1
|
Jeong M, Kurihara S, Stankovic KM. An In Vitro Oxidative Stress Model of the Human Inner Ear Using Human-Induced Pluripotent Stem Cell-Derived Otic Progenitor Cells. Antioxidants (Basel) 2024; 13:1407. [PMID: 39594548 PMCID: PMC11591063 DOI: 10.3390/antiox13111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The inner ear organs responsible for hearing (cochlea) and balance (vestibular system) are susceptible to oxidative stress due to the high metabolic demands of their sensorineural cells. Oxidative stress-induced damage to these cells can cause hearing loss or vestibular dysfunction, yet the precise mechanisms remain unclear due to the limitations of animal models and challenges of obtaining living human inner ear tissue. Therefore, we developed an in vitro oxidative stress model of the pre-natal human inner ear using otic progenitor cells (OPCs) derived from human-induced pluripotent stem cells (hiPSCs). OPCs, hiPSCs, and HeLa cells were exposed to hydrogen peroxide or ototoxic drugs (gentamicin and cisplatin) that induce oxidative stress to evaluate subsequent cell viability, cell death, reactive oxygen species (ROS) production, mitochondrial activity, and apoptosis (caspase 3/7 activity). Dose-dependent reductions in OPC cell viability were observed post-exposure, demonstrating their vulnerability to oxidative stress. Notably, gentamicin exposure induced ROS production and cell death in OPCs, but not hiPSCs or HeLa cells. This OPC-based human model effectively simulates oxidative stress conditions in the human inner ear and may be useful for modeling the impact of ototoxicity during early pregnancy or evaluating therapies to prevent cytotoxicity.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
| | - Sho Kurihara
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Otolaryngology-Head and Neck Surgery, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo 105-8461, Japan
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
3
|
Wang J, He W, Li C, Ma Y, Liu M, Ye J, Sun L, Su J, Zhou L. Focus on negatively regulated NLRs in inflammation and cancer. Int Immunopharmacol 2024; 136:112347. [PMID: 38820966 DOI: 10.1016/j.intimp.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Nucleotide-binding and oligomerization structural domain (NOD)-like receptors (NLRs) play an important role in innate immunity as cytoplasmic pattern recognition receptors (PRRs). Over the past decade, considerable progress has been made in understanding the mechanisms by which NLR family members regulate immune system function, particularly the formation of inflammasome and downstream inflammatory signals. However, recent studies have shown that some members of the NLRs, including Nlrp12, NLRX1, and NLRC3, are important in the negative regulation of inflammatory signaling and are involved in the development of various diseases, including inflammatory diseases and cancer. Based on this, in this review, we first summarize the interactions between canonical and non-canonical nuclear factor-κB (NF-κB) signaling pathways that are mainly involved in NLRs, then highlight the mechanisms by which the above NLRs negatively regulate inflammatory signaling responses as well as their roles in tumor progression, and finally summarize the synthetic and natural derivatives with therapeutic effects on these NLRs, which are considered as potential therapeutic agents for overcoming inflammatory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China; Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenjing He
- Medical Intensive Care Unit, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Chunhua Li
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Yue Ma
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Mingjun Liu
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Jinxiang Ye
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Lei Sun
- Changchun Tongyuan Hospital, Changchun 130012, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China.
| |
Collapse
|
4
|
Nassauer L, Staecker H, Huang P, Renslo B, Goblet M, Harre J, Warnecke A, Schott JW, Morgan M, Galla M, Schambach A. Protection from cisplatin-induced hearing loss with lentiviral vector-mediated ectopic expression of the anti-apoptotic protein BCL-XL. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102157. [PMID: 38450280 PMCID: PMC10915631 DOI: 10.1016/j.omtn.2024.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Cisplatin is a highly effective chemotherapeutic agent, but it can cause sensorineural hearing loss (SNHL) in patients. Cisplatin-induced ototoxicity is closely related to the accumulation of reactive oxygen species (ROS) and subsequent death of hair cells (HCs) and spiral ganglion neurons (SGNs). Despite various strategies to combat ototoxicity, only one therapeutic agent has thus far been clinically approved. Therefore, we have developed a gene therapy concept to protect cochlear cells from cisplatin-induced toxicity. Self-inactivating lentiviral (LV) vectors were used to ectopically express various antioxidant enzymes or anti-apoptotic proteins to enhance the cellular ROS scavenging or prevent apoptosis in affected cell types. In direct comparison, anti-apoptotic proteins mediated a stronger reduction in cytotoxicity than antioxidant enzymes. Importantly, overexpression of the most promising candidate, Bcl-xl, achieved an up to 2.5-fold reduction in cisplatin-induced cytotoxicity in HEI-OC1 cells, phoenix auditory neurons, and primary SGN cultures. BCL-XL protected against cisplatin-mediated tissue destruction in cochlear explants. Strikingly, in vivo application of the LV BCL-XL vector improved hearing and increased HC survival in cisplatin-treated mice. In conclusion, we have established a preclinical gene therapy approach to protect mice from cisplatin-induced ototoxicity that has the potential to be translated to clinical use in cancer patients.
Collapse
Affiliation(s)
- Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Peixin Huang
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Bryan Renslo
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Madeleine Goblet
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Juliane W. Schott
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Bi PY, Killackey SA, Schweizer L, Girardin SE. NLRX1: Versatile functions of a mitochondrial NLR protein that controls mitophagy. Biomed J 2024; 47:100635. [PMID: 37574163 PMCID: PMC10837482 DOI: 10.1016/j.bj.2023.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
NLRX1 is a member of the of the Nod-like receptor (NLR) family, and it represents a unique pattern recognition molecule (PRM) as it localizes to the mitochondrial matrix in resting conditions. Over the past fifteen years, NLRX1 has been proposed to regulate multiple cellular processes, including antiviral immunity, apoptosis, reactive oxygen species (ROS) generation and mitochondrial metabolism. Similarly, in vivo models have shown that NLRX1 was associated with the control of a number of diseases, including multiple sclerosis, colorectal cancer and ischemia-reperfusion injury. This apparent versatility in function hinted that a common and general overarching role for NLRX1 may exist. Recent evidence has suggested that NLRX1 controls mitophagy through the detection of a specific "danger signal", namely the defective import of proteins into mitochondria, or mitochondrial protein import stress (MPIS). In this review article, we propose that mitophagy regulation may represent the overarching process detected by NLRX1, which could in turn impact on a number of diseases if dysfunctional.
Collapse
Affiliation(s)
- Paul Y Bi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Linus Schweizer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Nagai-Singer MA, Woolls MK, Leedy K, Hendricks-Wenger A, Brock RM, Coutermarsh-Ott S, Paul T, Morrison HA, Imran KM, Tupik JD, Fletcher EJ, Brown DA, Allen IC. Cellular Context Dictates the Suppression or Augmentation of Triple-Negative Mammary Tumor Metastasis by NLRX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1844-1857. [PMID: 37909827 PMCID: PMC10694032 DOI: 10.4049/jimmunol.2200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Endia J. Fletcher
- Postbaccalaureate Research Education Program, Virginia Tech, Blacksburg, VA
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
7
|
An X, Zhong C, Han B, Chen E, Zhu Q, Yang Y, Li R, Yang R, Zha D, Han Y. Lysophosphatidic acid exerts protective effects on HEI-OC1 cells against cytotoxicity of cisplatin by decreasing apoptosis, excessive autophagy, and accumulation of ROS. Cell Death Discov 2023; 9:415. [PMID: 37968255 PMCID: PMC10651903 DOI: 10.1038/s41420-023-01706-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
Lysophosphatidic acid (LPA) is an active phospholipid signaling molecule that binds to six specific G protein-coupled receptors (LPA1-6) on the cell surface and exerts a variety of biological functions, including cell migration and proliferation, morphological changes, and anti-apoptosis. The earliest study from our group demonstrated that LPA treatment could restore cochlear F-actin depolymerization induced by noise exposure, reduce hair cell death, and thus protect hearing. However, whether LPA could protect against cisplatin-induced ototoxicity and which receptors play the major role remain unclear. To this end, we integrated the HEI-OC1 mouse cochlear hair cell line and zebrafish model, and found that cisplatin exposure induced a large amount of reactive oxygen species accumulation in HEI-OC1 cells, accompanied by mitochondrial damage, leading to apoptosis and autophagy. LPA treatment significantly attenuated autophagy and apoptosis in HEI-OC1 cells after cisplatin exposure. Further investigation revealed that all LPA receptors except LPA3 were expressed in HEI-OC1 cells, and the mRNA expression level of LPA1 receptor was significantly higher than that of other receptors. When LPA1 receptor was silenced, the protective effect of LPA was reduced and the proportion of apoptosis cells was increased, indicating that LPA-LPA1 plays an important role in protecting HEI-OC1 cells from cisplatin-induced apoptosis. In addition, the behavioral trajectory and in vivo fluorescence imaging results showed that cisplatin exposure caused zebrafish to move more actively, and the movement speed and distance were higher than those of the control and LPA groups, while LPA treatment reduced the movement behavior. Cisplatin caused hair cell death and loss in zebrafish lateral line, and LPA treatment significantly protected against hair cell death and loss. LPA has a protective effect on hair cells in vitro and in vivo against the cytotoxicity of cisplatin, and its mechanism may be related to reducing apoptosis, excessive autophagy and ROS accumulation.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Cuiping Zhong
- The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730050, Gansu Province, China
| | - Bang Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Erfang Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Qingwen Zhu
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Yang Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Rui Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Runqin Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
8
|
Yin H, Sun Y, Ya B, Guo Y, Zhao H, Zhang L, Wang F, Zhang W, Yang Q. Apelin-13 protects against cisplatin-induced ototoxicity by inhibiting apoptosis and regulating STAT1 and STAT3. Arch Toxicol 2023; 97:2477-2493. [PMID: 37395757 DOI: 10.1007/s00204-023-03544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
The ototoxic side effect of cisplatin is a main cause of sensorineural hearing loss. This side effect limits the clinical application of cisplatin and affects patients' quality of life. This study was designed to investigate the effect of apelin-13 on cisplatin-induced C57BL/6 mice hearing loss model and explore the potential underlying molecular mechanisms. Mice were intraperitoneally injected with 100 μg/kg apelin-13 2 h before 3 mg/kg cisplatin injection for 7 consecutive days. Cochlear explants cultured in vitro were pretreated with 10 nM apelin-13 2 h prior to 30 μM cisplatin treatment for another 24 h. Hearing test and morphology results showed that apelin-13 attenuated cisplatin-induced mice hearing loss and protected cochlear hair cells and spiral ganglion neurons from damage. In vivo and in vitro experimental results showed that apelin-3 reduced cisplatin-induced apoptosis of hair cells and spiral ganglion neurons. In addition, apelin-3 preserved mitochondrial membrane potential and inhibited ROS production in cultured cochlear explants. Mechanistic studies showed that apelin-3 decreased cisplatin-induced cleaved caspase 3 expression but increased Bcl-2; inhibited the expression of pro-inflammatory factors TNF-a and IL-6; and increased STAT1 phosphorylation but decreased STAT3 phosphorylation. In conclusion, our results indicate that apelin-13 could be a potential otoprotective agent to prevent cisplatin-induced ototoxicity by inhibiting apoptosis, ROS production, TNF-α and IL-6 expression, and regulating phosphorylation of STAT1 and STAT3 transcription factors.
Collapse
Affiliation(s)
- Haiyan Yin
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China.
| | - Yinuo Sun
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Bailiu Ya
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Yan Guo
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Lili Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
9
|
Li N, Yan X, Huang W, Chu M, Dong Y, Song H, Peng Y, Shi J, Liu Q. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells. Biochem Pharmacol 2023; 212:115575. [PMID: 37334787 DOI: 10.1016/j.bcp.2023.115575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 06/21/2023]
Abstract
Age-related hearing loss (ARHL) is a most widespread neurodegenerative disease affecting the elderly population, but effective pharmacological treatments remain limited. Curcumin is a bioactive compound of Curcuma longa with antioxidant properties. Herein, we looked into the effects of curcumin on the H2O2-induced oxidative stress in cochlear hair cells and hearing function in an ARHL animal model (C57BL/6J mice). We found that pretreatment of curcumin could attenuate H2O2-induced apoptosis and cell senescence in auditory hair cells and prevent mitochondrial function dysfunction. More specifically, Western blot and luciferase activity assay showed that curcumin activated the nuclear translocation of Nrf2, which in turn triggered the activation of its downstream target gene Heme Oxygenase1 (HO-1). The enhanced Nrf2 and HO-1 activity by curcumin was blocked by the AKT inhibitor LY294002, indicating the protective effect of curcumin was mainly achieved by activating Nrf2/HO-1 through the AKT pathway. Furthermore, the knockdown of Nrf2 with siRNA diminished the protective effects of Nrf2 against apoptosis and senescence, consolidating the pivotal role of Nrf2 in the protective effect of curcumin on auditory hair cells. More importantly, curcumin (10 mg/kg/d) could attenuate progressive hearing loss in C57BL/6J mice, as evident from the reduced threshold of auditory nerve brainstem response. Administration of curcumin also elevated the expression of Nrf2 and reduced the expression of cleaved-caspase-3, p21, and γ-H2AX in cochlear. This study is the first to demonstrate that curcumin can prevent oxidative stress-induced auditory hair cell degeneration through Nrf2 activation, highlighting its potential therapeutic value in preventing ARHL.
Collapse
Affiliation(s)
- Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xirui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiling Huang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chu
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Peng
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Wang Y, Zhao H, Wang F, Nong H, Li Y, Xu Y, He M, Li J. DJ-1 Protects Auditory Cells from Cisplatin-induced Ototoxicity via Regulating Apoptosis and Autophagy. Toxicol Lett 2023; 379:56-66. [PMID: 36965608 DOI: 10.1016/j.toxlet.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
AIMS DJ-1, a multifunctional protein encoded by the Park7 gene, is tightly related to mitochondrial dysfunction, oxidative stress, protein aggregation, and autophagy regulation. The current study was designed to investigate whether DJ-1 is expressed in auditory cells and, if so, to explore the possible correlation between DJ-1 and cisplatin-induced ototoxicity in this type of cells. METHODS The location and dynamic expression of DJ-1 in mouse cochlea hair cells (HCs) and House Ear Institute-Organ of Corti 1 (HEI-OC1 cells) were detected by immunofluorescence, real-time PCR, and western blot. The apoptosis of auditory cells was assessed by TUNEL staining and flow cytometry. The levels of ROS were evaluated by MitoSox red staining. The expression of protein cleaved caspase-9, cleaved caspase-3, and LC3B was examined by immunofluorescence and western blot. The expressions of certain key factors relevant to apoptosis (Bcl-2 and Bax) and autophagy (Beclin1, p-JNK, and p-c-Jun) were determined by western blot. The dynamic alterations of those factors in response to DJ-1 knockdown in HEI-OC1 cells (DJ-1-KD) were measured by western blotting and MitoSox red staining. RESULTS The expression of DJ-1 was clearly shown in both HCs and HEI-OC1 cells and cisplatin led to the reduction of DJ-1 expression in a concentration and time-dependent manner. Meanwhile, cisplatin-induced apoptotic process was implemented by promoting reactive oxygen species (ROS) production and activating the mitochondrial pathway. Furthermore, DJ-1 explicitly participated in cisplatin-trigged cell damage by regulating autophagy. CONCLUSIONS Findings from this work clearly reveal, for the first time, that DJ-1 is expressed in the cochlea. Of particular importance, DJ-1 exerts its protective action against cisplatin-elicited injury on auditory cells via regulating apoptosis and autophagy, which provides a new strategy for the prevention of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huiming Nong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yanan Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingqiang He
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China.
| |
Collapse
|
11
|
NLRX1 knockdown attenuates pro-apoptotic signaling and cell death in pulmonary hyperoxic acute injury. Sci Rep 2023; 13:3441. [PMID: 36859435 PMCID: PMC9975446 DOI: 10.1038/s41598-023-28206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 03/03/2023] Open
Abstract
Hyperoxia is frequently used for treating acute respiratory failure, but it can cause acute lung injury. Nucleotide-binding domain and leucine-rich-repeat-containing family member X1 (NLRX1) is localized in mitochondria and involved in production of reactive oxygen species, inflammation, and apoptosis, which are the features of hyperoxic acute lung injury (HALI). The contribution of NLRX1 to HALI has not previously been addressed. Thus, to investigate the role of NLRX1 in hyperoxia, we generated a murine model of HALI in wild-type (WT) and NLRX1-/- mice by exposure to > 95% oxygen for 72 h. As a result, NLRX1 expression was elevated in mice exposed to hyperoxia. In acute lung injury, levels of inflammatory cells, protein leakage, cell cytotoxicity, and pro-inflammatory cytokines were diminished in NLRX1-/- mice compared to WT mice. In a survival test, NLRX1-/- mice showed reduced mortality under hyperoxic conditions, and apoptotic cell death and caspase expression and activity were also lower in NLRX1-/- mice. Furthermore, levels of the MAPK signaling proteins ERK 1/2, JNK, and p38 were decreased in NLRX1-deficient mice than in WT mice exposed to hyperoxia. The study shows that a genetic deficit in NLRX1 can suppress hyperoxia-induced apoptosis, suggesting that NLRX1 acts as a pivotal regulator of HALI.
Collapse
|
12
|
Snäkä T, Bekkar A, Desponds C, Prével F, Claudinot S, Isorce N, Teixeira F, Grasset C, Xenarios I, Lopez-Mejia IC, Fajas L, Fasel N. Sex-Biased Control of Inflammation and Metabolism by a Mitochondrial Nod-Like Receptor. Front Immunol 2022; 13:882867. [PMID: 35651602 PMCID: PMC9150262 DOI: 10.3389/fimmu.2022.882867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondria regulate steroid hormone synthesis, and in turn sex hormones regulate mitochondrial function for maintaining cellular homeostasis and controlling inflammation. This crosstalk can explain sex differences observed in several pathologies such as in metabolic or inflammatory disorders. Nod-like receptor X1 (NLRX1) is a mitochondria-associated innate receptor that could modulate metabolic functions and attenuates inflammatory responses. Here, we showed that in an infectious model with the human protozoan parasite, Leishmania guyanensis, NLRX1 attenuated inflammation in females but not in male mice. Analysis of infected female and male bone marrow derived macrophages showed both sex- and genotype-specific differences in both inflammatory and metabolic profiles with increased type I interferon production, mitochondrial respiration, and glycolytic rate in Nlrx1-deficient female BMDMs in comparison to wild-type cells, while no differences were observed between males. Transcriptomics of female and male BMDMs revealed an altered steroid hormone signaling in Nlrx1-deficient cells, and a “masculinization” of Nlrx1-deficient female BMDMs. Thus, our findings suggest that NLRX1 prevents uncontrolled inflammation and metabolism in females and therefore may contribute to the sex differences observed in infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Amel Bekkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prével
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Filipa Teixeira
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Coline Grasset
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ioannis Xenarios
- Agora Center, Center Hospitalier Universitaire (CHUV), Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
13
|
Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT. Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 2022; 41:469-478. [PMID: 35363060 DOI: 10.1089/dna.2022.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), NOD-like receptor X1 (NLRX1) is the only known NLR family member that is targeted to the mitochondria, which contains a C-terminal leucine-rich repeat domain, a central conserved nucleotide-binding domain, and an unconventional N-terminal effector domain. It is unique due to several atypical features, such as mitochondrial localization, noninflammasome forming, and relatively undefined N-terminal domain. NLRX1 has multiple functions, including negative regulation of type-I interferon signaling, attenuation of proinflammatory nuclear factor kappa B (NF-κB) signaling, autophagy induction, modulation of reactive oxygen species production, cell death regulation, and participating in cellular senescence. In addition, due to its diverse functions, NLRX1 has been associated with various human diseases, including respiratory, circulatory, motor, urinary, nervous, and digestive systems, to name but a few. However, the exact regulatory mechanisms of NLRX1 are still unclear in many related diseases since conflicting and controversial topics on NLRX1 in the previous studies remain. In this review, we review recent research advances on the underlying mechanisms and related disorders behind the complex regulatory role of NLRX1, which may provide a promising target to prevent and/or treat the corresponding diseases.
Collapse
Affiliation(s)
- Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Zhang L, Li Y, Bian L, Luo Q, Zhang X, Zhao B. Analysis of Factors Affecting Cranial Nerve Function of Patients With Vascular Mild Cognitive Impairment Through Functional Magnetic Resonance Imaging Under Artificial Intelligence Environment. Front Public Health 2022; 9:803659. [PMID: 35399347 PMCID: PMC8989955 DOI: 10.3389/fpubh.2021.803659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
The study aimed to explore the risk factors of effects of patients with vascular mild cognitive impairment (VaMCI) through functional magnetic resonance imaging (fMRI). In this study, 62 patients were selected from the department of neurology, admitted to Changzhi People's Hospital from October 1, 2018 to February 1, 2020. Patients with VaMCI were defined as the VaMCI group according to Clinical Dementia Rating (CDR), and subjects with normal cognitive function were defined as the normal control (NC) group. All patients underwent fMRI to identify the amplitude low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values, and to analyze their association with VaMCI. The results showed that the VaMCI group had lower scores for Mini-mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and their subitems (visual space and execution, recall, attention and computation, and language ability) than NC group, with statistical differences (P < 0.05). In VaMCI group, the brain regions with increased ALFF values were the left temporal lobe, left parietal lobe, right temporal lobe, right parietal lobe, and posterior cingulate gyrus. Of them, the left parietal lobe and right temporal lobe were negatively correlated with the recall score on MMSE scale (r = -0.216, r = -0.132, P < 0.01). In VaMCI group, the brain regions with decreased ReHo values were the left temporal lobe, occipital lobe, and left middle temporal gyrus. Of them, the left temporal lobe and occipital lobe were positively correlated with MoCA score (r = 0.473, r = 0.848, P < 0.01). In conclusion, VaMCI patients have cognitive impairment and abnormally increased spontaneous brain activity, especially in the left parietal lobe and the right temporal lobe. At rest, VaMCI patients show decreased whole-brain ReHo in the left medial temporal lobe and occipital lobe. Hypertension is a high-risk factor for cognitive impairment in VaMCI patients. The study can provide a theoretical basis for early diagnosis of VaMCI.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
- Department of Mental Health, Changzhi Medical College, Changzhi, China
| | - Yanran Li
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Bian
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Qingrong Luo
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Xiaoxi Zhang
- Department of Mental Health, Changzhi Medical College, Changzhi, China
| | - Bing Zhao
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| |
Collapse
|
15
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
16
|
Jimenez-Duran G, Triantafilou M. Metabolic regulators of enigmatic inflammasomes in autoimmune diseases and crosstalk with innate immune receptors. Immunology 2021; 163:348-362. [PMID: 33682108 PMCID: PMC8274167 DOI: 10.1111/imm.13326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nucleotide‐binding domain and leucine‐rich repeat receptor (NLR)‐mediated inflammasome activation is important in host response to microbes, danger‐associated molecular patterns (DAMPs) and metabolic disease. Some NLRs have been shown to interact with distinct cell metabolic pathways and cause negative regulation, tumorigenesis and autoimmune disorders, interacting with multiple innate immune receptors to modulate disease. NLR activation is therefore crucial in host response and in the regulation of metabolic pathways that can trigger a wide range of immunometabolic diseases or syndromes. However, the exact mode by which some of the less well‐studied NLR inflammasomes are activated, interact with other metabolites and immune receptors, and the role they play in the progression of metabolic diseases is still not fully elucidated. In this study, we review up‐to‐date evidence regarding NLR function in metabolic pathways and the interplay with other immune receptors involved in GPCR signalling, gut microbiota and the complement system, in order to gain a better understanding of its link to disease processes.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. Int J Mol Sci 2021; 22:ijms22031316. [PMID: 33525671 PMCID: PMC7865811 DOI: 10.3390/ijms22031316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Collapse
|
18
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
19
|
Yi J, Kim TS, Pak JH, Chung JW. Protective Effects of Glucose-Related Protein 78 and 94 on Cisplatin-Mediated Ototoxicity. Antioxidants (Basel) 2020; 9:686. [PMID: 32748834 PMCID: PMC7465420 DOI: 10.3390/antiox9080686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic drug for treating various solid tumors. Ototoxicity is a major dose-limiting side effect of cisplatin, which causes progressive and irreversible sensorineural hearing loss. Here, we examined the protective effects of glucose-related protein (GRP) 78 and 94, also identified as endoplasmic reticulum (ER) chaperone proteins, on cisplatin-induced ototoxicity. Treating murine auditory cells (HEI-OC1) with 25 μM cisplatin for 24 h increased cell death resulting from excessive intracellular reactive oxygen species (ROS) accumulation and caspase-involved apoptotic signaling pathway activation with subsequent DNA fragmentation. GRP78 and GRP94 expression was increased in cells treated with 3 nM thapsigargin or 0.1 μg/mL tunicamycin for 24 h, referred to as mild ER stress condition. This condition, prior to cisplatin exposure, attenuated cisplatin-induced ototoxicity. The involvement of GRP78 and GRP94 induction was demonstrated by the knockdown of GRP78 or GRP94 expression using small interfering RNAs, which abolished the protective effect of mild ER stress condition on cisplatin-induced cytotoxicity. These results indicated that GRP78 and GRP94 induction plays a protective role in remediating cisplatin-ototoxicity.
Collapse
Affiliation(s)
- Junyeong Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea;
| | - Tae Su Kim
- Department of Otorhinolaryngology, School of Medicine, Kangwon National University, Gangwondaehakgil, Chuncheon, Gangwon-Do 24341, Korea;
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Jong Woo Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea;
| |
Collapse
|
20
|
Kang H, Choi SJ, Park KH, Lee CK, Moon JS. Impaired Glycolysis Promotes AlcoholExposure-Induced Apoptosis in HEI-OC1 Cells via Inhibition of EGFR Signaling. Int J Mol Sci 2020; 21:ijms21020476. [PMID: 31940844 PMCID: PMC7014033 DOI: 10.3390/ijms21020476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Glucose metabolism is an important metabolic pathway in the auditory system. Chronic alcohol exposure can cause metabolic dysfunction in auditory cells during hearing loss. While alcohol exposure has been linked to hearing loss, the mechanism by which impaired glycolysis promotes cytotoxicity and cell death in auditory cells remains unclear. Here, we show that the inhibition of epidermal growth factor receptor (EGFR)-induced glycolysis is a critical mechanism for alcohol exposure-induced apoptosis in HEI-OC1 cells. The cytotoxicity via apoptosis was significantly increased by alcohol exposure in HEI-OC1 cells. The glycolytic activity and the levels of hexokinase 1 (HK1) were significantly suppressed by alcohol exposure in HEI-OC1 cells. Mechanistic studies showed that the levels of EGFR and AKT phosphorylation were reduced by alcohol exposure in HEI-OC1 cells. Notably, HK1 expression and glycolytic activity was suppressed by EGFR inhibition in HEI-OC1 cells. These results suggest that impaired glycolysis promotes alcohol exposure-induced apoptosis in HEI-OC1 cells via the inhibition of EGFR signaling.
Collapse
Affiliation(s)
- Hyunsook Kang
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
| | - Seong Jun Choi
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
| | - Kye Hoon Park
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
| | - Chi-Kyou Lee
- Department of Otorhinoaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (H.K.); (S.J.C.); (K.H.P.)
- Correspondence: (C.-K.L.); (J.-S.M.); Tel.: +82-41-413-5004 (C.-K.L.); +82-41-413-5022 (J.-S.M.)
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea
- Correspondence: (C.-K.L.); (J.-S.M.); Tel.: +82-41-413-5004 (C.-K.L.); +82-41-413-5022 (J.-S.M.)
| |
Collapse
|
21
|
He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, Li H. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics 2020; 10:133-150. [PMID: 31903111 PMCID: PMC6929624 DOI: 10.7150/thno.37362] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hair cells in the inner ear have been shown to be susceptible to ototoxicity from some beneficial pharmaceutical drugs, such as aminoglycosides and cisplatin. Thus, there is great interest in discovering new targets or compounds that protect hair cells from these ototoxic drugs. Epigenetic regulation is closely related to inner ear development; however, little is known about epigenetic regulation in the process of ototoxic drugs-induced hearing loss. Methods: In this study, we investigated the role of protein arginine methyltransferase 6 (PRMT6) in aminoglycoside- and cisplatin-induced hair cell loss by using EPZ020411, a selective small molecule PRMT6 inhibitor, in vitro in neonatal mouse cochlear explants and in vivo in C57BL/6 mice. We also took advantage of the HEI-OC1 cell line to evaluate the anti-apoptosis effects of PRMT6 knockdown on cisplatin-induced ototoxicity. Apoptotic cells were identified using cleaved caspase-3 staining and TUNEL assay. The levels of reactive oxygen species (ROS) were evaluated by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) were determined by JC-1, TMRM, and rhodamine 123 staining. Results: We found that EPZ020411 significantly alleviated neomycin- and cisplatin-induced cell apoptosis and increased hair cell survival. Moreover, pretreatment with EPZ020411 could attenuate neomycin- and cisplatin-induced hearing loss in vivo. Mechanistic studies revealed that inhibition of PRMT6 could reverse the increased expression of caspase-3 and cytochrome c translocation, mitochondrial dysfunction, increased accumulation of ROS, and activation of cell apoptosis after cisplatin injury. Conclusions: Our findings suggested that PRMT6 might serve as a new therapeutic target to prevent hearing loss caused by aminoglycoside- and cisplatin-induced ototoxicity by preventing ROS formation and modulating the mitochondria-related damage and apoptosis.
Collapse
|
22
|
Nagai-Singer MA, Morrison HA, Allen IC. NLRX1 Is a Multifaceted and Enigmatic Regulator of Immune System Function. Front Immunol 2019; 10:2419. [PMID: 31681307 PMCID: PMC6797603 DOI: 10.3389/fimmu.2019.02419] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, significant progress has been achieved in defining mechanisms underlying NLR regulation of immune system function. However, several NLR family members continue to defy our best attempts at characterization and routinely exhibit confounding data. This is particularly true for NLR family members that regulate signaling associated with the activation of other pattern recognition receptors. NLRX1 is a member of this NLR sub-group and acts as an enigmatic regulator of immune system function. NLRX1 has been shown to negatively regulate type-I interferon, attenuate pro-inflammatory NF-κB signaling, promote reactive oxygen species production, and modulate autophagy, cell death, and proliferation. However, the mechanism/s associated with NLRX1 modulation of these pathways is not fully understood and there are inconsistencies within the field. Likewise, it is highly likely that the full repertoire of biological functions impacted by NLRX1 are yet to be defined. Recent mouse studies have shown that NLRX1 significantly impacts a multitude of diseases, including cancer, virus infection, osteoarthritis, traumatic brain injury, and inflammatory bowel disease. Thus, it is essential that the underlying mechanism associated with NLRX1 function in each of these diseases be robustly defined. Here, we summarize the current progress in understanding mechanisms associated with NLRX1 function. We also offer insight into both unique and overlapping mechanisms regulated by NLRX1 that likely contribute to disease pathobiology. Ultimately, we believe that an improved understanding of NLRX1 will result in better defined mechanisms associated with immune system attenuation and the resolution of inflammation in a myriad of diseases.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
23
|
Solid Lipid Nanoparticles Loaded with Glucocorticoids Protect Auditory Cells from Cisplatin-Induced Ototoxicity. J Clin Med 2019; 8:jcm8091464. [PMID: 31540035 PMCID: PMC6780793 DOI: 10.3390/jcm8091464] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent that causes the irreversible death of auditory sensory cells, leading to hearing loss. Local administration of cytoprotective drugs is a potentially better option co-therapy for cisplatin, but there are strong limitations due to the difficulty of accessing the inner ear. The use of nanocarriers for the efficient delivery of drugs to auditory cells is a novel approach for this problem. Solid lipid nanoparticles (SLNs) are biodegradable and biocompatible nanocarriers with low solubility in aqueous media. We show here that stearic acid-based SLNs have the adequate particle size, polydispersity index and ζ-potential, to be considered optimal nanocarriers for drug delivery. Stearic acid-based SLNs were loaded with the fluorescent probe rhodamine to show that they are efficiently incorporated by auditory HEI-OC1 (House Ear Institute-Organ of Corti 1) cells. SLNs were not ototoxic over a wide dose range. Glucocorticoids are used to decrease cisplatin-induced ototoxicity. Therefore, to test SLNs’ drug delivery efficiency, dexamethasone and hydrocortisone were tested either alone or loaded into SLNs and tested in a cisplatin-induced ototoxicity in vitro assay. Our results indicate that the encapsulation in SLNs increases the protective effect of low doses of hydrocortisone and lengthens the survival of HEI-OC1 cells treated with cisplatin.
Collapse
|
24
|
Jing H, Song T, Cao S, Sun Y, Wang J, Dong W, Zhang Y, Ding Z, Wang T, Xing Z, Bao W. Nucleotide-binding oligomerization domain-like receptor X1 restricts porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral Nsp9. Virus Res 2019; 268:18-26. [PMID: 31132368 PMCID: PMC7114581 DOI: 10.1016/j.virusres.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
PRRSV infection up-regulates NLRX1 expression. NLRX1 impairs PRRSV replication. NLRX1 suppresses the synthesis of viral subgenomic RNAs. NLRX1 interacts and colocalizes with the Nsp9 of PRRSV.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes one of the most economically important diseases of swine worldwide. Current antiviral strategies provide only limited protection. Nucleotide-binding oligomerization domain-like receptor (NLR) X1 is unique among NLR proteins in its functions as a pro-viral or antiviral factor to different viral infections. To date, the impact of NLRX1 on PRRSV infection remains unclear. In this study, we found that PRRSV infection promoted the expression of NLRX1 gene. In turn, ectopic expression of NLRX1 inhibited PRRSV replication in Marc-145 cells, whereas knockdown of NLRX1 enhanced PRRSV propagation in porcine alveolar macrophages (PAMs). Mechanistically, NLRX1 was revealed to impair intracellular viral subgenomic RNAs accumulation. Finally, Mutagenic analyses indicated that the LRR (leucine-rich repeats) domain of NLRX1 interacted with PRRSV Nonstructural Protein 9 (Nsp9) RdRp (RNA-dependent RNA Polymerase) domain and was necessary for antiviral activity. Thus, our study establishes the role of NLRX1 as a new host restriction factor in PRRSV infection.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Ding
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Wang
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhao Xing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wenqi Bao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
25
|
Luo P, Tan X, Luo S, Wang Z, Long L, Wang Y, Liao F, Chen L, Zhang C, He J, Huang Y, Liu Z, Gan Y, Chen Z, Wang Y, Liu Y, Wang Y, Shi C. An NIR‐Fluorophore‐Based Inhibitor of SOD1 Induces Apoptosis by Targeting Transcription Cofactor PC4. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Xu Tan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Shenglin Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Ziwen Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Lei Long
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yawei Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Fengying Liao
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Long Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chi Zhang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Jintao He
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yinghui Huang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zujuan Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yibo Gan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zelin Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yang Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yunsheng Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yu Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| |
Collapse
|
26
|
Yang Q, Sun G, Yin H, Li H, Cao Z, Wang J, Zhou M, Wang H, Li J. PINK1 Protects Auditory Hair Cells and Spiral Ganglion Neurons from Cisplatin-induced Ototoxicity via Inducing Autophagy and Inhibiting JNK Signaling Pathway. Free Radic Biol Med 2018; 120:342-355. [PMID: 29458150 DOI: 10.1016/j.freeradbiomed.2018.02.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/25/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022]
Abstract
Phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1) gene encodes a serine/threonine kinase, which acts as a molecular sensor of mitochondrial health necessary for mitochondrial quality control. The present study was designed to examine whether PINK1 expressed in C57BL/6 murine cochlea and HEI-OC1 cells and, if so, to investigate the possible mechanisms underlying the action of PINK1 in cisplatin-induced death of sensory hair cells (HCs) and spiral ganglion neurons (SGNs) in vitro. The expression pattern of PINK1, formation of parkin particles, and autophagy were determined by immunofluorescent staining. The expressions of PINK1, LC3B, cleaved-caspase 3 and p-JNK were measured by Western blotting. The levels of reactive oxygen species (ROS) were evaluated by DCFH-DA and Mito-Sox Red staining. The mitochondrial membrane potential was detected by Tetramethylrhodamine methyl ester perchlorate (TMRM) and Rhodamine 123. Cell viability and apoptosis were examined by CCK8 assay, TUNEL staining and Annexin V Apoptosis Detection Kit, respectively. We found that PINK1 was widely expressed in the cytoplasm in HCs, SGNs, stria vascularis of C57BL/6 cochlea and HEI-OC1 cells and, notably, the expression level in cochlear HCs and SGNs of postnatal day 4 (P4) mice was higher than that in adult mice. Moreover, treatment with 30 μM cisplatin elicited the formation of ROS, which, in turn, led to PINK1 activation, parkin recruitment, autophagy formation and JNK pathway relevant to apoptosis in HEI-OC1 cells, HCs, and SGNs. Meanwhile, co-treatment with ROS scavenger N-acetyl-L-cysteine (NAC) or H2O2 consumer catalase-polyethylene glycol (PEG-catalase) inhibited parkin recruitment, alleviated autophagy formation, and mitigated JNK pathway related apoptosis. In addition, PINK1 silencing resulted in a lower level of autophagy, but, a higher mortality in HEI-OC1 cells treated with cisplatin. Taken together, data from this work reveal that PINK1 possesses the protective effect via induction of autophagy and resistance of apoptosis under cisplatin stimulus in sensory HCs and SGNs, implying that PINK1 might serve as an important regulator of cisplatin-elicited ototoxicity.
Collapse
Affiliation(s)
- Qianqian Yang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China
| | - Gaoying Sun
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Haiyan Yin
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China
| | - Hongrui Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jinghan Wang
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Meijuan Zhou
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Otology, Jinan, China.
| | - Jianfeng Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Otology, Jinan, China.
| |
Collapse
|
27
|
Li D, Tong W, Liu D, Zou Y, Zhang C, Xu W. Astaxanthin mitigates cobalt cytotoxicity in the MG-63 cells by modulating the oxidative stress. BMC Pharmacol Toxicol 2017; 18:58. [PMID: 28738843 PMCID: PMC5525213 DOI: 10.1186/s40360-017-0166-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Background With the re-popularity of metal-on-metal (MoM) bearing in recent years, the cobalt toxicity has been a cause for concern in the total hip replacement surgery by both physicians and patients. Methods MG-63 cell line was cultured in vitro and incubated with cobalt (II) chloride (CoCl2) and/or with astaxanthin (ASX) for 24 h. MTT assay was conducted to evaluate the cell viability after cobalt exposure and ASX treatment. Fluorescence-activated cell sorting (FACS) analysis was performed to examine the reactive oxygen species (ROS) level. Quantitative real-time polymerase chain reaction (PCR) was adopted to determine the mRNA levels of related targets. And western blot analysis was used to examine the protein expressions. One-way ANOVA with posttest Newman-Keuls multiple comparisons was adopted to analysis all the obtained data. Results In the current study, ASX exhibited significant protective effect against the Co(II)-induced cytotoxicity in MG-63 cell line. We also found that ASX protected the cells against Co-induced apoptosis by regulating the expression of Bcl-2 family proteins. Besides, heme oxygenase 1 (HO-1) could be activated by Co exposure; ASX treatment significantly inhibited HO-1 activation, suppressing the oxidative stress induced by Co exposure. Moreover, c-Jun N-terminal Kinase (JNK) phosphorylation was shown to participate in the signaling pathway of the protective effect of ASX. However, knockdown of JNK expression by siRNA transfection or JNK inhibitor SP600125 treatment did not affect the protective effect of ASX against cobalt cytotoxicity in MG-63 cells. Conclusions ASX mitigated cobalt cytotoxicity in the MG-63 cells by modulating the oxidative stress. And ASX could be a promising therapy against cobalt toxicity in the hip articulation surgery. Electronic supplementary material The online version of this article (doi:10.1186/s40360-017-0166-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dahe Li
- Department of Orthopedics, The Eighty-eighth Military Hospital, Tai'an, 271000, China
| | - Wenwen Tong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Denghui Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuming Zou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chen Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Weidong Xu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|