021; 10:plants10030594. [PMID: 33809881 PMCID: PMC8004158 DOI: 10.3390/plants10030594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Increasing nutrient use efficiency of fertilizers is one of the major challenges to improve crop yields and minimize environmental impacts. This work compared the efficacy of a new ecological polymer-coated urea fertilizer and a slow release urea-based traditional fertilizer. Reductions in the N doses of the polymer-coated fertilizer were tested. A comparative study was first carried out by measuring the different physiological and yield parameters at the micro-scale level, and later-on field experiments were performed. Grain yield in the field was significantly higher (20%) when applying the new controlled-release fertilizer than when using the traditional one at the same dose. A 20% reduction in N content in the new fertilizer gave similar physiological and yield responses compared to the traditional fertilizer. We conclude that this new fertilizer can be used in extensive cropping of maize, guaranteeing at least the same yields than traditional fertilizers, with a reduction on the impact on soil properties and nitrogen losses.
Collapse
|
9
|
Elrys AS, Metwally MS, Raza S, Alnaimy MA, Shaheen SM, Chen Z, Zhou J. How much nitrogen does Africa need to feed itself by 2050? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110488. [PMID: 32383652 DOI: 10.1016/j.jenvman.2020.110488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) fertilizers are very important for global food self-sufficiency (FSS), particularly for Africa, where the N input in agriculture is very low. This is the first work which studies and calculates the amount of N fertilizer that each country in Africa needs to feed itself by 2050. In this study, we used five different scenarios of inorganic fertilizer N (IFN) use and human diets to calculate the amount of N fertilizer needed to achieve FSS in Africa by 2050 and analyze the changes in N budget; N losses and N use efficiency (NUE). These scenarios include 1) business as usual (BAU), 2) equitable diet (EqD; self-sufficiency), 3) an IFN input 20% less than the EqD (S1), 4) an IFN input 40% less than the EqD (S2), and 5) a 20% increase in IFN input relative to the EqD (S3). Under the BAU scenario, production trends continue as they have over the past five decades, including an unhealthy human diet. In the EqD scenario, the priority is to meet the local demand for both animal and plant proteins with a healthy human diet. Under the EqD scenario, increasing the total N input from 35 kg N ha-1 yr-1 to 181 kg N ha-1 yr-1 during 2016-2050 is needed to achieve FSS in Africa. This increase in N fertilizer use represents unprecedented N inputs to African terrestrial ecosystems - at least 52 Tg N yr-1 - which would lead to inevitable increases in N losses. We also found that the NUE would decrease from 63% during 2010-2016 to 50% by 2050, whereas the total N surplus would increase from 13 kg N ha-1 yr-1 to 90 kg N ha-1 yr-1 by 2050. The estimated gaseous emissions would increase from 8 kg N ha-1 yr-1 to 61 kg N ha-1 yr-1 by 2050. Our findings conclude that, it is very important to consider the high N losses in Africa if the EqD scenario is applied. The S1 and S2 scenarios result in much less environmental N loss, and better NUE compared with the EqD scenario. Therefore, based on these findings we can recommend the implementation of the S2 scenario with an IFN dose of 77 kg N ha-1 yr-1, in parallel with the use of modern agricultural techniques and the increased use of organic inputs.
Collapse
Affiliation(s)
- Ahmed S Elrys
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Soil Science Department, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Mohamed S Metwally
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
| | - Sajjad Raza
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Manal A Alnaimy
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Zhujun Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jianbin Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12156018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Currently, nitrogen fertilizers are utilized to meet 48% of the total global food demand. The demand for nitrogen fertilizers is expected to grow as global populations continue to rise. The use of nitrogen fertilizers is associated with many negative environmental impacts and is a key source of greenhouse and harmful gas emissions. In recent years, urease and nitrification inhibitors have emerged as mitigation tools that are presently utilized in agriculture to prevent nitrogen losses and reduce greenhouse and harmful gas emissions that are associated with the use of nitrogen-based fertilizers. Both classes of inhibitor work by different mechanisms and have different physiochemical properties. Consequently, each class must be evaluated on its own merits. Although there are many benefits associated with the use of these inhibitors, little is known about their potential to enter the food chain, an event that may pose challenges to food safety. This phenomenon was highlighted when the nitrification inhibitor dicyandiamide was found as a residual contaminant in milk products in 2013. This comprehensive review aims to discuss the uses of inhibitor technologies in agriculture and their possible impacts on dairy product safety and quality, highlighting areas of concern with regards to the introduction of these inhibitor technologies into the dairy supply chain. Furthermore, this review discusses the benefits and challenges of inhibitor usage with a focus on EU regulations, as well as associated health concerns, chemical behavior, and analytical detection methods for these compounds within milk and environmental matrices.
Collapse
|
11
|
Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res 2018; 13:101-112. [PMID: 30094085 PMCID: PMC6077125 DOI: 10.1016/j.jare.2018.01.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Urease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme is of special importance since it has been demonstrated as a potent virulence factor for some species. Especially it is central to Helicobacter pylori metabolism and virulence being necessary for its colonization of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response. Therefore, it is not surprising that efforts to design, synthesize and evaluate of new inhibitors of urease are and active field of medicinal chemistry. In this paper recent advances on this field are reviewed.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
12
|
Modolo LV, da-Silva CJ, Brandão DS, Chaves IS. A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J Adv Res 2018; 13:29-37. [PMID: 30094080 PMCID: PMC6077229 DOI: 10.1016/j.jare.2018.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 11/29/2022] Open
Abstract
World population is expected to reach 9.7 billion by 2050, which makes a great challenge the achievement of food security. The use of urease inhibitors in agricultural practices has long been explored as one of the strategies to guarantee food supply in enough amounts. This is due to the fact that urea, one of the most used nitrogen (N) fertilizers worldwide, rapidly undergoes urease-driven hydrolysis on soil surface yielding up to 70% N losses to environment. This review provides with a compilation of what has been done since 2005 with respect to the search for good urease inhibitors of agricultural interests. The potential of synthetic organic molecules, such as phosphoramidates, hydroquinone, quinones, (di)substituted thioureas, benzothiazoles, coumarin and phenolic aldehyde derivatives, and vanadium-hydrazine complexes, together with B, Cu, S, Zn, ammonium thiosulfate, silver nanoparticles, and oxidized charcoal as urease inhibitors was presented from experiments with purified jack bean urease, different soils and/or plant-soil systems. The ability of some urease inhibitors to mitigate formation of greenhouse gases is also discussed.
Collapse
|
13
|
Xu W, Zhao Y, Liu X, Dore AJ, Zhang L, Liu L, Cheng M. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:546-555. [PMID: 28993022 DOI: 10.1016/j.envpol.2017.09.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (Nr) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha-1 yr-1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of Nr emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures.
Collapse
Affiliation(s)
- Wen Xu
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Cropland Pollution Control and Remediation, China Agricultural University, Beijing 100193, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanhong Zhao
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Cropland Pollution Control and Remediation, China Agricultural University, Beijing 100193, China.
| | - Anthony J Dore
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Lei Liu
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Miaomiao Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|