1
|
Singh J, Srikrishna S. Scribble knockdown induced metastasis, identification of its associated novel molecular candidates through proteome studies. Biochem Biophys Res Commun 2025; 769:151999. [PMID: 40367906 DOI: 10.1016/j.bbrc.2025.151999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Metastasis is the primary cause of cancer associated deaths globally. Loss of function of Scribble, a cell polarity regulator and tumor suppressor gene, is associated with many forms of human cancers but its role in cell proliferation and metastasis remains unknown. We generated metastatic cancer condition in Drosophila using UASRNAi-GAL4 system by knockdown of Scribble in the wing imaginal discs and tracked metastasis events from early to late pupae (0hr-84 h s) using fluorescence microscopy. Here, we report, for the first time, that the knockdown of Scribble alone could lead to the development of primary tumor in the wing imaginal discs, which is capable of establishing metastasis, apparently leading to secondary tumor formation in pupae at early stage, eventually resulting in absolute pupal lethality without organ development. MMP1, a metastasis biomarker, levels were assessed during pre-and post-metastatic phases in pupae using qRT-PCR and Western blot analysis. Further, we analyzed the proteome of Scribble knockdown induced tumor-bearing pupae by 2-D gel electrophoresis followed by MALDI-TOF MS to identify some novel proteins possibly involved in the progression of tumorigenesis and metastasis events. Six differentially expressed proteins, Obp 99b, Fer2LCH,CG13492, Hsp23, Ubiquitin and Colt, were identified in Scrib knockdown pupae and validated their expression using qRT-PCR. Thus, our results suggested that loss of Scrib alone capable of causing metastasis, without the need for cooperative interaction with oncogenic Ras. The newly identified proteins could be important candidates for biomarker/therapeutic target against Scrib associated metastatic cancers.
Collapse
Affiliation(s)
- Jyotsna Singh
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Louka XP, Gumeni S, Trougakos IP. Studying Cellular Senescence Using the Model Organism Drosophila melanogaster. Methods Mol Biol 2025; 2906:281-299. [PMID: 40082363 DOI: 10.1007/978-1-0716-4426-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence, a complex biological process characterized by irreversible cell cycle arrest, contributes significantly to the development and progression of aging and of age-related diseases. Studying cellular senescence in vivo can be challenging due to the high heterogeneity and dynamic nature of senescent cells. Recently, Drosophila melanogaster has emerged as a powerful model organism for studying aging and cellular senescence due to its tractability and short lifespan, as well as due to the conservation of age-related genes and of key age-related pathways with mammals. Consequently, several research studies have utilized Drosophila to investigate the cellular mechanisms and pathways implicated in cellular senescence. Herein, we provide an overview of the assays that can be applied to study the different features of senescent cells in D. melanogaster tissues, highlighting the benefits of this model in aging research. We also emphasize the importance of selecting appropriate biomarkers for the identification of senescent cells, and the need for further understanding of the aging process including a more accurate identification and detection of senescent cells at the organismal level; a far more complex process as compared to single cells.
Collapse
Affiliation(s)
- Xanthippi P Louka
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Palmer EM, Snoddy CA, York PM, Davis SM, Hunter MF, Krishnan N. Enhanced Age-Dependent Motor Impairment in Males of Drosophila melanogaster Modeling Spinocerebellar Ataxia Type 1 Is Linked to Dysregulation of a Matrix Metalloproteinase. BIOLOGY 2024; 13:854. [PMID: 39596808 PMCID: PMC11591802 DOI: 10.3390/biology13110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human Ataxin-1 with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1). Longevity and behavioral analysis of male flies expressing human Ataxin-1 revealed compromised lifespan and accelerated locomotor activity deficits both in diurnal activity and negative geotaxis response compared to control flies. Interestingly, this decline in motor response was coupled to an enhancement of matrix metalloproteinase 1 (dMMP1) expression together with declining expression of extracellular matrix (ECM) fibroblast growth factor (FGF) signaling by hedgehog (Hh) and branchless (bnl) and a significant decrease in expression of survival motor neuron gene (dsmn) in old (30 d) flies. Taken together, our results indicate a role for dysregulation of matrix metalloproteinase in polyQ disease with consequent impact on ECM signaling factors, as well as SMN at the neuromuscular junction causing overt physiological and behavioral deficits.
Collapse
Affiliation(s)
| | | | | | | | | | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
4
|
Wu L, Xu Y, Li L, Cao D, Liu F, Zhao H. Matrix metalloproteinase 2 contributes to adult eclosion and immune response in the small hive beetle, Aethina tumida. INSECT SCIENCE 2024; 31:733-747. [PMID: 37751529 DOI: 10.1111/1744-7917.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
During the pupal-adult eclosion process of holometabolous insects, the old cuticle is shed and replaced by a completely different new cuticle that requires tanning and expansion, along with extensive extracellular matrix (ECM) remodeling. In vertebrates, matrix metalloproteinases (MMPs), a class of zinc-dependent endopeptidases, play key roles in regulating the ECM that surrounds cells. However, little is known about these extracellular proteinases available in insects. The small hive beetle (SHB), Aethina tumida, is a widespread invasive parasite of honey bees. In this study, 6 MMP homologs were identified in the SHB genome. RNA interference experiments showed that all 6 AtMmps are not required for the larval-pupal transition, only AtMmp2 was essential for pupal-adult eclosion in SHB. Knockdown of AtMmp2 resulted in eclosion defects and wing expansion failure, as well as mortality within 3 d of adult eclosion. Transcriptomic analysis revealed that knockdown of AtMmp2 significantly increased expression of the Toll and Imd pathways, chitin metabolism, and cross-linking (such as the pro-phenoloxidase activating cascade pathway and the tyrosine-mediated cuticle sclerotization and pigmentation pathway). These data revealed evolutionarily conserved functions of Mmp2 in controlling adult eclosion and wing expansion, also provided a preliminary exploration of the novel function of regulating Toll and Imd pathways, as well as new insights into how MMPs regulate insect development and defense barriers.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yajing Xu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liangbin Li
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dainan Cao
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fang Liu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Gatti JL, Lemauf S, Belghazi M, Arthaud L, Poirié M. In Drosophila Hemolymph, Serine Proteases Are the Major Gelatinases and Caseinases. INSECTS 2024; 15:234. [PMID: 38667364 PMCID: PMC11050137 DOI: 10.3390/insects15040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
After separation on gel zymography, Drosophila melanogaster hemolymph displays gelatinase and caseinase bands of varying sizes, ranging from over 140 to 25 kDa. Qualitative and quantitative variations in these bands were observed during larval development and between different D. melanogaster strains and Drosophila species. The activities of these Drosophila hemolymph gelatinase and caseinase were strongly inhibited by serine protease inhibitors, but not by EDTA. Mass spectrometry identified over 60 serine proteases (SPs) in gel bands corresponding to the major D. melanogaster gelatinases and caseinases, but no matrix metalloproteinases (MMPs) were found. The most abundant proteases were tequila and members of the Jonah and trypsin families. However, the gelatinase bands did not show any change in the tequila null mutant. Additionally, no clear changes could be observed in D. melanogaster gel bands 24 h after injection of bacterial lipopolysaccharides (LPS) or after oviposition by Leptopilina boulardi endoparasitoid wasps. It can be concluded that the primary gelatinases and caseinases in Drosophila larval hemolymph are serine proteases (SPs) rather than matrix metalloproteinases (MMPs). Furthermore, the gelatinase pattern remains relatively stable even after short-term exposure to pathogenic challenges.
Collapse
Affiliation(s)
- Jean-Luc Gatti
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Séverine Lemauf
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Maya Belghazi
- Marseille-Protéomique (MaP), Plateforme Protéomique, Institut de Microbiologie de la Méditerranée UMR 3479 CNRS, Aix-Marseille Université, 13402 Marseille, France;
| | - Laury Arthaud
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Marylène Poirié
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| |
Collapse
|
6
|
Zeng B, Knapp EM, Skaritanov E, Oramas R, Sun J. ETS transcription factors regulate precise matrix metalloproteinase expression and follicle rupture in Drosophila. Development 2024; 151:dev202276. [PMID: 38345299 PMCID: PMC10946439 DOI: 10.1242/dev.202276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Drosophila matrix metalloproteinase 2 (MMP2) is specifically expressed in posterior follicle cells of stage-14 egg chambers (mature follicles) and is crucial for the breakdown of the follicular wall during ovulation, a process that is highly conserved from flies to mammals. The factors that regulate spatiotemporal expression of MMP2 in follicle cells remain unknown. Here, we demonstrate crucial roles for the ETS-family transcriptional activator Pointed (Pnt) and its endogenous repressor Yan in the regulation of MMP2 expression. We found that Pnt is expressed in posterior follicle cells and overlaps with MMP2 expression in mature follicles. Genetic analysis demonstrated that pnt is both required and sufficient for MMP2 expression in follicle cells. In addition, Yan was temporally upregulated in stage-13 follicle cells to fine-tune Pnt activity and MMP2 expression. Furthermore, we identified a 1.1 kb core enhancer that is responsible for the spatiotemporal expression of MMP2 and contains multiple pnt/yan binding motifs. Mutation of pnt/yan binding sites significantly impaired the Mmp2 enhancer activity. Our data reveal a mechanism of transcriptional regulation of Mmp2 expression in Drosophila ovulation, which could be conserved in other biological systems.
Collapse
Affiliation(s)
- Baosheng Zeng
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth M. Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ekaterina Skaritanov
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Oramas
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Takarada K, Kinoshita J, Inoue YH. Ectopic expression of matrix metalloproteinases and filopodia extension via JNK activation are involved in the invasion of blood tumor cells in Drosophila mxc mutant. Genes Cells 2023; 28:709-726. [PMID: 37615261 PMCID: PMC11448368 DOI: 10.1111/gtc.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Drosophila mxcmbn1 mutant exhibits severe hyperplasia in larval hematopoietic tissue called the lymph glands (LGs). However, the malignant nature of these cells remains unknown. We aimed to identify if mxcmbn1 LG cells behave as malignant tumor cells and uncover the mechanism(s) underlying the malignancy of the mutant hemocytes. When mutant LG cells were allografted into normal adult abdomens, they continued to proliferate; however, normal LG cells did not proliferate. Mutant circulating hemocytes also attached to the larval central nervous system (CNS), where the basement membrane was disrupted. The mutant hemocytes displayed higher expression of matrix metalloproteinase (MMP) 1 and MMP2 and higher activation of the c-Jun N-terminal kinase (JNK) pathway than normal hemocytes. Depletion of MMPs or JNK mRNAs in LGs resulted in reduced numbers of hemocytes attached to the CNS, suggesting that the invasive phenotype involved elevated expression of MMPs via hyperactivation of the JNK pathway. Moreover, hemocytes with elongated filopodia and extra lamellipodia were frequently observed in the mutant hemolymph, which also depended on JNK signaling. Thus, the MMP upregulation and overextension of actin-based cell protrusions were also involved in hemocyte invasion in mxcmbn1 larvae. These findings contribute to the understanding of molecular mechanisms underlying mammalian leukemic invasion.
Collapse
Affiliation(s)
- Kazuki Takarada
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Juri Kinoshita
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Yoshihiro H. Inoue
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
8
|
Ku HY, Harris LK, Bilder D. Specialized cells that sense tissue mechanics to regulate Drosophila morphogenesis. Dev Cell 2023; 58:211-223.e5. [PMID: 36708706 PMCID: PMC11345685 DOI: 10.1016/j.devcel.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/10/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Shaping of developing organs requires dynamic regulation of force and resistance to achieve precise outcomes, but how organs monitor tissue mechanical properties is poorly understood. We show that in developing Drosophila follicles (egg chambers), a single pair of cells performs such monitoring to drive organ shaping. These anterior polar cells secrete a matrix metalloproteinase (MMP) that specifies the appropriate degree of tissue elongation, rather than hyper- or hypo-elongated organs. MMP production is negatively regulated by basement membrane (BM) mechanical properties, which are sensed through focal adhesion signaling and autonomous contractile activity; MMP then reciprocally regulates BM remodeling, particularly at the anterior region. Changing BM properties at remote locations alone is sufficient to induce a remodeling response in polar cells. We propose that this small group of cells senses both local and distant stiffness cues to produce factors that pattern the organ's BM mechanics, ensuring proper tissue shape and reproductive success.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leigh K Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Herd CS, Yu X, Cui Y, Franz AWE. Identification of the extracellular metallo-endopeptidases ADAM and ADAMTS in the yellow fever mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103815. [PMID: 35932972 PMCID: PMC11149919 DOI: 10.1016/j.ibmb.2022.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The mosquito Aedes aegypti is a major vector for dengue, Zika, yellow fever, and chikungunya (CHIKV) viruses, which cause significant morbidity and mortality among human populations in the tropical regions of the world. Following ingestion of a viremic bloodmeal from a vertebrate host, an arbovirus needs to productively infect the midgut epithelium of the mosquito. De novo synthesized virions then exit the midgut by traversing the surrounding basal lamina (BL) in order to disseminate to secondary tissues and infect those. Once the salivary glands are infected, the virus is transmitted to a vertebrate host along with saliva released during probing of the mosquito. Midgut tissue distention due to bloodmeal ingestion leads to remodeling of the midgut structure and facilitates virus dissemination from the organ. Previously, we described the matrix-metalloproteinases (MMP) of Ae. aegypti as zinc ion dependent endopeptidases (Metzincins) and showed MMP activity during midgut BL rearrangement as a consequence of bloodmeal ingestion and subsequent digestion thereby affecting arbovirus dissemination from the midgut. Here we investigate the ADAM/ADAMTS of Ae. aegypti, which form another major group of multi-domain proteinases within the Metzincin superfamily and are active during extra-cellular matrix (ECM) remodeling. Seven different ADAM and five ADAMTS were identified in Ae. aegypti. The functional protein domain structures of the identified mosquito ADAM resembled those of human ADAM10, ADAM12, and ADAM17, while two of the five mosquito ADAMTS had human orthologs. Expression profiling of Ae. aegypti ADAM/ADAMTS in immature forms, whole body-females, midguts, and ovarian tissues showed transcriptional activity of the proteinases during metamorphosis, bloodmeal ingestion/digestion, and female reproduction. Custom-made antibodies to ADAM10a and ADAM12c showed that both were strongly expressed in midgut and ovarian tissues. Furthermore, transient silencing of ADAM12c significantly reduced the carcass infection rate with CHIKV at 24 h post-infection, while silencing of ADAM12a significantly increased viral titers in secondary tissues at the same time point. Our results indicate a functional specificity for several ADAM/ADAMTS in those selected mosquito tissues.
Collapse
Affiliation(s)
- Christie S Herd
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Xiudao Yu
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yingjun Cui
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
10
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Moos M, Korbelová J, Štětina T, Opekar S, Šimek P, Grgac R, Koštál V. Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Chymomyza costata. Metabolites 2022; 12:163. [PMID: 35208237 PMCID: PMC8877510 DOI: 10.3390/metabo12020163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Many cold-acclimated insects accumulate high concentrations of low molecular weight cryoprotectants (CPs) in order to tolerate low subzero temperatures or internal freezing. The sources from which carbon skeletons for CP biosynthesis are driven, and the metabolic reprogramming linked to cold acclimation, are not sufficiently understood. Here we aim to resolve the metabolism of putative CPs by mapping relative changes in concentration of 56 metabolites and expression of 95 relevant genes as larvae of the drosophilid fly, Chymomyza costata transition from a freeze sensitive to a freeze tolerant phenotype during gradual cold acclimation. We found that C. costata larvae may directly assimilate amino acids proline and glutamate from diet to acquire at least half of their large proline stocks (up to 55 µg per average 2 mg larva). Metabolic conversion of internal glutamine reserves that build up in early diapause may explain the second half of proline accumulation, while the metabolic conversion of ornithine and the degradation of larval collagens and other proteins might be two additional minor sources. Next, we confirm that glycogen reserves represent the major source of glucose units for trehalose synthesis and accumulation (up to 27 µg per larva), while the diet may serve as an additional source. Finally, we suggest that interconversions of phospholipids may release accumulated glycero-phosphocholine (GPC) and -ethanolamine (GPE). Choline is a source of accumulated methylamines: glycine-betaine and sarcosine. The sum of methylamines together with GPE and GPC represents approximately 2 µg per larva. In conclusion, we found that food ingestion may be an important source of carbon skeletons for direct assimilation of, and/or metabolic conversions to, CPs in a diapausing and cold-acclimated insect. So far, the cold-acclimation- linked accumulation of CPs in insects was considered to be sourced mainly from internal macromolecular reserves.
Collapse
Affiliation(s)
- Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Jaroslava Korbelová
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Tomáš Štětina
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Stanislav Opekar
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Robert Grgac
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| |
Collapse
|
12
|
Bindhani B, Maity S, Chakrabarti I, Saha SK. Roles of matrix metalloproteinases in development, immunology, and ovulation in fruit Fly (Drosophila). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21849. [PMID: 34779010 DOI: 10.1002/arch.21849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Matrix metalloproteinase (MMP), a protease enzyme, participates in proteolytic cleavage of extracellular matrix proteins from Drosophila and mammals. But, recent studies have revealed other physiologically important roles of MMP in Drosophila. MMP contributes to cardioblast movement and distribution of collagen proteins during cardiogenesis in developing Drosophila. Tissue remodeling, especially tracheal development is also maintained by MMP. MMP regulates certain immunological functions in Drosophila such as wound repairing, plasmatocyte assemblage at the injured site of the basement membrane and glial response to axon degeneration in Drosophila nervous system. But, the contribution of MMP to tumor formation and metastasis in Drosophila has made it an interesting topic among researchers. Ovulation and egg laying are also found to be affected positively by MMP in Drosophila.
Collapse
Affiliation(s)
- Banani Bindhani
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Sulagna Maity
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Ipsit Chakrabarti
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Samir Kumar Saha
- Department of Zoology, West Bengal State University, Barasat, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Tumor-derived MMPs regulate cachexia in a Drosophila cancer model. Dev Cell 2021; 56:2664-2680.e6. [PMID: 34473940 DOI: 10.1016/j.devcel.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFβ signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFβ signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.
Collapse
|
14
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
15
|
Hearst S, Bednářová A, Draughn B, Johnson K, Mills D, Thomas C, Scales J, Keenan ET, Welcher JV, Krishnan N. Expression of Drosophila Matrix Metalloproteinases in Cultured Cell Lines Alters Neural and Glial Cell Morphology. Front Cell Dev Biol 2021; 9:610887. [PMID: 34055768 PMCID: PMC8155609 DOI: 10.3389/fcell.2021.610887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc- and calcium- dependent endopeptidases that play pivotal roles in many biological processes. The expression of several MMPs in the central nervous system (CNS) have been shown to change in response to injury and various neurological/neurodegenerative disorders. While extracellular MMPs degrade the extracellular matrix (ECM) and regulate cell surface receptor signaling, the intracellular functions of MMPs or their roles in CNS disorders is unclear. Around 23 different MMPs are found in the human genome with overlapping function, making analysis of the intracellular role of human MMPs a daunting task. However, the fruit fly Drosophila melanogaster genome encodes only two MMPs: dMMP1 and dMMP2. To better understand the intracellular role of MMPs in the CNS, we expressed Green Fluorescent Protein (GFP)- tagged dMMPs in SH-SY5Y neuroblastoma cells and C6 glioblastoma cell lines. Lipofection of GFP-dMMPs in SH-SY5Y cells enhanced nuclear rupture and reduced cell viability (coupled with increased apoptosis) as compared to GFP alone. In non-liposomal transfection experiments, dMMP1 localizes to both the cytoplasm and the nucleus whereas dMMP2 had predominantly cytoplasmic localization in both neural and glial cell lines. Cytoplasmic localization demonstrated co-localization of dMMPs with cytoskeleton proteins which suggests a possible role of dMMPs in cell morphology. This was further supported by transient dMMP expression experiments that showed that dMMPs significantly increased neurite formation and length in neuronal cell lines. Inhibition of endogenous MMPs decreased neurite formation, length and βIII Tubulin protein levels in differentiated SH-SY5Y cells. Further, transient expression experiments showed similar changes in glial cell morphology, wherein dMMP expression increased glial process formation and process length. Interestingly, C6 cells expressing dMMPs had a glia-like appearance, suggesting MMPs may be involved in intracellular glial differentiation. Inhibition or suppression of endogenous MMPs in C6 cells increased process formation, increased process length, modulated GFAP protein expression, and induced distinct glial-like phenotypes. Taken together, our results strongly support the intracellular role that dMMPs can play in apoptosis, cytoskeleton remodeling, and cell differentiation. Our studies further reinforce the use of Drosophila MMPs to dissect out the precise mechanisms whereby they exert their intracellular roles in CNS disorders.
Collapse
Affiliation(s)
- Scoty Hearst
- Department of Biology, Tougaloo College, Tougaloo, MS, United States.,Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Andrea Bednářová
- Department of Biochemistry and Physiology, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Benjamin Draughn
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Kennadi Johnson
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Desiree Mills
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Cendonia Thomas
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Jendaya Scales
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Eadie T Keenan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Jewellian V Welcher
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
16
|
Chen X, Yang L, Huang R, Li S, Jia Q. Matrix metalloproteinases are involved in eclosion and wing expansion in the American cockroach, Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103551. [PMID: 33556555 DOI: 10.1016/j.ibmb.2021.103551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are the major proteinases that process or degrade numerous extracellular matrix (ECM) components and are evolutionarily conserved from nematodes to humans. During molting in insects, the old cuticle is removed and replaced by a new counterpart. Although the regulatory mechanisms of hormones and nutrients in molting have been well studied, very little is known about the roles of ECM-modifying enzymes in this process. Here, we found that MMPs are necessary for imaginal molting of the American cockroach, Periplaneta americana. Inhibition of Mmp activity via inhibitor treatment led to the failure of eclosion and wing expansion. Five Mmps genes were identified from the P. americana genome, and PaMmp2 played the dominant roles during molting. Further microscopic investigations showed that newly formed adult cuticles were attenuated and that then chitin content was reduced upon Mmp inhibition. Transcriptomic analysis of the integument demonstrated that multiple signaling and metabolic pathways were changed. Microscopic investigation of the wings showed that epithelial cells were restrained together because they were incapable of degrading the ECM upon Mmp inhibition. Transcriptomic analysis of the wing identified dozens of possible genes functioned in wing expansion. This is the first study to show the essential roles of Mmps in the nymph-adult transition of hemimetabolous insects.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Run Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
17
|
Portela M, Mitchell T, Casas-Tintó S. Cell-to-cell communication mediates glioblastoma progression in Drosophila. Biol Open 2020; 9:bio053405. [PMID: 32878880 PMCID: PMC7541342 DOI: 10.1242/bio.053405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and lethal tumour of the central nervous system (CNS). GB cells grow rapidly and display a network of projections, ultra-long tumour microtubes (TMs), that mediate cell to cell communication. GB-TMs infiltrate throughout the brain, enwrap neurons and facilitate the depletion of the signalling molecule wingless (Wg)/WNT from the neighbouring healthy neurons. GB cells establish a positive feedback loop including Wg signalling upregulation that activates cJun N-terminal kinase (JNK) pathway and matrix metalloproteases (MMPs) production, which in turn promote further TMs infiltration, GB progression and neurodegeneration. Thus, cellular and molecular signals other than primary mutations emerge as central players of GB. Using a Drosophila model of GB, we describe the temporal organisation of the main cellular events that occur in GB, including cell-to-cell interactions, neurodegeneration and TM expansion. We define the progressive activation of JNK pathway signalling in GB mediated by the receptor Grindelwald (Grnd) and activated by the ligand Eiger (Egr)/TNFα produced by surrounding healthy brain tissue. We propose that cellular interactions of GB with the healthy brain tissue precede TM expansion and conclude that non-autonomous signals facilitate GB progression. These results contribute to deciphering the complexity and versatility of these incurable tumours.
Collapse
Affiliation(s)
- Marta Portela
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, 3086 Melbourne, Australia
| | - Teresa Mitchell
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| | - Sergio Casas-Tintó
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| |
Collapse
|
18
|
Diwanji N, Bergmann A. Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue. Nat Commun 2020; 11:3631. [PMID: 32686670 PMCID: PMC7371875 DOI: 10.1038/s41467-020-17399-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/25/2020] [Indexed: 01/25/2023] Open
Abstract
Macrophages are a major immune cell type infiltrating tumors and promoting tumor growth and metastasis. To elucidate the mechanism of macrophage recruitment, we utilize an overgrowth tumor model ("undead" model) in larval Drosophila imaginal discs that are attached by numerous macrophages. Here we report that changes to the microenvironment of the overgrown tissue are important for recruiting macrophages. First, we describe a correlation between generation of reactive oxygen species (ROS) and damage of the basement membrane (BM) in all neoplastic, but not hyperplastic, models examined. ROS and the stress kinase JNK mediate the accumulation of matrix metalloproteinase 2 (Mmp2), damaging the BM, which recruits macrophages to the tissue. We propose a model where macrophage recruitment to and activation at overgrowing tissue is a multi-step process requiring ROS- and JNK-mediated Mmp2 upregulation and BM damage. These findings have implications for understanding the role of the tumor microenvironment for macrophage activation.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA.
| |
Collapse
|
19
|
Wen D, Chen Z, Zhang Z, Jia Q. The expression, purification, and substrate analysis of matrix metalloproteinases in Drosophila melanogaster. Protein Expr Purif 2020; 171:105629. [PMID: 32201229 DOI: 10.1016/j.pep.2020.105629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are evolutionarily conserved extracellular matrix proteinases. Genetic analysis of the Drosophila MMPs, Mmp1 and Mmp2, in vivo reveal that they play vital roles in tissue remodeling. Although the catalytic domain (CD) undertakes most MMP functions, few studies have sought to demonstrate the biochemical properties of the CDs of fly MMPs. Here, we identified the overexpression, purification, and refolding of the CDs of Drosophila Mmp1 and Mmp2 for biochemical studies. Zymography assays and substrate degradation analysis showed that both Mmp1-CD and Mmp2-CD were able to digest casein, gelatin, fibronectin, collagen (types I, IV, and V), while Mmp2-CD showed much higher degradation activity compared with Mmp1-CD. Moreover, human collagen III could be degraded by Mmp1-CD but not Mmp2-CD, and rat collagen I and laminin could be degraded by Mmp2-CD but not Mmp1-CD, suggesting that Drosophila Mmp1 and Mmp2 might have overlapping yet distinct substrate specificity. Using synthetic fluorescent substrates, we further demonstrated that the enzymatic activity of Mmp1-CD and Mmp2-CD could be inhibited by human tissue inhibitors of metalloproteinases (TIMPs). These results reveal the context of the cooperative yet distinct roles of Mmp1 and Mmp2 in tissue remodeling.
Collapse
Affiliation(s)
- Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Zeyan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
20
|
Diaz-de-la-Loza MDC, Loker R, Mann RS, Thompson BJ. Control of tissue morphogenesis by the HOX gene Ultrabithorax. Development 2020; 147:dev184564. [PMID: 32122911 PMCID: PMC7063672 DOI: 10.1242/dev.184564] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the Ultrabithorax (Ubx) gene cause homeotic transformation of the normally two-winged Drosophila into a four-winged mutant fly. Ubx encodes a HOX family transcription factor that specifies segment identity, including transformation of the second set of wings into rudimentary halteres. Ubx is known to control the expression of many genes that regulate tissue growth and patterning, but how it regulates tissue morphogenesis to reshape the wing into a haltere is still unclear. Here, we show that Ubx acts by repressing the expression of two genes in the haltere, Stubble and Notopleural, both of which encode transmembrane proteases that remodel the apical extracellular matrix to promote wing morphogenesis. In addition, Ubx induces expression of the Tissue inhibitor of metalloproteases in the haltere, which prevents the basal extracellular matrix remodelling necessary for wing morphogenesis. Our results provide a long-awaited explanation for how Ubx controls morphogenetic transformation.
Collapse
Affiliation(s)
| | - Ryan Loker
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Barry J Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, St Pancras, London NW1 1AT, United Kingdom
- EMBL Australia, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Hughes CJR, Turner S, Andrews RM, Vitkin A, Jacobs JR. Matrix metalloproteinases regulate ECM accumulation but not larval heart growth in Drosophila melanogaster. J Mol Cell Cardiol 2020; 140:42-55. [PMID: 32105665 DOI: 10.1016/j.yjmcc.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
The Drosophila heart provides a simple model to examine the remodelling of muscle insertions with growth, extracellular matrix (ECM) turnover, and fibrosis. Between hatching and pupation, the Drosophila heart increases in length five-fold. If major cardiac ECM components are secreted remotely, how is ECM "self assembly" regulated? We explored whether ECM proteases were required to maintain the morphology of a growing heart while the cardiac ECM expanded. An increase in expression of Drosophila's single tissue inhibitor of metalloproteinase (TIMP), or reduced function of metalloproteinase MMP2, resulted in fibrosis and ectopic deposition of two ECM Collagens; type-IV and fibrillar Pericardin. Significant accumulations of Collagen-IV (Viking) developed on the pericardium and in the lumen of the heart. Congenital defects in Pericardin deposition misdirected further assembly in the larva. Reduced metalloproteinase activity during growth also increased Pericardin fibre accumulation in ECM suspending the heart. Although MMP2 expression was required to remodel and position cardiomyocyte cell junctions, reduced MMP function did not impair expansion of the heart. A previous study revealed that MMP2 negatively regulates the size of the luminal cell surface in the embryonic heart. Cardiomyocytes align at the midline, but do not adhere to enclose a heart lumen in MMP2 mutant embryos. Nevertheless, these embryos hatch and produce viable larvae with bifurcated hearts, indicating a secondary pathway to lumen formation between ipsilateral cardiomyocytes. MMP-mediated remodelling of the ECM is required for organogenesis, and to prevent assembly of excess or ectopic ECM protein during growth. MMPs are not essential for normal growth of the Drosophila heart.
Collapse
Affiliation(s)
- C J R Hughes
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - S Turner
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - R M Andrews
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - A Vitkin
- Dept. Biomedical Physics, University of Toronto, Toronto, Cananda.
| | - J R Jacobs
- Dept. Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
22
|
Portela M, Venkataramani V, Fahey-Lozano N, Seco E, Losada-Perez M, Winkler F, Casas-Tintó S. Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biol 2019; 17:e3000545. [PMID: 31846454 PMCID: PMC6917273 DOI: 10.1371/journal.pbio.3000545] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, β-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.
Collapse
Affiliation(s)
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
23
|
Sauerwald J, Backer W, Matzat T, Schnorrer F, Luschnig S. Matrix metalloproteinase 1 modulates invasive behavior of tracheal branches during entry into Drosophila flight muscles. eLife 2019; 8:48857. [PMID: 31577228 PMCID: PMC6795481 DOI: 10.7554/elife.48857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Tubular networks like the vasculature extend branches throughout animal bodies, but how developing vessels interact with and invade tissues is not well understood. We investigated the underlying mechanisms using the developing tracheal tube network of Drosophila indirect flight muscles (IFMs) as a model. Live imaging revealed that tracheal sprouts invade IFMs directionally with growth-cone-like structures at branch tips. Ramification inside IFMs proceeds until tracheal branches fill the myotube. However, individual tracheal cells occupy largely separate territories, possibly mediated by cell-cell repulsion. Matrix metalloproteinase 1 (MMP1) is required in tracheal cells for normal invasion speed and for the dynamic organization of growth-cone-like branch tips. MMP1 remodels the CollagenIV-containing matrix around branch tips, which show differential matrix composition with low CollagenIV levels, while Laminin is present along tracheal branches. Thus, tracheal-derived MMP1 sustains branch invasion by modulating the dynamic behavior of sprouting branches as well as properties of the surrounding matrix.
Collapse
Affiliation(s)
- Julia Sauerwald
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Wilko Backer
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Till Matzat
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | | | - Stefan Luschnig
- Institute for Zoophysiology, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| |
Collapse
|
24
|
Jia Q, Chen X, Wu L, Ruan Z, Li K, Li S. Matrix metalloproteinases promote fat body cell dissociation and ovary development in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:8-15. [PMID: 30300619 DOI: 10.1016/j.jinsphys.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Matrix metalloproteinases (Mmps) are pivotal extracellular proteinases participating in tissue remodeling. Three Mmps genes have been identified from the silkworm, Bombyx mori, and their expression levels and enzyme activity are consistent with progressive fat body cell dissociation during the early pupal stages. Using both loss-of-function and gain-of-function experiments, we have demonstrated that Mmps are functionally required for fat body cell dissociation and ovary development in female pupae. Moderate inhibition of Mmps activity via inhibitor treatments delayed fat body cell dissociation and ovary development, while severe inhibition blocked these developmental processes and eventually led to pupal lethality. Individual RNAi knockdown of each Mmp delayed fat body cell dissociation, with the strongest and weakest phenotypes occurring for Mmp3 and Mmp1, respectively. By contrast, overexpression of each Mmp promoted fat body cell dissociation and ovary development, with the strongest stimulatory effects for Mmp3 overexpression and the weakest effects for Mmp1 overexpression. This is the first time to show that Mmps induce fat body cell dissociation in Lepidoptera, and we also hypothesize that Mmps-induced fat body cell dissociation is required for ovary development in this insect species.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoxi Chen
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lixian Wu
- Research Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zifeng Ruan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
25
|
Caroti F, González Avalos E, Noeske V, González Avalos P, Kromm D, Wosch M, Schütz L, Hufnagel L, Lemke S. Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly Megaselia abdita. eLife 2018; 7:34616. [PMID: 30375972 PMCID: PMC6231767 DOI: 10.7554/elife.34616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Extraembryonic tissues contribute to animal development, which often entails spreading over embryo or yolk. Apart from changes in cell shape, the requirements for this tissue spreading are not well understood. Here, we analyze spreading of the extraembryonic serosa in the scuttle fly Megaselia abdita. The serosa forms from a columnar blastoderm anlage, becomes a squamous epithelium, and eventually spreads over the embryo proper. We describe the dynamics of this process in long-term, whole-embryo time-lapse recordings, demonstrating that free serosa spreading is preceded by a prolonged pause in tissue expansion. Closer examination of this pause reveals mechanical coupling to the underlying yolk sac, which is later released. We find mechanical coupling prolonged and serosa spreading impaired after knockdown of M. abdita Matrix metalloprotease 1. We conclude that tissue–tissue interactions provide a critical functional element to constrain spreading epithelia.
Collapse
Affiliation(s)
| | | | - Viola Noeske
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | | | - Dimitri Kromm
- European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maike Wosch
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Lucas Schütz
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Lars Hufnagel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Steffen Lemke
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
De Las Heras JM, García-Cortés C, Foronda D, Pastor-Pareja JC, Shashidhara LS, Sánchez-Herrero E. The Drosophila Hox gene Ultrabithorax controls appendage shape by regulating extracellular matrix dynamics. Development 2018; 145:dev.161844. [PMID: 29853618 DOI: 10.1242/dev.161844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.
Collapse
Affiliation(s)
- José M De Las Heras
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Celia García-Cortés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | | | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
27
|
Sears JC, Broadie K. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling. Front Mol Neurosci 2018; 10:440. [PMID: 29375303 PMCID: PMC5770364 DOI: 10.3389/fnmol.2017.00440] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions.
Collapse
Affiliation(s)
- James C. Sears
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Dear ML, Shilts J, Broadie K. Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis. Sci Signal 2017; 10:eaan3181. [PMID: 29114039 PMCID: PMC5743058 DOI: 10.1126/scisignal.aan3181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase (MMP) functions modulate synapse formation and activity-dependent plasticity. Aberrant MMP activity is implicated in fragile X syndrome (FXS), a disease caused by the loss of the RNA-binding protein FMRP and characterized by neurological dysfunction and intellectual disability. Gene expression studies in Drosophila suggest that Mmps cooperate with the heparan sulfate proteoglycan (HSPG) glypican co-receptor Dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling and that synaptogenic defects in the fly model of FXS are alleviated by either inhibition of Mmp or genetic reduction of Dlp. We used the Drosophila neuromuscular junction (NMJ) glutamatergic synapse to test activity-dependent Dlp and Mmp intersections in the context of FXS. We found that rapid, activity-dependent synaptic bouton formation depended on secreted Mmp1. Acute neuronal stimulation reduced the abundance of Mmp2 but increased that of both Mmp1 and Dlp, as well as enhanced the colocalization of Dlp and Mmp1 at the synapse. Dlp function promoted Mmp1 abundance, localization, and proteolytic activity around synapses. Dlp glycosaminoglycan (GAG) chains mediated this functional interaction with Mmp1. In the FXS fly model, activity-dependent increases in Mmp1 abundance and activity were lost but were restored by reducing the amount of synaptic Dlp. The data suggest that neuronal activity-induced, HSPG-dependent Mmp regulation drives activity-dependent synaptogenesis and that this is impaired in FXS. Thus, exploring this mechanism further may reveal therapeutic targets that have the potential to restore synaptogenesis in FXS patients.
Collapse
Affiliation(s)
- Mary L Dear
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jarrod Shilts
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical School, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical School, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Chlasta J, Milani P, Runel G, Duteyrat JL, Arias L, Lamiré LA, Boudaoud A, Grammont M. Variations in basement membrane mechanics are linked to epithelial morphogenesis. Development 2017; 144:4350-4362. [PMID: 29038305 DOI: 10.1242/dev.152652] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
The regulation of morphogenesis by the basement membrane (BM) may rely on changes in its mechanical properties. To test this, we developed an atomic force microscopy-based method to measure BM mechanical stiffness during two key processes in Drosophila ovarian follicle development. First, follicle elongation depends on epithelial cells that collectively migrate, secreting BM fibrils perpendicularly to the anteroposterior axis. Our data show that BM stiffness increases during this migration and that fibril incorporation enhances BM stiffness. In addition, stiffness heterogeneity, due to oriented fibrils, is important for egg elongation. Second, epithelial cells change their shape from cuboidal to either squamous or columnar. We prove that BM softens around the squamous cells and that this softening depends on the TGFβ pathway. We also demonstrate that interactions between BM constituents are necessary for cell flattening. Altogether, these results show that BM mechanical properties are modified during development and that, in turn, such mechanical modifications influence both cell and tissue shapes.
Collapse
Affiliation(s)
- Julien Chlasta
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Pascale Milani
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Gaël Runel
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Jean-Luc Duteyrat
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, 16 rue R. Dubois, Villeurbanne Cedex F-69622, France
| | - Leticia Arias
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Laurie-Anne Lamiré
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Muriel Grammont
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| |
Collapse
|
30
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|