1
|
Adegboro CO, Luo W, Kabra M, McAdams RM, York NW, Wijenayake RI, Suchla KM, Pillers DAM, Pattnaik BR. Transplacental Transfer of Oxytocin and Its Impact on Neonatal Cord Blood and In Vitro Retinal Cell Activity. Cells 2024; 13:1735. [PMID: 39451253 PMCID: PMC11506339 DOI: 10.3390/cells13201735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The development of fetal organs can be impacted by systemic changes in maternal circulation, with the placenta playing a pivotal role in maintaining pregnancy homeostasis and nutrient exchange. In clinical obstetrics, oxytocin (OXT) is commonly used to induce labor. To explore the potential role of OXT in the placental homeostasis of OXT, we compared OXT levels in neonatal cord blood among neonates (23-42 weeks gestation) whose mothers either received prenatal OXT or experienced spontaneous labor. Our previous research revealed that the oxytocin receptor (OXTR), essential in forming the blood-retina barrier, is expressed in the retinal pigment epithelium (RPE). We hypothesized that perinatal OXT administration might influence the development of the neural retina and its vasculature, offering therapeutic potential for retinal diseases such as retinopathy of prematurity (ROP). Plasma OXT levels were measured using a commercial OXT ELISA kit. Human fetal RPE (hfRPE) cells treated with OXT (10 µM) were assessed for gene expression via RNA sequencing, revealing 14 downregulated and 32 upregulated genes. To validate these differentially expressed genes (DEGs), hfRPE cells were exposed to OXT (0.01, 0.1, 1, or 10 µM) for 12 h, followed by RNA analysis via real-time PCR. Functional, enrichment, and network analyses (Gene Ontology term, FunRich, Cytoscape) were performed to predict the affected pathways. This translational study suggests that OXT likely crosses the placenta, altering fetal OXT concentrations. RNA sequencing identified 46 DEGs involved in vital metabolic and signaling pathways and critical cellular components. Our results indicate that the perinatal administration of OXT may affect neural retina and retinal vessel development, making OXT a potential therapeutic option for developmental eye diseases, including ROP.
Collapse
Affiliation(s)
- Claudette O. Adegboro
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Wenxiang Luo
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
| | - Meha Kabra
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Nathaniel W. York
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ruwandi I. Wijenayake
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Kiana M. Suchla
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - De-Ann M. Pillers
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
- Children’s Hospital University of Illinois, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| |
Collapse
|
2
|
Lachuer H, Le L, Lévêque-Fort S, Goud B, Schauer K. Spatial organization of lysosomal exocytosis relies on membrane tension gradients. Proc Natl Acad Sci U S A 2023; 120:e2207425120. [PMID: 36800388 PMCID: PMC9974462 DOI: 10.1073/pnas.2207425120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/17/2022] [Indexed: 02/18/2023] Open
Abstract
Lysosomal exocytosis is involved in many key cellular processes but its spatiotemporal regulation is poorly known. Using total internal reflection fluorescence microscopy (TIRFM) and spatial statistics, we observed that lysosomal exocytosis is not random at the adhesive part of the plasma membrane of RPE1 cells but clustered at different scales. Although the rate of exocytosis is regulated by the actin cytoskeleton, neither interfering with actin or microtubule dynamics by drug treatments alters its spatial organization. Exocytosis events partially co-appear at focal adhesions (FAs) and their clustering is reduced upon removal of FAs. Changes in membrane tension following a hypo-osmotic shock or treatment with methyl-β-cyclodextrin were found to increase clustering. To investigate the link between FAs and membrane tension, cells were cultured on adhesive ring-shaped micropatterns, which allow to control the spatial organization of FAs. By using a combination of TIRFM and fluorescence lifetime imaging microscopy (FLIM), we revealed the existence of a radial gradient in membrane tension. By changing the diameter of micropatterned substrates, we further showed that this gradient as well as the extent of exocytosis clustering can be controlled. Together, our data indicate that the spatial clustering of lysosomal exocytosis relies on membrane tension patterning controlled by the spatial organization of FAs.
Collapse
Affiliation(s)
- Hugo Lachuer
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
| | - Laurent Le
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay91405, Orsay, France
| | - Sandrine Lévêque-Fort
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay91405, Orsay, France
| | - Bruno Goud
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
| | - Kristine Schauer
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
- Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif94800, France
| |
Collapse
|
3
|
Morioka E, Kasuga Y, Kanda Y, Moritama S, Koizumi H, Yoshikawa T, Miura N, Ikeda M, Higashida H, Holmes TC, Ikeda M. Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons. Cell Rep 2022; 39:110787. [PMID: 35545046 DOI: 10.1016/j.celrep.2022.110787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that generate robust ionic oscillation in circadian pacemaker neurons are under investigation. Here, we demonstrate critical functions of the mitochondrial cation antiporter leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1), which exchanges K+/H+ in Drosophila and Ca2+/H+ in mammals, in circadian pacemaker neurons. Letm1 knockdown in Drosophila pacemaker neurons reduced circadian cytosolic H+ rhythms and prolonged nuclear PERIOD/TIMELESS expression rhythms and locomotor activity rhythms. In rat pacemaker neurons in the hypothalamic suprachiasmatic nucleus (SCN), circadian rhythms in cytosolic Ca2+ and Bmal1 transcription were dampened by Letm1 knockdown. Mitochondrial Ca2+ uptake peaks late during the day were also observed in rat SCN neurons following photolytic elevation of cytosolic Ca2+. Since cation transport by LETM1 is coupled to mitochondrial energy synthesis, we propose that LETM1 integrates metabolic, ionic, and molecular clock rhythms in the central clock system in both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Yusuke Kasuga
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Yuzuki Kanda
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Saki Moritama
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Hayato Koizumi
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan
| | - Nobuhiko Miura
- Department of Health Medicine, Yokohama University of Pharmacy, Yokohama, Kanagawa 245-0061, Japan
| | - Masaaki Ikeda
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Ishikawa 920-8640, Japan
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Masayuki Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan; Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
4
|
Baba K, Goyal V, Tosini G. Circadian Regulation of Retinal Pigment Epithelium Function. Int J Mol Sci 2022; 23:2699. [PMID: 35269840 PMCID: PMC8910459 DOI: 10.3390/ijms23052699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a single layer of cells located between the choriocapillaris vessels and the light-sensitive photoreceptors in the outer retina. The RPE performs physiological processes necessary for the maintenance and support of photoreceptors and visual function. Among the many functions performed by the RPE, the timing of the peak in phagocytic activity by the RPE of the photoreceptor outer segments that occurs 1-2 h. after the onset of light has captured the interest of many investigators and has thus been intensively studied. Several studies have shown that this burst in phagocytic activity by the RPE is under circadian control and is present in nocturnal and diurnal species and rod and cone photoreceptors. Previous investigations have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE cells. However, the anatomical location of the circadian controlling this activity is not clear. Experimental evidence indicates that the circadian clock, melatonin, dopamine, and integrin signaling play a key role in controlling this rhythm. A series of very recent studies report that the circadian clock in the RPE controls the daily peak in phagocytic activity. However, the loss of the burst in phagocytic activity after light onset does not result in photoreceptor or RPE deterioration during aging. In the current review, we summarized the current knowledge on the mechanism controlling this phenomenon and the physiological role of this peak.
Collapse
Affiliation(s)
| | | | - Gianluca Tosini
- Department of Pharmacology & Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA; (K.B.); (V.G.)
| |
Collapse
|
5
|
Milićević N, Ait-Hmyed Hakkari O, Bagchi U, Sandu C, Jongejan A, Moerland PD, Ten Brink JB, Hicks D, Bergen AA, Felder-Schmittbuhl MP. Core circadian clock genes Per1 and Per2 regulate the rhythm in photoreceptor outer segment phagocytosis. FASEB J 2021; 35:e21722. [PMID: 34160105 DOI: 10.1096/fj.202100293rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Retinal photoreceptors undergo daily renewal of their distal outer segments, a process indispensable for maintaining retinal health. Photoreceptor outer segment (POS) phagocytosis occurs as a daily peak, roughly about 1 hour after light onset. However, the underlying cellular and molecular mechanisms which initiate this process are still unknown. Here we show that, under constant darkness, mice deficient for core circadian clock genes (Per1 and Per2) lack a daily peak in POS phagocytosis. By qPCR analysis, we found that core clock genes were rhythmic over 24 hours in both WT and Per1, Per2 double mutant whole retinas. More precise transcriptomics analysis of laser capture microdissected WT photoreceptors revealed no differentially expressed genes between time points preceding and during the peak of POS phagocytosis. In contrast, we found that microdissected WT retinal pigment epithelium (RPE) had a number of genes that were differentially expressed at the peak phagocytic time point compared to adjacent ones. We also found a number of differentially expressed genes in Per1, Per2 double mutant RPE compared to WT ones at the peak phagocytic time point. Finally, based on STRING analysis, we found a group of interacting genes that potentially drive POS phagocytosis in the RPE. This potential pathway consists of genes such as: Pacsin1, Syp, Camk2b, and Camk2d among others. Our findings indicate that Per1 and Per2 are necessary clock components for driving POS phagocytosis and suggest that this process is transcriptionally driven by the RPE.
Collapse
Affiliation(s)
- Nemanja Milićević
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Ouafa Ait-Hmyed Hakkari
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Udita Bagchi
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, the Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
7
|
The Influence of Melatonin and Light on VEGF Secretion in Primary RPE Cells. Biomolecules 2021; 11:biom11010114. [PMID: 33467052 PMCID: PMC7830335 DOI: 10.3390/biom11010114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Retinal pigment epithelial cells (RPE) cells constitutively secrete vascular endothelial growth factor (VEGF) in the retina, protecting the neuronal cells and the choroid. Increased VEGF secretion, however, can result in neovascularization and edema. Many factors regulate VEGF secretion. In this study, we investigated the effect of external stimuli in relation to diurnal rhythm on constitutive VEGF secretion. (2) Methods: Single-eye RPE cell culture was prepared from porcine eyes. RPE cells were cultured in darkness, treated with daylight or room light, and treated with melatonin at different time frames, either respectively or in combination. Supernatants were collected and VEGF content evaluated using ELISA. Expression of the clock protein BMAL1 was evaluated with Western blot. (3) Results: VEGF secretion of the RPE shows a diurnal rhythm. While the rhythm is not influenced by either light or melatonin, the amount of secreted VEGF can be increased by nocturnal melatonin, especially in combination with morning daylight. These findings disclose another layer of VEGF regulation in the retina.
Collapse
|
8
|
Goyal V, DeVera C, Laurent V, Sellers J, Chrenek MA, Hicks D, Baba K, Iuvone PM, Tosini G. Dopamine 2 Receptor Signaling Controls the Daily Burst in Phagocytic Activity in the Mouse Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2020; 61:10. [PMID: 32396631 PMCID: PMC7405625 DOI: 10.1167/iovs.61.5.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose A burst in phagocytosis of spent photoreceptor outer fragments by RPE is a rhythmic process occurring 1 to 2 hours after the onset of light. This phenomenon is considered crucial for the health of the photoreceptors and RPE. We have recently reported that dopamine, via dopamine 2 receptor (D2R), shifts the circadian rhythm in the RPE. Methods Here, we first investigated the impact of the removal of D2R on the daily peak of phagocytosis by RPE and then we analyzed the function and morphology of retina and RPE in the absence of D2R. Results D2R knockout (KO) mice do not show a daily burst of phagocytic activity after the onset of light. RNA sequencing revealed a total of 394 differentially expressed genes (DEGs) between ZT 23 and ZT 1 in the control mice, whereas in D2R KO mice, we detected 1054 DEGs. Pathway analysis of the gene expression data implicated integrin signaling to be one of the upregulated pathways in control but not in D2R KO mice. Consistent with the gene expression data, phosphorylation of focal adhesion kinase (FAK) did not increase significantly in KO mice at ZT 1. No difference in retinal thickness, visual function, or morphology of RPE cells was observed between wild-type (WT) and D2R KO mice at the age of 3 and 12 months. Conclusions Our data suggest that removal of D2R prevents the burst of phagocytosis and a related increase in the phosphorylation of FAK after light onset. The pathway analysis points toward a putative role of D2R in controlling integrin signaling, which is known to play an important role in the control of the daily burst of phagocytosis by the RPE. Our data also indicate that the absence of the burst of phagocytic activity in the early morning does not produce any apparent deleterious effect on the retina or RPE up to 1 year of age.
Collapse
|
9
|
McKee CA, Lananna BV, Musiek ES. Circadian regulation of astrocyte function: implications for Alzheimer's disease. Cell Mol Life Sci 2020; 77:1049-1058. [PMID: 31578625 PMCID: PMC7098845 DOI: 10.1007/s00018-019-03314-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock regulates rhythms in gene transcription that have a profound impact on cellular function, behavior, and disease. Circadian dysfunction is a symptom of aging and neurodegenerative diseases, and recent studies suggest a bidirectional relationship between impaired clock function and neurodegeneration. Glial cells possess functional circadian clocks which may serve to control glial responses to daily oscillations in brain activity, cellular stress, and metabolism. Astrocytes directly support brain function through synaptic interactions, neuronal metabolic support, neuroinflammatory regulation, and control of neurovascular coupling at blood and CSF barriers. Emerging evidence suggests that the astrocyte circadian clock may be involved in many of these processes, and that clock disruption could influence neurodegeneration by disrupting several aspects of astrocyte function. Here we review the literature surrounding circadian control of astrocyte function in health and disease, and discuss the potential implications of astrocyte clocks for neurodegeneration.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Brian V Lananna
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA.
| |
Collapse
|
10
|
Milićević N, ten Brink JB, ten Asbroek AL, Bergen AA, Felder-Schmittbuhl MP. The circadian clock regulates RPE-mediated lactate transport via SLC16A1 (MCT1). Exp Eye Res 2020; 190:107861. [DOI: 10.1016/j.exer.2019.107861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/13/2023]
|
11
|
Milićević N, Duursma A, Ten Asbroek ALMA, Felder-Schmittbuhl MP, Bergen AA. Does the circadian clock make RPE-mediated ion transport "tick" via SLC12A2 (NKCC1)? Chronobiol Int 2019; 36:1592-1598. [PMID: 31441327 DOI: 10.1080/07420528.2019.1653317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of a circadian clock in the retinal pigment epithelium (RPE) was discovered recently. However, little is known about mechanisms or processes regulated by the RPE clock. We cultured ARPE-19 monolayers in a transwell culture system, and we found rhythmic mRNA expression of the sodium-potassium-chloride co-transporter SLC12A2. We localized the corresponding protein product, NKCC1, on the apical membrane of ARPE-19 cells. We found that concentrations of sodium, potassium, and chloride oscillated in apical supernatants. The ion concentration gradients between supernatants strongly correlated with SLC12A2 mRNA expression. Our results suggest that the circadian clock regulates ion transport by the RPE via NKCC1 expression.
Collapse
Affiliation(s)
- Nemanja Milićević
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives , F-67000 Strasbourg , France.,Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 , 1105 AZ, Amsterdam , the Netherlands
| | - Angelica Duursma
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 , 1105 AZ, Amsterdam , the Netherlands
| | - Anneloor L M A Ten Asbroek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 , 1105 AZ, Amsterdam , the Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives , F-67000 Strasbourg , France
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 , 1105 AZ, Amsterdam , the Netherlands.,Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 , 1105 AZ, Amsterdam , the Netherlands.,Department of Retinal Signal Processing, Netherlands Institute for Neuroscience (NIN-KNAW) , 1105 BA, Amsterdam , the Netherlands
| |
Collapse
|
12
|
Milićević N, Mazzaro N, de Bruin I, Wils E, Ten Brink J, Asbroek AT, Mendoza J, Bergen A, Felder-Schmittbuhl MP. Rev-Erbα and Photoreceptor Outer Segments modulate the Circadian Clock in Retinal Pigment Epithelial Cells. Sci Rep 2019; 9:11790. [PMID: 31409842 PMCID: PMC6692399 DOI: 10.1038/s41598-019-48203-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Retinal photoreceptor outer segments (POS) are renewed daily through phagocytosis by the adjacent retinal pigment epithelial (RPE) monolayer. Phagocytosis is mainly driven by the RPE circadian clock but the underlying molecular mechanisms remain elusive. Using ARPE-19 (human RPE cell-line) dispersed and monolayer cell cultures, we investigated the influence of cellular organization on the RPE clock and phagocytosis genes. PCR analysis revealed rhythmic expression of clock and phagocytosis genes in all ARPE-19 cultures. Monolayers had a tendency for higher amplitudes of clock gene oscillations. In all conditions ARNTL, CRY1, PER1-2, REV-ERBα, ITGB5, LAMP1 and PROS1 were rhythmically expressed with REV-ERBα being among the clock genes whose expression showed most robust rhythms in ARPE-19 cells. Using RPE-choroid explant preparations of the mPer2Luc knock-in mice we found that Rev-Erbα deficiency induced significantly longer periods and earlier phases of PER2-bioluminescence oscillations. Furthermore, early phagocytosis factors β5-Integrin and FAK and the lysosomal marker LAMP1 protein levels are rhythmic. Finally, POS incubation affects clock and clock-controlled phagocytosis gene expression in RPE monolayers in a time-dependent manner suggesting that POS can reset the RPE clock. These results shed some light on the complex interplay between POS, the RPE clock and clock-controlled phagocytosis machinery which is modulated by Rev-Erbα.
Collapse
Affiliation(s)
- Nemanja Milićević
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France.,Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nadia Mazzaro
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France
| | - Ivanka de Bruin
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Esmée Wils
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jacoline Ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Anneloor Ten Asbroek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France
| | - Arthur Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France.
| |
Collapse
|
13
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
14
|
The M 1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci Rep 2019; 9:5222. [PMID: 30914695 PMCID: PMC6435680 DOI: 10.1038/s41598-019-41425-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Muscarinic acetylcholine receptors have been implicated as potential neuroprotective targets for glaucoma. We tested the hypothesis that the lack of a single muscarinic receptor subtype leads to age-dependent neuron reduction in the retinal ganglion cell layer. Mice with targeted disruption of single muscarinic acetylcholine receptor subtype genes (M1 to M5) and wild-type controls were examined at two age categories, 5 and 15 months, respectively. We found no differences in intraocular pressure between individual mouse groups. Remarkably, in 15-month-old mice devoid of the M1 receptor, neuron number in the retinal ganglion cell layer and axon number in the optic nerve were markedly reduced. Moreover, mRNA expression for the prooxidative enzyme, NOX2, was increased, while mRNA expression for the antioxidative enzymes, SOD1, GPx1 and HO-1, was reduced in aged M1 receptor-deficient mice compared to age-matched wild-type mice. In line with these findings, the reactive oxygen species level was also elevated in the retinal ganglion cell layer of aged M1 receptor-deficient mice. In conclusion, M1 receptor deficiency results in retinal ganglion cell loss in aged mice via involvement of oxidative stress. Based on these findings, activation of M1 receptor signaling may become therapeutically useful to promote retinal ganglion cell survival.
Collapse
|
15
|
Morioka E, Kanda Y, Koizumi H, Miyamoto T, Ikeda M. Histamine Regulates Molecular Clock Oscillations in Human Retinal Pigment Epithelial Cells via H 1 Receptors. Front Endocrinol (Lausanne) 2018; 9:108. [PMID: 29615980 PMCID: PMC5867311 DOI: 10.3389/fendo.2018.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 12/02/2022] Open
Abstract
Vertebrate eyes are known to contain circadian clocks, but their regulatory mechanisms remain largely unknown. To address this, we used a cell line from human retinal pigment epithelium (hRPE-YC) with stable coexpression of reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). We observed concentration-dependent increases in cytosolic Ca2+ concentrations after treatment with histamine (1-100 µM) and complete suppression of histamine-induced Ca2+ mobilizations by H1 histamine receptor (H1R) antagonist d-chlorpheniramine (d-CPA) in hRPE-YC cells. Consistently, real-time RT-PCR assays revealed that H1R showed the highest expression among the four subtypes (H1-H4) of histamine receptors in hRPE-YC cells. Stimulation of hRPE-YC cells with histamine transiently increased nuclear localization of phosphorylated Ca2+/cAMP-response element-binding protein that regulates clock gene transcriptions. Administration of histamine also shifted the Bmal1-luciferase rhythms with a type-1 phase-response curve, similar to previous results with carbachol stimulations. Treatment of hRPE-YC cells with d-CPA or with more specific H1R antagonist, ketotifen, blocked the histamine-induced phase shifts. Furthermore, an H2 histamine receptor agonist, amthamine, had little effect on the Bmal1-luciferase rhythms. Although the function of the in vivo histaminergic system within the eye remains obscure, the present results suggest histaminergic control of the molecular clock via H1R in retinal pigment epithelial cells. Also, since d-CPA and ketotifen have been widely used (e.g., to treat allergy and inflammation) in our daily life and thus raise a possible cause for circadian rhythm disorders by improper use of antihistamines.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Yuzuki Kanda
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Hayato Koizumi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tsubasa Miyamoto
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Masayuki Ikeda
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- *Correspondence: Masayuki Ikeda,
| |
Collapse
|