1
|
Naganishi S, Hagihara H, Miyakawa T. Gene Expression Signatures of Immaturity, Decreased pH, and Neural Hyperexcitation in the Hippocampus of Alzheimer's Disease Model Mice. Neuropsychopharmacol Rep 2025; 45:e70001. [PMID: 39907034 PMCID: PMC11795175 DOI: 10.1002/npr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
AIMS Alzheimer's disease (AD) is a leading cause of dementia, with increasing prevalence. Mutations in genes like MAPT, PSEN1, and PSEN2 are risk factors, leading to the development of several AD model mice. Recent hypotheses suggest AD brain pathology involves abnormal neurodevelopment, decreased pH, and neural hyperexcitation. However, it remains unclear to what extent these pathologies are reflected in the gene expression changes of AD models. This study aims to compare gene expression patterns in the brains of multiple AD model mice with those related to these three factors, evaluating the extent of overlap. METHODS We conducted a comprehensive search of public databases, collecting 20 gene expression datasets from the hippocampus of AD model mice. These datasets were compared with gene sets related to hippocampal maturation, brain pH, and neural hyperexcitation to statistically assess overlap. Pathway enrichment analysis explored the biological relevance of these gene expression changes. RESULTS The extent of overlap with maturity-, pH-, and hyperexcitation-associated genes varied across AD models, showing significant correlations between lower maturity, lower pH, and increased neural hyperexcitation. In MAPT mutant and APP+PSEN1 homozygous transgenic mice, these signatures became more pronounced with age. Pathway meta-analysis revealed that genes associated with maturity, pH, and hyperexcitation in AD models are involved in synaptic and channel functions, as well as inflammatory responses, consistent with previous studies. CONCLUSION These findings suggest that pathophysiological changes related to maturity, pH, and neural hyperexcitation play varying roles across individual AD model mice. Our recent study found a negative correlation between disease progression and actual pH levels in human AD patients. Considering the results presented in this study, maturity and neural hyperexcitation, which are correlated with pH, may also be linked to disease progression. Thus, gene expression changes in these factors could be useful markers for assessing the pathology in AD models.
Collapse
Affiliation(s)
- Sayaka Naganishi
- Department of Systems Medical ScienceFujita Health University Graduate School of MedicineToyoakeAichiJapan
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeAichiJapan
| | - Hideo Hagihara
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeAichiJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeAichiJapan
| |
Collapse
|
2
|
Avgustinovich DF, Chadaeva IV, Kizimenko AV, Kovner AV, Bazovkina DV, Ponomarev DV, Evseenko VI, Naprimerov VA, Lvova MN. The liver-brain axis under the influence of chronic Opisthorchis felineus infection combined with prolonged alcoholization in mice. Vavilovskii Zhurnal Genet Selektsii 2025; 29:92-107. [PMID: 40144377 PMCID: PMC11933900 DOI: 10.18699/vjgb-25-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 03/28/2025] Open
Abstract
Our purpose was to model a combination of a prolonged consumption of ethanol with Opisthorchis felineus infection in mice. Four groups of C57BL/6 mice were compiled: OF, mice infected with O. felineus for 6 months; Eth, mice consuming 20 % ethanol; Eth+OF, mice subjected to both adverse factors; and CON, control mice not exposed to these factors. In the experimental mice, especially in Eth+OF, each treatment caused well-pronounced periductal and cholangiofibrosis, proliferation of bile ducts, and enlargement of areas of inflammatory infiltration in the liver parenchyma. Simultaneously with liver disintegration, the infectious factor caused - in the frontal cerebral cortex - the growth of pericellular edema (OF mice), which was attenuated by the administration of ethanol (Eth+OF mice). Changes in the levels of some proteins (Iba1, IL-1β, IL-6, and TNF) and in mRNA expression of genes Aif1, Il1b, Il6, and Tnf were found in the hippocampus and especially in the frontal cortex, implying region-specific neuroinflammation. Behavioral testing of mice showed that ethanol consumption influenced the behavior of Eth and Eth+OF mice in the forced swimming test and their startle reflex. In the open field test, more pronounced changes were observed in OF mice. In mice of all three experimental groups, especially in OF mice, a disturbance in the sense of smell was detected (fresh peppermint leaves). The results may reflect an abnormality of regulatory mechanisms of the central nervous system as a consequence of systemic inflammation under the combined action of prolonged alcohol consumption and helminth infection.
Collapse
Affiliation(s)
- D F Avgustinovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kizimenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kovner
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Bazovkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Ponomarev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Evseenko
- Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Naprimerov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - M N Lvova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
4
|
Valeri J, Stiplosek C, O’Donovan SM, Sinclair D, Grant K, Bollavarapu R, Platt DM, Stockmeier CA, Gisabella B, Pantazopoulos H. Extracellular Matrix Abnormalities in the Hippocampus of Subjects with Substance Use Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.07.23295222. [PMID: 37732207 PMCID: PMC10508799 DOI: 10.1101/2023.09.07.23295222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Charlotte Stiplosek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | | | - David Sinclair
- Department of Neuroscience, University of Toledo, Toledo, OH
| | | | - Ratna Bollavarapu
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Donna M. Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
5
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
6
|
Ma J, Huang A, Yan K, Li Y, Sun X, Joehanes R, Huan T, Levy D, Liu C. Blood transcriptomic biomarkers of alcohol consumption and cardiovascular disease risk factors: the Framingham Heart Study. Hum Mol Genet 2023; 32:649-658. [PMID: 36130209 PMCID: PMC9896471 DOI: 10.1093/hmg/ddac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relations of alcohol consumption and gene expression remain to be elucidated. MATERIALS AND METHODS We examined cross-sectional associations between alcohol consumption and whole blood derived gene expression levels and between alcohol-associated genes and obesity, hypertension, and diabetes in 5531 Framingham Heart Study (FHS) participants. RESULTS We identified 25 alcohol-associated genes. We further showed cross-sectional associations of 16 alcohol-associated genes with obesity, nine genes with hypertension, and eight genes with diabetes at P < 0.002. For example, we observed decreased expression of PROK2 (β = -0.0018; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) and PAX5 (β = -0.0014; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) per 1 g/day increase in alcohol consumption. Consistent with our previous observation on the inverse association of alcohol consumption with obesity and positive association of alcohol consumption with hypertension, we found that PROK2 was positively associated with obesity (OR = 1.42; 95%CI: 1.17, 1.72; P = 4.5e - 4) and PAX5 was negatively associated with hypertension (OR = 0.73; 95%CI: 0.59, 0.89; P = 1.6e - 3). We also observed that alcohol consumption was positively associated with expression of ABCA13 (β = 0.0012; 95%CI: 0.0007, 0.0017; P = 1.3e - 6) and ABCA13 was positively associated with diabetes (OR = 2.57; 95%CI: 1.73, 3.84; P = 3.5e - 06); this finding, however, was inconsistent with our observation of an inverse association between alcohol consumption and diabetes. CONCLUSIONS We showed strong cross-sectional associations between alcohol consumption and expression levels of 25 genes in FHS participants. Nonetheless, complex relationships exist between alcohol-associated genes and CVD risk factors.
Collapse
Affiliation(s)
- Jiantao Ma
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allen Huang
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142, USA
| | - Kaiyu Yan
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Yi Li
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Xianbang Sun
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianxiao Huan
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA 01702, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA 01702, USA
| |
Collapse
|
7
|
Hagihara H, Murano T, Miyakawa T. The gene expression patterns as surrogate indices of pH in the brain. Front Psychiatry 2023; 14:1151480. [PMID: 37200901 PMCID: PMC10185791 DOI: 10.3389/fpsyt.2023.1151480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Hydrogen ion (H+) is one of the most potent intrinsic neuromodulators in the brain in terms of concentration. Changes in H+ concentration, expressed as pH, are thought to be associated with various biological processes, such as gene expression, in the brain. Accumulating evidence suggests that decreased brain pH is a common feature of several neuropsychiatric disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and Alzheimer's disease. However, it remains unclear whether gene expression patterns can be used as surrogates for pH changes in the brain. In this study, we performed meta-analyses using publicly available gene expression datasets to profile the expression patterns of pH-associated genes, whose expression levels were correlated with brain pH, in human patients and mouse models of major central nervous system (CNS) diseases, as well as in mouse cell-type datasets. Comprehensive analysis of 281 human datasets from 11 CNS disorders revealed that gene expression associated with decreased pH was over-represented in disorders including schizophrenia, bipolar disorder, autism spectrum disorders, Alzheimer's disease, Huntington's disease, Parkinson's disease, and brain tumors. Expression patterns of pH-associated genes in mouse models of neurodegenerative disease showed a common time course trend toward lower pH over time. Furthermore, cell type analysis identified astrocytes as the cell type with the most acidity-related gene expression, consistent with previous experimental measurements showing a lower intracellular pH in astrocytes than in neurons. These results suggest that the expression pattern of pH-associated genes may be a surrogate for the state- and trait-related changes in pH in brain cells. Altered expression of pH-associated genes may serve as a novel molecular mechanism for a more complete understanding of the transdiagnostic pathophysiology of neuropsychiatric and neurodegenerative disorders.
Collapse
|
8
|
Hagihara H, Shoji H, Kuroiwa M, Graef IA, Crabtree GR, Nishi A, Miyakawa T. Forebrain-specific conditional calcineurin deficiency induces dentate gyrus immaturity and hyper-dopaminergic signaling in mice. Mol Brain 2022; 15:94. [PMID: 36414974 PMCID: PMC9682671 DOI: 10.1186/s13041-022-00981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism spectrum disorders, epilepsy, and Alzheimer's disease. Forebrain-specific conditional Cn knockout mice have been known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed as an endophenotype shared by these disorders. Expression of calbindin and GluA1, typical markers for mature DG granule cells (GCs), was decreased and that of doublecortin, calretinin, phospho-CREB, and dopamine D1 receptor (Drd1), markers for immature GC, was increased in Cn mutants. Phosphorylation of cAMP-dependent protein kinase (PKA) substrates (GluA1, ERK2, DARPP-32, PDE4) was increased and showed higher sensitivity to SKF81297, a Drd1-like agonist, in Cn mutants than in controls. While cAMP/PKA signaling is increased in the iDG of Cn mutants, chronic treatment with rolipram, a selective PDE4 inhibitor that increases intracellular cAMP, ameliorated the iDG phenotype significantly and nesting behavior deficits with nominal significance. Chronic rolipram administration also decreased the phosphorylation of CREB, but not the other four PKA substrates examined, in Cn mutants. These results suggest that Cn deficiency induces pseudo-immaturity of GCs and that cAMP signaling increases to compensate for this maturation abnormality. This study further supports the idea that iDG is an endophenotype shared by certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Isabella A. Graef
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
9
|
Tsermpini EE, Goričar K, Kores Plesničar B, Plemenitaš Ilješ A, Dolžan V. Genetic Variability of Incretin Receptors and Alcohol Dependence: A Pilot Study. Front Mol Neurosci 2022; 15:908948. [PMID: 35754710 PMCID: PMC9218814 DOI: 10.3389/fnmol.2022.908948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol dependence is a chronic mental disorder that leads to decreased quality of life for patients and their relatives and presents a considerable burden to society. Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are endogenous gut-brain peptides, which can travel across the blood-brain barrier and access the nervous system. Their respective receptors, GIPR and GLP-1R, are expressed in the reward-related brain areas and are involved in memory formation and neurogenesis, which results in behavioral changes in rodent models. The current study investigated the potential association of genetic variability of incretin receptors with alcohol dependence and alcohol-related psychosymptomatology. Alcohol dependence and comorbid psychosymptomatology were assessed in a cohort of Slovenian male participants, comprised of 89 hospitalized alcohol-dependent patients, 98 abstinent alcohol-dependent patients, and 93 healthy blood donors. All participants were genotyped for GIPR rs1800437 and GLP1R rs10305420 and rs6923761 polymorphisms. For the statistical analysis Kruskal-Wall and Mann-Whitney tests were used in additive and dominant genetic models. Our findings indicated that GIPR rs1800437 genotypes were associated with an increased risk of alcohol dependence. Statistically significant association between GIPR rs1800437 GG genotype and Brief Social Phobia Scale scores were observed in the abstinent alcohol-dependent patients, while GLP1R rs6923761 GG genotype was associated with Zung anxiety scores in healthy controls. Our pilot study indicates that GIPR rs1800437 may play some role in susceptibility to alcohol dependence, as well as in alcohol-related psychosymptomatology symptoms. To our knowledge, this is the first study that indicates the involvement of GIPR in alcohol dependence. However, studies with larger cohorts are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blanka Kores Plesničar
- University Psychiatric Clinic, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Yoshikawa M, Ishikawa C, Li H, Kudo T, Shiba D, Shirakawa M, Murtani M, Takahashi S, Aizawa S, Shiga T. Comparing effects of microgravity and amyotrophic lateral sclerosis in the mouse ventral lumbar spinal cord. Mol Cell Neurosci 2022; 121:103745. [PMID: 35660087 DOI: 10.1016/j.mcn.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022] Open
Abstract
Microgravity (MG) exposure and motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), lead to motor deficits, including muscle atrophy and loss of neuronal activity. Abnormalities in motor neurons and muscles caused by MG exposure can be recovered by subsequent ground exercise. In contrast, the degeneration that occurs in ALS is irreversible. A common phenotype between MG exposure and ALS pathology is motor system abnormality, but the causes may be different. In this study, to elucidate the motor system that is affected by each condition, we investigated the effects of MG and the human SOD1 ALS mutation on gene expression in various cell types of the mouse ventral lumbar spinal cord, which is rich in motor neurons innervating the lower limb. To identify cell types affected by MG or ALS pathogenesis, we analyzed differentially expressed genes with known cell-type markers, which were determined from previous single-cell studies of the spinal cord in MG-exposed and SOD1G93A mice, an ALS mouse model. Differentially expressed genes were observed in MG mice in various spinal cord cell types, including neurons, microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells, meningeal cells/Schwann cells, and vascular cells. We also examined neuronal populations in the spinal cord. Gene expression in putative excitatory and inhibitory neurons changed more than that in cholinergic motor neurons of the spinal cord in both MG and SOD1G93A mice. Many putative neuron types, especially visceral motor neurons, and axon initial segments (AIS) were affected in MG mice. In contrast, the effect on neurons and AIS in SOD1G93A mice was slight at P30 but progressed with aging. Interestingly, changes in dopaminergic system-related genes were specifically altered in the spinal cord of MG mice. These results indicate that MG and ALS pathology in various cell types contribute to motor neuron degeneration. Furthermore, there were more alterations in neurons in MG-exposed mice than in SOD1G93A mice. A large number of differentially expressed genes (DEGs) in MG mice represent more than SOD1G93A mice with ALS pathology. Elucidation of MG pathogenesis may provide more insight into the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan.
| | - Chihiro Ishikawa
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Haiyan Li
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Kudo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki 305-8505, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki 305-8505, Japan
| | - Masafumi Murtani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Takashi Shiga
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
11
|
Yoshikawa M, Aizawa S, Oppenheim RW, Milligan C. Neurovascular unit pathology is observed very early in disease progression in the mutant SOD1G93A mouse model of amyotrophic lateral sclerosis. Exp Neurol 2022; 353:114084. [DOI: 10.1016/j.expneurol.2022.114084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
|
12
|
Reward Deficiency Syndrome (RDS): A Cytoarchitectural Common Neurobiological Trait of All Addictions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111529. [PMID: 34770047 PMCID: PMC8582845 DOI: 10.3390/ijerph182111529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
Alcohol and other substance use disorders share comorbidity with other RDS disorders, i.e., a reduction in dopamine signaling within the reward pathway. RDS is a term that connects addictive, obsessive, compulsive, and impulsive behavioral disorders. An estimated 2 million individuals in the United States have opioid use disorder related to prescription opioids. It is estimated that the overall cost of the illegal and legally prescribed opioid crisis exceeds one trillion dollars. Opioid Replacement Therapy is the most common treatment for addictions and other RDS disorders. Even after repeated relapses, patients are repeatedly prescribed the same opioid replacement treatments. A recent JAMA report indicates that non-opioid treatments fare better than chronic opioid treatments. Research demonstrates that over 50 percent of all suicides are related to alcohol or other drug use. In addition to effective fellowship programs and spirituality acceptance, nutrigenomic therapies (e.g., KB220Z) optimize gene expression, rebalance neurotransmitters, and restore neurotransmitter functional connectivity. KB220Z was shown to increase functional connectivity across specific brain regions involved in dopaminergic function. KB220/Z significantly reduces RDS behavioral disorders and relapse in human DUI offenders. Taking a Genetic Addiction Risk Severity (GARS) test combined with a the KB220Z semi-customized nutrigenomic supplement effectively restores dopamine homeostasis (WC 199).
Collapse
|
13
|
Kawai T, Takao K, Akter S, Abe M, Sakimura K, Miyakawa T, Okamura Y. Heterogeneity of microglial proton channel in different brain regions and its relationship with aging. J Neurochem 2021; 157:624-641. [PMID: 33404063 DOI: 10.1111/jnc.15292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022]
Abstract
The properties of microglia largely differ depending on aging as well as on brain regions. However, there are few studies that investigated the functional importance of such heterogeneous properties of microglia at the molecular level. Voltage-gated proton channel, Hv1/VSOP, could be one of the candidates which confers functional heterogeneity among microglia since it regulates brain oxidative stress in age-dependent manner. In this study, we found that Hv1/VSOP shows brain region-dependent heterogeneity of gene expression with the highest level in the striatum. We studied the importance of Hv1/VSOP in two different brain regions, the cerebral cortex and striatum, and examined their relationship with aging (using mice of different ages). In the cortex, we observed the age-dependent impact of Hv1/VSOP on oxidative stress, microglial morphology, and gene expression profile. On the other hand, we found that the age-dependent significance of Hv1/VSOP was less obvious in the striatum than the cortex. Finally, we performed a battery of behavioral experiments on Hv1/VSOP-deficient mice both at young and aged stages to examine the effect of aging on Hv1/VSOP function. Hv1/VSOP-deficient mice specifically showed a marked difference in behavior in light/dark transition test only at aged stages, indicating that anxiety state is altered in aged Hv1/VSOP mice. This study suggests that a combination of brain region heterogeneity and animal aging underscores the functional importance of Hv1/VSOP in microglia.
Collapse
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Sharmin Akter
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan.,Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Blum K, Green R, Smith J, Llanos-Gomez L, Baron D, Badgaiyan RD. Hypothesizing High Negative Emotionality as a Function of Genetic Addiction Risk Severity (GARS) Testing in Alcohol Use Disorder (AUD). JOURNAL OF SYSTEMS AND INTEGRATIVE NEUROSCIENCE 2020; 7. [PMID: 35096419 PMCID: PMC8793765 DOI: 10.15761/jsin.1000245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA, USA.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,The Kenneth Blum Neurogenetic & Behavioral Institute (Division of iVitalize Inc.), Austin, TX, USA
| | - Richard Green
- Division of precision Medicine, Precision Translational Medicine, San Antonio, Tx, USA
| | - Jessica Smith
- Division of precision Medicine, Precision Translational Medicine, San Antonio, Tx, USA
| | - Luis Llanos-Gomez
- The Kenneth Blum Neurogenetic & Behavioral Institute (Division of iVitalize Inc.), Austin, TX, USA
| | - David Baron
- Graduate College, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine Mt Sinai, New York, NY, USA.,Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| |
Collapse
|
15
|
Hagihara H, Ohira K, Miyakawa T. Transcriptomic evidence for immaturity induced by antidepressant fluoxetine in the hippocampus and prefrontal cortex. Neuropsychopharmacol Rep 2019; 39:78-89. [PMID: 30772953 PMCID: PMC7292305 DOI: 10.1002/npr2.12048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Aims The molecular and cellular mechanisms underlying the antidepressant effects of fluoxetine in the brain are not fully understood. Emerging evidence has led to the hypothesis that chronic fluoxetine treatment induces dematuration of certain types of mature neurons in rodents. These studies have focused on the properties of typical molecular and/or electrophysiological markers for neuronal maturation. Nevertheless, it remains unknown whether dematuration‐related phenomena are present at the genome‐wide gene expression level. Methods Based on the aforementioned hypothesis, we directly compared transcriptome data between fluoxetine‐treated adult mice and those of naive infants in the hippocampus and medial prefrontal cortex (mPFC) to assess similarities and/or differences. We further investigated whether fluoxetine treatment caused dematuration in these brain regions in a hypothesis‐free manner using a weighted gene co‐expression network analysis (WGCNA). Results Gene expression patterns in fluoxetine‐treated mice resembled those in infants in the mPFC and, to a large extent, in the hippocampus. The gene expression patterns of fluoxetine‐treated adult mice were more similar to those of approximately 2‐week‐old infants than those of older mice. WGCNA confirmed that fluoxetine treatment was associated with maturation abnormalities, particularly in the hippocampus, and highlighted respective co‐expression modules for maturity and immaturity marker genes in the hippocampus in response to fluoxetine treatment. Conclusions Our results strongly support the hypothesis that chronic fluoxetine treatment induces dematuration in the adult mouse brain from a transcriptomic standpoint. Detection of discrete transcriptomic regulatory networks related to fluoxetine treatment may help to further elucidate the mechanisms of antidepressant action. This study compares the transcriptomic profile of adult mice treated with clinically relevant dose of FLX and that of naïve infants in the hippocampus and medial prefrontal cortex (mPFC). We observed that gene expression profiles in FLX‐treated adult mice resembled those of infants in the mPFC and hippocampus. Our results provide support for the hypothesis that FLX can cause dematuration of the adult mouse brain to a more immature phenotype.![]()
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.,Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
16
|
Transcriptomic immaturity inducible by neural hyperexcitation is shared by multiple neuropsychiatric disorders. Commun Biol 2019; 2:32. [PMID: 30675529 PMCID: PMC6342824 DOI: 10.1038/s42003-018-0277-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023] Open
Abstract
Biomarkers are needed to improve the diagnosis of neuropsychiatric disorders, which are often associated to excitatory/inhibitory imbalances in neural transmission and abnormal maturation. Here, we characterized different disease conditions by mapping changes in the expression patterns of maturation-related genes whose expression was altered by experimental neural hyperexcitation in published studies. This analysis revealed two gene expression patterns: decreases in maturity markers and increases in immaturity markers. These two groups of genes were characterized by the over-representation of genes related to synaptic function and chromosomal modification, respectively. Using these two groups in a transdiagnostic analysis of 87 disease datasets for eight neuropsychiatric disorders and 12 datasets from corresponding animal models, we found that transcriptomic pseudoimmaturity inducible by neural hyperexcitation is shared by multiple neuropsychiatric disorders, such as schizophrenia, Alzheimer disorders, and amyotrophic lateral sclerosis. Our results indicate that this endophenotype serves as a basis for the transdiagnostic characterization of these disorders. Tomoyuki Murano et al. showed that neural hyperexcitation increases the expression of immaturity related genes. These changes in gene expression are shared among different neuropsychiatric and neurological conditions, hinting at their potential role as biomarkers.
Collapse
|
17
|
Umemori J, Winkel F, Didio G, Llach Pou M, Castrén E. iPlasticity: Induced juvenile-like plasticity in the adult brain as a mechanism of antidepressants. Psychiatry Clin Neurosci 2018; 72:633-653. [PMID: 29802758 PMCID: PMC6174980 DOI: 10.1111/pcn.12683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The network hypothesis of depression proposes that mood disorders reflect problems in information processing within particular neural networks. Antidepressants (AD), including selective serotonin reuptake inhibitors (SSRI), function by gradually improving information processing within these networks. AD have been shown to induce a state of juvenile-like plasticity comparable to that observed during developmental critical periods: Such critical-period-like plasticity allows brain networks to better adapt to extrinsic and intrinsic signals. We have coined this drug-induced state of juvenile-like plasticity 'iPlasticity.' A combination of iPlasticity induced by chronic SSRI treatment together with training, rehabilitation, or psychotherapy improves symptoms of neuropsychiatric disorders and issues underlying the developmentally or genetically malfunctioning networks. We have proposed that iPlasticity might be a critical component of AD action. We have demonstrated that iPlasticity occurs in the visual cortex, fear erasure network, extinction of aggression caused by social isolation, and spatial reversal memory in rodent models. Chronic SSRI treatment is known to promote neurogenesis and to cause dematuration of granule cells in the dentate gyrus and of interneurons, especially parvalbumin interneurons enwrapped by perineuronal nets in the prefrontal cortex, visual cortex, and amygdala. Brain-derived neurotrophic factor (BDNF), via its receptor tropomyosin kinase receptor B, is involved in the processes of synaptic plasticity, including neurogenesis, neuronal differentiation, weight of synapses, and gene regulation of synaptic formation. BDNF can be activated by both chronic SSRI treatment and neuronal activity. Accordingly, the BDNF/tropomyosin kinase receptor B pathway is critical for iPlasticity, but further analyses will be needed to provide mechanical insight into the processes of iPlasticity.
Collapse
Affiliation(s)
- Juzoh Umemori
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Frederike Winkel
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Giuliano Didio
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Maria Llach Pou
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Eero Castrén
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
18
|
Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD. Alcoholism Detection by Data Augmentation and Convolutional Neural Network with Stochastic Pooling. J Med Syst 2017; 42:2. [DOI: 10.1007/s10916-017-0845-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022]
|
19
|
Shibutani M, Horii T, Shoji H, Morita S, Kimura M, Terawaki N, Miyakawa T, Hatada I. Arid1b Haploinsufficiency Causes Abnormal Brain Gene Expression and Autism-Related Behaviors in Mice. Int J Mol Sci 2017; 18:E1872. [PMID: 28867767 PMCID: PMC5618521 DOI: 10.3390/ijms18091872] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms that include poor social communication, restricted interests, and repetitive behaviors. Several ASD mouse models exhibit impaired social interaction, anxiety-like behavior, and elevated perseveration. Large-scale whole exome sequencing studies identified many genes putatively associated with ASD. Like chromodomain helicase DNA binding protein 8 (CHD8), the most frequently mutated gene in individuals with ASD, the candidate gene AT-rich interaction domain 1B (ARID1B) encodes a chromatin remodeling factor. Arid1b heterozygous knockout (hKO) mice exhibited ASD-like traits related to social behavior, anxiety, and perseveration, in addition to associated features reported in some cases of ASD, such as reduced weight, impaired motor coordination, and hydrocephalus. Hydrocephalus was present in 5 of 91 hKO mice, while it was not observed in wild-type littermates (0 of 188). Genome-wide gene expression patterns in Arid1b hKO mice were similar to those in ASD patients and Chd8-haploinsufficient mice, an ASD model, and to developmental changes in gene expression in fast-spiking cells in the mouse brain. Our results suggest that Arid1b haploinsufficiency causes ASD-like phenotypes in mice.
Collapse
Affiliation(s)
- Mihiro Shibutani
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| | - Naomi Terawaki
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| |
Collapse
|