1
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
2
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Oishi T, Koizumi S, Kurozumi K. Mesenchymal stem cells as therapeutic vehicles for glioma. Cancer Gene Ther 2024; 31:1306-1314. [PMID: 38654128 DOI: 10.1038/s41417-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Glioma is a disease with a poor prognosis despite the availability of multimodality treatments, and the development of novel therapies is urgently needed. Challenges in glioma treatment include the difficulty for drugs to cross the blood-brain barrier when administered systemically and poor drug diffusion when administered locally. Mesenchymal stem cells exhibit advantages for glioma therapy because of their ability to pass through the blood-brain barrier and migrate to tumor cells and their tolerance to the immune system. Therefore, mesenchymal stem cells have been explored as vehicles for various therapeutic agents for glioma treatment. Mesenchymal stem cells loaded with chemotherapeutic drugs show improved penetration and tumor accumulation. For gene therapy, mesenchymal stem cells can be used as vehicles for suicide genes, the so-called gene-directed enzyme prodrug therapy. Mesenchymal stem cell-based oncolytic viral therapies have been attempted in recent years to enhance the efficacy of infection against the tumor, viral replication, and distribution of viral particles. Many uncertainties remain regarding the function and behavior of mesenchymal stem cells in gliomas. However, strategies to increase mesenchymal stem cell migration to gliomas may improve the delivery of therapeutic agents and enhance their anti-tumor effects, representing promising potential for patient treatment.
Collapse
Affiliation(s)
- Tomoya Oishi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
4
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
6
|
Gil-Chinchilla JI, Zapata AG, Moraleda JM, García-Bernal D. Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects. Biomolecules 2024; 14:734. [PMID: 39062449 PMCID: PMC11275142 DOI: 10.3390/biom14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
| | - Agustín G. Zapata
- Department of Cell Biology, Complutense University, 28040 Madrid, Spain;
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
7
|
Babunagappan KV, Seetharaman A, Ariraman S, Santhosh PB, Genova J, Ulrih NP, Sudhakar S. Doxorubicin loaded thermostable nanoarchaeosomes: a next-generation drug carrier for breast cancer therapeutics. NANOSCALE ADVANCES 2024; 6:2026-2037. [PMID: 38633044 PMCID: PMC11019490 DOI: 10.1039/d3na00953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
Breast cancer has a poor prognosis due to the toxic side effects associated with high doses of chemotherapy. Liposomal drug encapsulation has resulted in clinical success in enhancing chemotherapy tolerability. However, the formulation faces severe limitations with a lack of colloidal stability, reduced drug efficiency, and difficulties in storage conditions. Nanoarchaeosomes (NA) are a new generation of highly stable nanovesicles composed of the natural ether lipids extracted from archaea. In our study, we synthesized and characterized the NA, evaluated their colloidal stability, drug release potential, and anticancer efficacy. Transmission electron microscopy images have shown that the NA prepared from the hyperthermophilic archaeon Aeropyrum pernix K1 was in the size range of 61 ± 3 nm. The dynamic light scattering result has confirmed that the NA were stable at acidic pH (pH 4) and high temperature (70 °C). The NA exhibited excellent colloidal stability for 50 days with storage conditions at room temperature. The cell viability results have shown that the pure NA did not induce cytotoxicity in NIH 3T3 fibroblast cells and are biocompatible. Then NA were loaded with doxorubicin (NAD), and FTIR and UV-vis spectroscopy results have confirmed high drug loading efficiency of 97 ± 1% with sustained drug release for 48 h. The in vitro cytotoxicity studies in MCF-7 breast cancer cell lines showed that NAD induced cytotoxicity at less than 10 nM concentration. Fluorescence-activated cell sorting (FACS) results confirmed that NAD induced late apoptosis in nearly 92% of MCF-7 cells and necrosis in the remaining cells with cell cycle arrest at the G0/G1 phase. Our results confirmed that the NA could be a potential next-generation carrier with excellent stability, high drug loading efficiency, sustained drug release ability, and increased therapeutic efficacy, thus reducing the side effects of conventional drugs.
Collapse
Affiliation(s)
| | - Abirami Seetharaman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| | - Subastri Ariraman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| | - Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences Tzarigradsko Chausee Sofia Bulgaria
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences Tzarigradsko Chausee Sofia Bulgaria
| | - Natasa Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana Ljubljana Slovenia
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| |
Collapse
|
8
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Shams F, Pourjabbar B, Hashemi N, Farahmandian N, Golchin A, Nuoroozi G, Rahimpour A. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy. Biomed Pharmacother 2023; 167:115505. [PMID: 37716113 DOI: 10.1016/j.biopha.2023.115505] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Navid Farahmandian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157993313, Iran; Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia 57157993313, Islamic Republic of Iran
| | - Ghader Nuoroozi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
11
|
Li X, Li Y, Yu C, Bao H, Cheng S, Huang J, Zhang Z. ROS-Responsive Janus Au/Mesoporous Silica Core/Shell Nanoparticles for Drug Delivery and Long-Term CT Imaging Tracking of MSCs in Pulmonary Fibrosis Treatment. ACS NANO 2023; 17:6387-6399. [PMID: 36946383 DOI: 10.1021/acsnano.2c11112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mesenchymal stem cell (MSC) therapy has been proven to be a potentially effective approach for idiopathic pulmonary fibrosis (IPF) treatment. However, this strategy is currently limited by the poor curative effect and an insufficient comprehension of the in vivo condition of the transplanted MSCs in the remedy of IPF. To address these issues, herein, a nanosystem composed of Janus Au/mesoporous silica core/shell nanoparticles (Janus NPs) is designed for effective therapeutic and real-time tracing of MSCs in MSC-based IPF therapy. The Janus NPs consist of a Au core and a pirfenidone (PFD)-loaded mesoporous silica shell asymmetrically decorated with two targeting moieties: one is reactive oxygen species (ROS)-sensitive thioketal grafted methoxy poly(ethylene glycol) (mPEG-TK), and the other is 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE). The asymmetric decoration on each side of the particle allows long-term anchoring of the Janus NPs on the cell membrane to facilitate the responsive release of PFD in the ROS environment of the fibrotic lung, thereby enhancing the therapeutic efficacy of the transplanted MSCs by improving the microenvironment. Following drug release, the Janus NPs quickly enter into MSCs, achieving long-term computed tomography (CT) imaging tracing of MSCs in IPF model mice for an in-depth comprehension of the cell therapy mechanism. Overall, this work reports on Janus Au/PFD-loaded mesoporous silica core/shell NPs that combine the drug delivery and imaging tracking of MSCs, which may provide a strategy for the stem cell-based treatment of IPF.
Collapse
Affiliation(s)
- Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
12
|
Xu L, Xu M, Sun X, Feliu N, Feng L, Parak WJ, Liu S. Quantitative Comparison of Gold Nanoparticle Delivery via the Enhanced Permeation and Retention (EPR) Effect and Mesenchymal Stem Cell (MSC)-Based Targeting. ACS NANO 2023; 17:2039-2052. [PMID: 36717361 DOI: 10.1021/acsnano.2c07295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There are still some gaps in existing knowledge in the field of cancer nanotheranostics, e.g., the efficiency of nanoparticle-loaded cells for targeted delivery. In the current study, gold nanoparticles (Au NPs) were delivered to tumors in both subcutaneous tumor and lung metastasis tumor models by intravenous injection of either free Au NPs or of human bone marrow mesenchymal stem cells (MSCs), which were loaded with endocytosed Au NPs. By making injections with the same dose of administrated Au NPs, it was possible to directly compare tumor targeting of both delivery modes. Hereby, the passive targeting of tumor by the plain Au NPs was facilitated by the enhanced permeation and retention (EPR) effect. Au NP retention by tumors, as well as tumor penetration, were found to be improved up to 2.4-to-9.3-fold when comparing the MSC-mediated delivery of Au NPs to the delivery of the plain Au NPs via EPR effect on day 7 post administration. While the absolute retention of Au NPs in the tumor remained low, our data show that, upon injection of the same amount of Au NPs, in fact MSC-mediated delivery is quantitatively higher than EPR-mediated delivery of NPs by half an order of magnitude.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Sun
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Neus Feliu
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146 Hamburg, Germany
| | - Liuxing Feng
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100013, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
13
|
The Role of Mesenchymal Stem Cells and Exosomes in Tumor Development and Targeted Antitumor Therapies. Stem Cells Int 2023; 2023:7059289. [PMID: 36824409 PMCID: PMC9943627 DOI: 10.1155/2023/7059289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from various tissues in adults and differentiated into cells of the osteoblasts, adipocytes, chondrocytes, and myocytes. Recruitments of MSCs towards tumors have a crucial contribution to tumor development. However, the role of MSCs in the tumor microenvironment is uncertain. In addition, due to its tropism to the tumor and low immunogenic properties, more and more pieces of evidence indicate that MSCs may be an ideal carrier for antitumor biologics such as cytokines, chemotherapeutic agents, and oncolytic viruses. Here, we review the existing knowledge on the anti- and protumorigenic effect of MSCs and their extracellular vesicles and exosomes, the role of MSCs, and their extracellular vesicles and exosomes as antitumor vectors.
Collapse
|
14
|
Zhang B, Zhang Y, Dang W, Xing B, Yu C, Guo P, Pi J, Deng X, Qi D, Liu Z. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A. J Nanobiotechnology 2022; 20:425. [PMID: 36153589 PMCID: PMC9509648 DOI: 10.1186/s12951-022-01628-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Poor in vivo targeting of tumors by chemotherapeutic drugs reduces their anti-cancer efficacy in the clinic. The discovery of over-expressed components on the tumor cell surface and their specific ligands provide a basis for targeting tumor cells. However, the differences in the expression levels of these receptors on the tumor cell surface limit the clinical application of anti-tumor preparations modified by a single ligand. Meanwhile, toxicity of chemotherapeutic drugs leads to poor tolerance to anti-tumor therapy. The discovery of natural active products antagonizing these toxic side effects offers an avenue for relieving cancer patients’ pain during the treatment process. Since the advent of nanotechnology, interventions, such as loading appropriate drug combinations into nano-sized carriers and multiple tumor-targeting functional modifications on the carrier surface to enhance the anti-tumor effect and reduce toxic and side effects, have been widely used for treating tumors.
Results
Nanocarriers containing doxorubicin hydrochloride (DOX) and salvianolic acid A (Sal A) are spherical with a diameter of about 18 nm; the encapsulation efficiency of both DOX and salvianolic acid A is greater than 80%. E-[c(RGDfK)2]/folic acid (FA) co-modification enabled nanostructured lipid carriers (NLC) to efficiently target a variety of tumor cells, including 4T1, MDA-MB-231, MCF-7, and A549 cells in vitro. Compared with other preparations (Sal A solution, NLC-Sal A, DOX solution, DOX injection, Sal A/DOX solution, NLC-DOX, NLC-Sal A/DOX, and E-[c(RGDfK)2]/FA-NLC-Sal A/DOX) in this experiment, the prepared E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had the best anti-tumor effect. Compared with the normal saline group, it had the highest tumor volume inhibition rate (90.72%), the highest tumor weight inhibition rate (83.94%), led to the highest proportion of apoptosis among the tumor cells (61.30%) and the lowest fluorescence intensity of proliferation among the tumor cells (0.0083 ± 0.0011). Moreover, E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had a low level of nephrotoxicity, with a low creatinine (Cre) concentration of 52.58 μmoL/L in the blood of mice, and no abnormalities were seen on pathological examination of the isolated kidneys at the end of the study. Sal A can antagonize the nephrotoxic effect of DOX. Free Sal A reduced the Cre concentration of the free DOX group by 61.64%. In NLC groups, Sal A reduced the Cre concentration of the DOX group by 42.47%. The E-[c(RGDfK)2]/FA modification reduced the side effects of the drug on the kidney, and the Cre concentration was reduced by 46.35% compared with the NLC-Sal A/DOX group. These interventions can potentially improve the tolerance of cancer patients to chemotherapy.
Conclusion
The E-[c(RGDfK)2]/FA co-modified DOX/Sal A multifunctional nano-drug delivery system has a good therapeutic effect on tumors and low nephrotoxicity and is a promising anti-cancer strategy.
Graphical Abstract
Collapse
|
15
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Stem cell membrane-coated abiotic nanomaterials for biomedical applications. J Control Release 2022; 351:174-197. [PMID: 36103910 DOI: 10.1016/j.jconrel.2022.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Nanoscale materials have been extensively employed for diagnostic and therapeutic purposes. However, the developed nanosystems still suffer from some limitations, namely the rapid elimination by the immune system, lack of targeting to specific cells, and insufficient biocompatibility. Therefore, novel strategies based upon a biomimetic approach have received attention to improving the pharmacokinetics and safety profile of nanosystems. One promising strategy is the application of a biomimetic coating consisting of cell membranes derived from different cell types onto nanoparticle cores. Stem cells have been investigated to develop targeted nanodevices owing to their excellent intrinsic tissue-specific homing features, protecting them from the immune system to reach the sites of inflammation. This targeting ability is conferred by a surface repertoire of stem cell-associated biomolecules. Such nanoscopical materials offer sustained circulation and boosted drug accumulation at target sites, augmenting therapeutic efficacy and safety. Additionally, the coating of nanoparticles with cell membranes acts as a camouflage mechanism to increase their circulation time. The current review explores the particular features of stem cell membrane coating as multifunctional biomimetic surface functionalization agents to camouflage nanoparticle cores. Biomedical applications of engineered stem cell membrane-coated nanoparticles, challenges in clinical translation, and their future prospects are addressed.
Collapse
|
17
|
Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev 2022; 187:114394. [PMID: 35718252 DOI: 10.1016/j.addr.2022.114394] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Cell-based drug delivery systems (DDSs) have received attention recently because of their unique biological properties and self-powered functions, such as excellent biocompatibility, low immunogenicity, long circulation time, tissue-homingcharacteristics, and ability to cross biological barriers. A variety of cells, including erythrocytes, stem cells, and lymphocytes, have been explored as functional vectors for the loading and delivery of various therapeutic payloads (e.g., small-molecule and nucleic acid drugs) for subsequent disease treatment. These cell-based DDSs have their own unique in vivo fates, which are attributed to various factors, including their biological properties and functions, the loaded drugs and loading process, physiological and pathological circumstances, and the body's response to these carrier cells, which result in differences in drug delivery efficiency and therapeutic effect. In this review, we summarize the main cell-based DDSs and their biological properties and functions, applications in drug delivery and disease treatment, and in vivo fate and influencing factors. We envision that the unique biological properties, combined with continuing research, will enable development of cell-based DDSs as friendly drug vectors for the safe, effective, and even personalized treatment of diseases.
Collapse
|
18
|
Ebrahimian M, Shahgordi S, Yazdian-Robati R, Etemad L, Hashemi M, Salmasi Z. Targeted delivery of galbanic acid to colon cancer cells by PLGA nanoparticles incorporated into human mesenchymal stem cells. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:295-308. [PMID: 36186932 PMCID: PMC9482708 DOI: 10.22038/ajp.2022.20022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Objective The aim of this study was to investigate the efficacy of mesenchyme stem cells (MSCs) derived from human adipose tissue (hMSCs) as carriers for delivery of galbanic acid (GBA), a potential anticancer agent, loaded into poly (lactic-co-glycolic acid) (PLGA) nanoparticles (nano-engineered hMSCs) against tumor cells. Materials and Methods GBA-loaded PLGA nanoparticles (PLGA/GBA) were prepared by single emulsion method and their physicochemical properties were evaluated. Then, PLGA/GBA nanoparticles were incorporated into hMSCs (hMSC/PLGA-GBA) and their migration ability and cytotoxicity against colon cancer cells were investigated. Results The loading efficiency of PLGA/GBA nanoparticles with average size of 214±30.5 nm into hMSCs, was about 85 and 92% at GBA concentration of 20 and 40 μM, respectively. Nano-engineered hMSCs showed significant higher migration to cancer cells (C26) compared to normal cells (NIH/3T3). Furthermore, nano-engineered hMSCs could effectively induce cell death in C26 cells in comparison with non-engineered hMSCs. Conclusion hMSCs could be implemented for efficient loading of PLGA/GBA nanoparticles to produce a targeted cellular carrier against cancer cells. Thus, according to minimal toxicity on normal cells, it deserves to be considered as a valuable platform for drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Mahboubeh Ebrahimian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Shahgordi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran ,Corresponding Author: Tel: +98-5131801208, Fax: +98-38823251, ,
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +98-5131801208, Fax: +98-38823251, ,
| |
Collapse
|
19
|
Xu X, Wu Y, Qian X, Wang Y, Wang J, Li J, Li Y, Zhang Z. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Adv Healthc Mater 2022; 11:e2101428. [PMID: 34706400 DOI: 10.1002/adhm.202101428] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Indexed: 01/04/2023]
Abstract
The dense and heterogeneous physical network of the extracellular matrix (ECM) in tumors represents a formidable barrier that limits intratumor drug delivery and the therapeutic efficacy of many anticancer therapies. Here, the two major nanomedicine strategies to circumvent intratumor ECM barriers: regulating the physiochemical properties of nanomedicines and remodeling the components and structure of the ECM are summarized. Nanomedicines can be rationally regulated by optimizing physiochemical properties or designed with biomimetic features to promote ECM permeation capability. Meanwhile, they can also be designed to remodel the ECM by modulating signaling pathways or destroying the components and architecture of the ECM via chemical, biological, or physical treatments. These efforts produce profound improvements in intratumor drug delivery and anticancer efficacy. Moreover, to aid in their anticancer efficacy, feasible approaches for improving ECM-circumventing nanomedicines are proposed.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmacy University of Chinese Academy of Sciences 19A Yuqian Road Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
20
|
Narayana RVL, Jana P, Tomar N, Prabhu V, Nair RM, Manukonda R, Kaliki S, Coupland SE, Alexander J, Kalirai H, Kondapi AK, Vemuganti GK. Carboplatin- and Etoposide-Loaded Lactoferrin Protein Nanoparticles for Targeting Cancer Stem Cells in Retinoblastoma In Vitro. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34784412 PMCID: PMC8606840 DOI: 10.1167/iovs.62.14.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Cancer stem cells (CSCs) are known to contribute to tumor relapses by virtue of their chemoresistance. With the knowledge that nanoformulations can overcome drug resistance, we evaluated the efficacy and cytotoxicity of clinical-grade carboplatin (CPT)– and etoposide (ETP)–loaded lactoferrin nanoparticles (Lf-Nps) on total, CD133-enriched (non-CSC), and CD133-depleted (CSC) populations of retinoblastoma (Rb) Y79 cells. Methods Physicochemical properties of drug-loaded Lf-Nps were measured with transmission electron microscopy and attenuated total reflectance–Fourier transform infrared. The encapsulation efficiency, uptake, and release of drug-loaded Lf-Nps were measured using high-performance liquid chromatography and a UV-visible spectrophotometer. Cytotoxicity of the standard and drug-loaded Lf-Nps was evaluated by the MTT assay. Results The mean (SD) size and encapsulation efficiency of Lf-CPT and Lf-ETP were 61.2 (3.94) nm, 60% and 45.15 (5.85) nm, 38%, respectively, and the drug release efficiency was highest at pH 6. The increased drug uptake and lower release of drug-loaded Lf-Nps were observed in CSC and non-CSC populations compared to their standard forms. The relative increase of drug uptake and sustained intracellular retention of the drug-loaded Lf-Nps compared to standard drugs showed an enhanced cytotoxicity up to 50%, especially in Rb Y79 CSCs (IC50: CPT, 230.3; Lf-CPT, 118.2; ETP, 198.1; and Lf-ETP, 129) compared to non-CSCs. Conclusions Our study documents an increase in drug uptake, retention, and cytotoxicity of Lf-CPT and Lf-ETP on Y79 CSCs and non-CSCs as compared to their standard drugs in vitro. The reversal of chemoresistance in the CSC population by nanoformulation appears promising with the potential to pave the way for improved targeted therapy and better clinical outcomes.
Collapse
Affiliation(s)
- Revu V L Narayana
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Pritikana Jana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Neha Tomar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Varsha Prabhu
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, India.,Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Radhika Manukonda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, India.,Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad, India
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.,Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, United Kingdom
| | - Jodi Alexander
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.,School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.,Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, United Kingdom
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
21
|
Liu H, Deng S, Han L, Ren Y, Gu J, He L, Liu T, Yuan ZX. Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy. Colloids Surf B Biointerfaces 2021; 209:112163. [PMID: 34736220 DOI: 10.1016/j.colsurfb.2021.112163] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity to differentiate into several cell types under appropriate conditions. They also possess remarkable antitumor features that make them a novel choice to treat cancers. Accumulating evidence suggest that the MSCs-derived extracellular vesicles, known as exosomes, play an essential role in the therapeutic effects of MSCs mainly by carrying biologically active factors. However, limitations such as low yield of exosomes and difficulty in isolation and purification hinder their clinical applications. To overcome these issues, research on development of exosome-mimics has attracted great attention. This systematic review represents, to the best of our knowledge, the first thorough evaluations of the innate antineoplastic features of MSCs-derived exosomes or exosome-mimics, the methods of drug loading, application as drug delivery system and their impacts on targeted cancer therapy. Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Hongmei Liu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Shichen Deng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China.
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
22
|
Takayama Y, Kusamori K, Nishikawa M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert Opin Drug Deliv 2021; 18:1627-1642. [PMID: 34311638 DOI: 10.1080/17425247.2021.1960309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Drug delivery to solid tumors remains a significant therapeutic challenge. Mesenchymal stem/stromal cells (MSCs) home to tumor tissues and can be employed as tumor targeted drug/gene delivery vehicles. Reportedly, therapeutic gene- or anti-cancer drug-loaded MSCs have shown remarkable anti-tumor effects in preclinical studies, and some clinical trials for assessing therapeutic MSCs in patients with cancer have been registered. AREAS COVERED In the present review, we first discuss the source and interdonor heterogeneity of MSCs, their tumor-homing mechanism, and the route of MSC administration in MSC-based cancer therapy. We then summarize the therapeutic applications of MSCs as a drug delivery vehicle for therapeutic genes or anti-cancer drugs and the drug delivery mechanism from drug-loaded MSCs to cancer cells. EXPERT OPINION Although numerous preclinical studies have revealed significant anti-tumor effects, several clinical trials assessing MSC-based cancer gene therapy have failed to demonstrate corroborative results, documenting limited therapeutic effects. Notably, a successful clinical outcome with MSC-based cancer therapy would require the interdonor heterogeneity of administered MSCs to be resolved, along with improved tumor-homing efficiency and optimized drug delivery efficiency from MSCs to cancer cells.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| |
Collapse
|
23
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
24
|
Wang C, Huang J, Zhang Y, Jia H, Chen B. Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy. Colloids Surf B Biointerfaces 2021; 204:111789. [PMID: 33932889 DOI: 10.1016/j.colsurfb.2021.111789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
In this study, a novel tumor-targeting drug delivery system (DDS) based on red blood cells (RBCs) were fabricated for combinational chemo-phototherapy against cancer. Cyclic peptide (cRGD) and indocyanine green (ICG) were applied to the surface of RBCs to increase the targeting and photothermal effect, respectively. Doxorubicin (DOX) as a model drug was loaded into RBCs by the hypotonic dialysis method. A series of tests have been carried out to evaluate the RBCs-based DDS and these tasks include physicochemical properties, cellular uptake, targeting ability, and combination therapeutic efficiency. As a result, the DOX was successfully loaded into RBCs and the drug loading amount was 0.84 ± 0.09 mg/mL. There was no significant change of particle size after surface modification of RBCs. The RBCs-based DDS could target to the surface of cancer cells, which delivery DOX to the lesions efficiently and accurately. Meanwhile, due to the combined treatment effect, the RBCs-based DDS can effectively inhibit tumor growth. The RBCs-based DDS constructed in this research may have promising applications in cancer therapy due to their highly synergistic efficient therapy and to investigate its possibility for tumor therapy.
Collapse
Affiliation(s)
- Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen, 361023, PR China; Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, 361023, PR China.
| | - Jingru Huang
- School of Pharmacy, Xiamen Medical College, Xiamen, 361023, PR China
| | - Yan Zhang
- Department of Pharmaceutics, School of Pharmacy, Harbin University of Commerce, 150076, PR China
| | - Hongxin Jia
- Department of Pharmaceutics, School of Pharmacy, Harbin University of Commerce, 150076, PR China
| | - Binbin Chen
- Department of Pharmacy, Xiamen Xianyue Hospital, Xiamen, 361012, PR China
| |
Collapse
|
25
|
Sen R, Ganguly S, Ganguly S, Debnath MC, Chakraborty S, Mukherjee B, Chattopadhyay D. Apigenin-Loaded PLGA-DMSA Nanoparticles: A Novel Strategy to Treat Melanoma Lung Metastasis. Mol Pharm 2021; 18:1920-1938. [PMID: 33780261 DOI: 10.1021/acs.molpharmaceut.0c00977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The flavone apigenin (APG), alone as well as in combination with other chemotherapeutic agents, is known to exhibit potential anticancer effects in various tumors and inhibit growth and metastasis of melanoma. However, the potential of apigenin nanoparticles (APG-NPs) to prevent lung colonization of malignant melanoma has not been well investigated. APG-loaded PLGA-NPs were surface-functionalized with meso-2,3-dimercaptosuccinic acid (DMSA) for the treatment of melanoma lung metastasis. DMSA-conjugated APG-loaded NPs (DMSA-APG-NPs) administered by an oral route exhibited sustained APG release and showed considerable enhancement of plasma half-life, Cmax value, and bioavailability compared to APG-NPs both in plasma and the lungs. DMSA-conjugated APG-NPs showed comparably higher cellular internalization in B16F10 and A549 cell lines compared to that of plain NPs. Increased cytotoxicity was observed for DMSA-APG-NPs compared to APG-NPs in A549 cells. This difference between the two formulations was lower in B16F10 cells. Significant depolarization of mitochondrial transmembrane potential and an enhanced level of caspase activity were observed in B16F10 cells treated with DMSA-APG-NPs compared to APG-NPs as well. Western blot analysis of various proteins was performed to understand the mechanism of apoptosis as well as prevention of melanoma cell migration and invasion. DMSA conjugation substantially increased accumulation of DMSA-APG-NPs given by an intravenous route in the lungs compared to APG-NPs at 6 and 8 h. This was also corroborated by scintigraphic imaging studies with radiolabeled formulations administered by an intravenous route. Conjugation also allowed comparatively higher penetration as evident from an in vitro three-dimensional tumor spheroid model study. Finally, the potential therapeutic efficacy of the formulation was established in experimental B16F10 lung metastases, which suggested an improved bioavailability with enhanced antitumor and antimetastasis efficacy of DMSA-conjugated APG-NPs following oral administration.
Collapse
Affiliation(s)
- Ramkrishna Sen
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.,Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Soumya Ganguly
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata 700063, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subrata Chakraborty
- Department of Pathology, Mata Gujri Memorial Medical College, Kishanganj 855107, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University College of Science and Technology, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
26
|
Differential Splicing of Skipped-exons Predicts Drug Response in Cancer Cell Lines. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:901-912. [PMID: 33662622 PMCID: PMC9402787 DOI: 10.1016/j.gpb.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/07/2019] [Accepted: 08/23/2019] [Indexed: 12/02/2022]
Abstract
Alternative splicing of pre-mRNA transcripts is an important regulatory mechanism that increases the diversity of gene products in eukaryotes. Various studies have linked specific transcript isoforms to altered drug response in cancer; however, few algorithms have incorporated splicing information into drug response prediction. In this study, we evaluated whether basal-level splicing information could be used to predict drug sensitivity by constructing doxorubicin-sensitivity classification models with splicing and expression data. We detailed splicing differences between sensitive and resistant cell lines by implementing quasi-binomial generalized linear modeling (QBGLM) and found altered inclusion of 277 skipped exons. We additionally conducted RNA-binding protein (RBP) binding motif enrichment and differential expression analysis to characterize cis- and trans-acting elements that potentially influence doxorubicin response-mediating splicing alterations. Our results showed that a classification model built with skipped exon data exhibited strong predictive power. We discovered an association between differentially spliced events and epithelial-mesenchymal transition (EMT) and observed motif enrichment, as well as differential expression of RBFOX and ELAVL RBP family members. Our work demonstrates the potential of incorporating splicing data into drug response algorithms and the utility of a QBGLM approach for fast, scalable identification of relevant splicing differences between large groups of samples.
Collapse
|
27
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
28
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
29
|
Pharmacokinetic-Pharmacodynamic Modeling of Tumor Targeted Drug Delivery Using Nano-Engineered Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13010092. [PMID: 33445681 PMCID: PMC7828117 DOI: 10.3390/pharmaceutics13010092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Nano-engineered mesenchymal stem cells (nano-MSCs) are promising targeted drug delivery platforms for treating solid tumors. MSCs engineered with paclitaxel (PTX) loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) are efficacious in treating lung and ovarian tumors in mouse models. The quantitative description of pharmacokinetics (PK) and pharmacodynamics (PD) of nano-MSCs is crucial for optimizing their therapeutic efficacy and clinical translatability. However, successful translation of nano-MSCs is challenging due to their complex composition and physiological mechanisms regulating their pharmacokinetic-pharmacodynamic relationship (PK-PD). Therefore, in this study, a mechanism-based preclinical PK-PD model was developed to characterize the PK-PD relationship of nano-MSCs in orthotopic A549 human lung tumors in SCID Beige mice. The developed model leveraged literature information on diffusivity and permeability of PTX and PLGA NPs, PTX release from PLGA NPs, exocytosis of NPs from MSCs as well as PK and PD profiles of nano-MSCs from previous in vitro and in vivo studies. The developed PK-PD model closely captured the reported tumor growth in animals receiving no treatment, PTX solution, PTX-PLGA NPs and nano-MSCs. Model simulations suggest that increasing the dosage of nano-MSCs and/or reducing the rate of PTX-PLGA NPs exocytosis from MSCs could result in improved anti-tumor efficacy in preclinical settings.
Collapse
|
30
|
Takayama Y, Kusamori K, Tsukimori C, Shimizu Y, Hayashi M, Kiyama I, Katsumi H, Sakane T, Yamamoto A, Nishikawa M. Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. J Control Release 2020; 329:1090-1101. [PMID: 33098911 DOI: 10.1016/j.jconrel.2020.10.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) have a tumor-homing ability-they accumulate inside tumors after systemic injection, and may thus be useful as carriers for tumor-targeting therapy. To use MSCs effectively as an anti-cancer therapy, they must first be functionalized with a large amount of anti-cancer drugs without causing any significant changes to their tumor-tropism. In the present study, we attempted to modify the cell surface of MSCs with doxorubicin-loaded liposomes (DOX-Lips), using the avidin-biotin complex method, and evaluated delivery efficiency and anti-tumor efficacy of DOX-Lip-modified MSCs. The amount of DOX in DOX-Lip-modified C3H10T1/2 cells, a murine mesenchymal stem cell line, was approximately 21.5 pg per cell, with no significant changes to the tumor-tropism of C3H10T1/2 cells. Notably, DOX-Lip-modified C3H10T1/2 cells significantly suppressed the proliferation of firefly luciferase-expressing murine colon adenocarcinoma colon26/fluc cells, compared to DOX-Lips alone. Fluorescent DOX accumulated at the cell contact surface and inside green fluorescence protein-expressing colon26 (colon26/GFP) in co-cultures of DOX-Lip-modified C3H10T1/2 and colon26/GFP cells. This localized distribution was not observed when only DOX-Lips was added to colon26/GFP cells. These results suggest that DOX-Lips are efficiently delivered from DOX-Lip-modified C3H10T1/2 cells to the neighboring colon26 cells. Furthermore, DOX-Lip-modified C3H10T1/2 cells suppressed tumor growth in subcutaneous tumor-bearing mice, and in a lung metastasis mouse model. Taken together, these results indicate that the intercellular delivery of DOX may be enhanced using DOX-Lip-modified MSCs as an efficient carrier system for targeted tumor therapy.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Chihiro Tsukimori
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yosuke Shimizu
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mika Hayashi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ikumi Kiyama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
31
|
Tong Q, Qiu N, Ji J, Ye L, Zhai G. Research Progress in Bioinspired Drug Delivery Systems. Expert Opin Drug Deliv 2020; 17:1269-1288. [PMID: 32543953 DOI: 10.1080/17425247.2020.1783235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION To tackle challenges associated with traditional drug carriers, investigators have explored cells, cellular membrane, and macromolecular components including proteins and exosomes for the fabrication of delivery vehicles, owing to their excellent biocompatibility, lower toxicity, lower immunogenicity and similarities with the host. Biomacromolecule- and biomimetic nanoparticle (NP)-based drug/gene carriers are drawing immense attention, and biomimetic drug delivery systems (BDDSs) have been conceived and constructed. AREAS COVERED This review focuses on BDDS based on mammalian cells, including blood cells, cancer cells, adult stem cells, endogenous proteins, pathogens and extracellular vesicles (EVs). EXPERT OPINION Compared with traditional drug delivery systems (DDSs), BDDSs are based on biological nanocarriers, exhibiting superior biocompatibility, fewer side effects, natural targeting, and diverse modifications. In addition to directly employing natural biomaterials such as cells, proteins, pathogens and EVs as carriers, BDDSs offer these advantages by mimicking the structure of natural nanocarriers through bioengineering technologies. Furthermore, BDDSs demonstrate fewer limitations and irregularities than natural materials and can overcome several shortcomings associated with natural carriers. Although research remains ongoing to resolve these limitations, it is anticipated that BDDSs possess the potential to overcome challenges associated with traditional DDS, with a promising future in the treatment of human diseases.
Collapse
Affiliation(s)
- Qirong Tong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| |
Collapse
|
32
|
LI A, ZHANG T, GAO J. [Progress on utilizing mesenchymal stem cells as cellular delivery system for targeting delivery of as drug/gene for anti-tumor therapy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:20-34. [PMID: 32621413 PMCID: PMC8800717 DOI: 10.3785/j.issn.1008-9292.2020.02.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Mesenchymal stem cells (MSCs) have the inherent tumor-homing ability with the attraction of multiple chemokines released by tumor tissues or tumor microenvironments, which can be utilized as promising cellular carriers for targeted delivery of anti-tumor drugs and genes. In most circumstances, large amount of systemicly administrated MSCs will be firstly trapped by lungs, following with re-distribution and homing to tumor tissues after lung clearance. Several approaches like enhanced interactions between chemokines and receptors on MSCs or reducing the retention of MSCs by changes of administration methods are firstly reviewed for improving the homing of MSCs towards tumor tissues. Additionally, the potentials and gains of utilizing MSCs to carry several chemotherapeutics, such as doxorubicin, paclitaxel and gemcitabine are summarized, showing the advantages of overcoming the short half-life and poor tumor targeting of these chemotherapeutics. Moreover, the applications of MSCs to protect and deliver therapeutic genes to tumor sites for selectively tumor cells eliminating or promoting immune system are highlighted. In addition, the potentials of using MSCs for tumor-targeting delivery of diagnostic and therapeutic agents are addressed. We believed that the continuous improvement and optimization of this stem cells-based cellular delivery system will provide a novel delivery strategy and option for tumor treatment.
Collapse
|
33
|
Lenna S, Bellotti C, Duchi S, Martella E, Columbaro M, Dozza B, Ballestri M, Guerrini A, Sotgiu G, Frisoni T, Cevolani L, Varchi G, Ferrari M, Donati DM, Lucarelli E. Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:40. [PMID: 32087737 PMCID: PMC7036176 DOI: 10.1186/s13046-020-01548-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Background Osteosarcoma (OS) is an aggressive malignant neoplasm that still suffers from poor prognosis in the case of distal metastases or occurrence of multi-drug resistance. It is therefore crucial to find novel therapeutic options able to go beyond these limitations and improve patients’ survival. The objective of this study is to exploit the intrinsic properties of mesenchymal stromal cells (MSCs) to migrate and infiltrate the tumor stroma to specifically deliver therapeutic agents directly to cancer cells. In particular, we aimed to test the efficacy of the photoactivation of MSCs loaded with nanoparticles in vitro and in a murine in vivo ectopic osteosarcoma model. Methods AlPcS4@FNPs were produced by adding tetra-sulfonated aluminum phthalocyanine (AlPcS4) to an aqueous solution of positively charged poly-methyl methacrylate core-shell fluorescent nanoparticles (FNPs). The photodynamic therapy (PDT) effect is achieved by activation of the photosensitizer AlPcS4 in the near-infrared light with an LED source. Human MSCs were isolated from the bone marrow of five donors to account for inter-patients variability and used in this study after being evaluated for their clonogenicity, multipotency and immunophenotypic profile. MSC lines were then tested for the ability to internalize and retain the nanoparticles, along with their migratory properties in vitro. Photoactivation effect was evaluated both in a monolayer (2D) co-culture of AlPcS4@FNPs loaded MSCs with human OS cells (SaOS-2) and in tridimensional (3D) multicellular spheroids (AlPcS4@FNPs loaded MSCs with human OS cells, MG-63). Cell death was assessed by AnnexinV/PI and Live&Dead CalceinAM/EthD staining in 2D, while in the 3D co-culture, the cell killing effect was measured through ATP content, CalceinAM/EthD staining and TEM imaging. We also evaluated the effectiveness of AlPcS4@FNPs loaded MSCs as delivery systems and the ability of the photodynamic treatment to kill cancer cells in a subcutaneous mouse model of OS by bioluminescence imaging (BLI) and histology. Results MSCs internalized AlPcS4@FNPs without losing or altering their motility and viability in vitro. Photoactivation of AlPcS4@FNPs loaded MSCs induced high level of OS cells death in the 2D co-culture. Similarly, in the 3D co-culture (MSCs:OS ratios 1:1 or 1:3), a substantial decrease of both MSCs and OS cells viability was observed. Notably, when increasing the MSCs:OS ratio to 1:7, photoactivation still caused more than 40% cells death. When tested in an in vivo ectopic OS model, AlPcS4@FNPs loaded MSCs were able to decrease OS growth by 68% after two cycles of photoactivation. Conclusions Our findings demonstrate that MSCs can deliver functional photosensitizer-decorated nanoparticles in vitro and in vivo and inhibit OS tumor growth. MSCs may be an effective platform for the targeted delivery of therapeutic nanodrugs in a clinical scenario, alone or in combination with other osteosarcoma treatment modalities.
Collapse
Affiliation(s)
- Stefania Lenna
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Chiara Bellotti
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Serena Duchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Elisa Martella
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Barbara Dozza
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy
| | - Marco Ballestri
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Andrea Guerrini
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Tommaso Frisoni
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Luca Cevolani
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Present Address: Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Davide Maria Donati
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
34
|
Shirvalilou S, Khoei S, Khoee S, Mahdavi SR, Raoufi NJ, Motevalian M, Karimi MY. Enhancement radiation-induced apoptosis in C6 glioma tumor-bearing rats via pH-responsive magnetic graphene oxide nanocarrier. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111827. [PMID: 32120183 DOI: 10.1016/j.jphotobiol.2020.111827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 11/26/2022]
Abstract
5-iodo-2-deoxyuridine (IUdR) has been demonstrated to induce an appreciable radiosensitizing effect on glioblastoma patients, but due to the short circulation half-life times and failure to pass through the blood-brain barrier (BBB), its clinical use is limited. Accordingly, in this study, we used magnetic graphene oxide (NGO/SPIONs) nanoparticles coated with PLGA polymer as a dynamic nanocarrier for IUdR and, evaluated its sensitizing enhancement ratio in combination with a single dose X-ray at clinically megavoltage energies for treatment of C6 glioma rats. Nanoparticles were characterized using Zetasizer and TEM microscopy, and in vitro biocompatibility of nanoparticles was assessed with MTT assay. IUdR/MNPs were intravenously administered under a magnetic field (1.3 T) on day 13 after the implantation of C6 cells. After a day following the injection, rats exposed with radiation (8 Gy). ICP-OES analysis data indicated an effective magnetic targeting, leading to remarkably improved penetration through the BBB. In vivo release analysis with HPLC indicated sustained release of IUdR and, prolonged the lifespan in plasma (P < .01). In addition, our findings revealed a synergistic effect for IUdR/MNPs coupled with radiation, which significantly inhibited the tumor expansion (>100%), prolonged the survival time (>100%) and suppressed the anti-apoptotic response of glioma rats by increasing Bax/Bcl-2 ratio (2.13-fold) in compared with the radiation-only. In conclusion, besides high accumulation in targeted tumor sites, the newly developed IUdR/MNPs, also exhibited the ability of IUdR/MNPs to significantly enhance radiosensitizing effect, improve therapeutic efficacy and increase toxicity for glioma-bearing rats.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nida Jamali Raoufi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
35
|
Attia N, Mashal M. Mesenchymal Stem Cells: The Past Present and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1312:107-129. [PMID: 33159306 DOI: 10.1007/5584_2020_595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biomedical applications of mesenchymal stem cells (MSCs) have gained expanding attention over the past three decades. MSCs are easily obtained from various tissue types (e.g. bone marrow, fat, cord blood, etc.), are capable of self-renewal, and could be induced to differentiate into several cell lineages for countless biomedical applications. In addition, when transplanted, MSCs are not detected by immune surveillance, thus do not lead to graft rejection. Moreover, they can home towards affected tissues and induce their therapeutic effect in a cell-base and/or a cell-free manner. These properties, and many others, have made MSCs appealing therapeutic cell candidates (for cell and/or gene therapy) in myriad clinical conditions. However, similar to any other therapeutic tool, MSCs still have their own limitations and grey areas that entail more research for better understanding and optimization. Herein, we present a brief overview of various pre-clinical/clinical applications of MSCs in regenerative medicine and discuss limitations and future challenges.
Collapse
Affiliation(s)
- Noha Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt. .,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| | - Mohamed Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
36
|
Cheng S, Nethi SK, Rathi S, Layek B, Prabha S. Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. J Pharmacol Exp Ther 2019; 370:231-241. [PMID: 31175219 PMCID: PMC6640188 DOI: 10.1124/jpet.119.259796] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have previously demonstrated considerable promise in regenerative medicine based on their ability to proliferate and differentiate into cells of different lineages. More recently, there has been a significant interest in using MSCs as cellular vehicles for targeted cancer therapy by exploiting their tumor homing properties. Initial studies focused on using genetically modified MSCs for targeted delivery of various proapoptotic, antiangiogenic, and therapeutic proteins to a wide variety of tumors. However, their use as drug delivery vehicles has been limited by poor drug load capacity. This review discusses various strategies for the nongenetic modification of MSCs that allows their use in tumor-targeted delivery of small molecule chemotherapeutic agents. SIGNIFICANCE STATEMENT: There has been considerable interest in exploiting the tumor homing potential of MSCs to develop them as a vehicle for the targeted delivery of cytotoxic agents to tumor tissue. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. While significant progress has been made in the area of the genetic modification of MSCs, studies focused on identification of molecular mechanisms that contribute to the tumor tropism along with optimization of the engineering conditions can further improve their effectiveness as drug delivery vehicles.
Collapse
Affiliation(s)
- Shen Cheng
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Susheel Kumar Nethi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Sneha Rathi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Buddhadev Layek
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Swayam Prabha
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| |
Collapse
|
37
|
Layek B, Sehgal D, Argenta PA, Panyam J, Prabha S. Nanoengineering of Mesenchymal Stem Cells via Surface Modification for Efficient Cancer Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Buddhadev Layek
- Department of Experimental and Clinical PharmacologyCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Drishti Sehgal
- Department of PharmaceuticsCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Peter A. Argenta
- Division of Gynecologic OncologyDepartment of Obstetrics and GynecologyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Jayanth Panyam
- Department of PharmaceuticsCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| | - Swayam Prabha
- Department of Experimental and Clinical PharmacologyCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
- Department of PharmaceuticsCollege of PharmacyUniversity of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
38
|
Moku G, Layek B, Trautman L, Putnam S, Panyam J, Prabha S. Improving Payload Capacity and Anti-Tumor Efficacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles. Cancers (Basel) 2019; 11:cancers11040491. [PMID: 30959908 PMCID: PMC6521160 DOI: 10.3390/cancers11040491] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) accumulate specifically in both primary tumors and metastases following systemic administration. However, the poor payload capacity of MSCs limits their use in small molecule drug delivery. To improve drug payload in MSCs, we explored polymeric nanoparticles that were functionalized with transactivator of transcription (TAT) peptide. Paclitaxel loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles (15–16% w/w paclitaxel; diameter of 225 ± 7 nm; and zeta potential of −15 ± 4 mV) were fabricated by emulsion-solvent evaporation method, followed by TAT-conjugation to the surface of nanoparticles via maleimide-thiol chemistry. Our studies demonstrated that TAT functionalization improved the intracellular accumulation and retention of nanoparticles in MSCs. Further, nano-engineering of MSCs did not alter the migration and differentiation potential of MSCs. Treatment with nano-engineered MSCs resulted in significant (p < 0.05) inhibition of tumor growth and improved survival (p < 0.0001) in a mouse orthotopic model of lung cancer compared to that with free or nanoparticle encapsulated drug. In summary, our results demonstrated that MSCs engineered using TAT functionalized nanoparticles serve as an efficient carrier for tumor specific delivery of anticancer drugs, resulting in greatly improved therapeutic efficacy.
Collapse
Affiliation(s)
- Gopikrishna Moku
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Buddhadev Layek
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lana Trautman
- Breck School, 123 Ottawa Ave N, Golden Valley, MN 55422, USA.
| | - Samuel Putnam
- Breck School, 123 Ottawa Ave N, Golden Valley, MN 55422, USA.
| | - Jayanth Panyam
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Swayam Prabha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
39
|
Li K, Xiao G, Richardson JJ, Tardy BL, Ejima H, Huang W, Guo J, Liao X, Shi B. Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801688. [PMID: 30886799 PMCID: PMC6402403 DOI: 10.1002/advs.201801688] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/09/2018] [Indexed: 02/05/2023]
Abstract
The targeted therapy of metastatic melanoma is an important yet challenging goal that has received only limited attention to date. Herein, green tea polyphenols, (-)-epigallocatechin-3-gallate (EGCG), and lanthanide metal ions (Sm3+) are used as building blocks to engineer self-assembled SmIII-EGCG nanocomplexes with synergistically enhanced tumor inhibitory properties. These nanocomplexes have negligible systemic toxic effects on healthy cells but cause a significant reduction in the viability of melanoma cells by efficiently regulating their metabolic pathways. Moreover, the wound-induced migration of melanoma cells can be efficiently inhibited by SmIII-EGCG, which is a key criterion for metastatic melanoma therapy. In a mouse melanoma tumor model, SmIII-EGCG is directly compared with a clinical anticancer drug, 5-fluorouracil and shows remarkable tumor inhibition. Moreover, the targeted therapy of SmIII-EGCG is shown to prevent metastatic lung melanoma from spreading to main organs with no adverse side effects on the body weight or organs. These in vivo results demonstrate significant advantages of SmIII-EGCG over its clinical counterpart. The results suggest that these green tea-based, self-assembled nanocomplexes possess all of the key traits of a clinically promising candidate to address the challenges associated with the treatment of advanced stage metastatic melanoma.
Collapse
Affiliation(s)
- Ke Li
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- Laboratory of EthnopharmacologyRegenerative Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Gao Xiao
- Wyss Institute for Biologically Inspired EngineeringJohn A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02115USA
- Department of Environmental Science and EngineeringCollege of Environment and ResourcesFuzhou UniversityFuzhou350108China
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology and Department of Chemical and Biomolecular EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP. O. Box 1630000076Finland
| | - Hirotaka Ejima
- Department of Materials EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
| | - Wen Huang
- Laboratory of EthnopharmacologyRegenerative Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Junling Guo
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- Wyss Institute for Biologically Inspired EngineeringJohn A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02115USA
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| | - Xuepin Liao
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
| | - Bi Shi
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| |
Collapse
|
40
|
Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019; 24:molecules24010172. [PMID: 30621193 PMCID: PMC6337375 DOI: 10.3390/molecules24010172] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023] Open
Abstract
Click chemistry has great potential for use in binding between nucleic acids, lipids, proteins, and other molecules, and has been used in many research fields because of its beneficial characteristics, including high yield, high specificity, and simplicity. The recent development of copper-free and less cytotoxic click chemistry reactions has allowed for the application of click chemistry to the field of medicine. Moreover, metabolic glycoengineering allows for the direct modification of living cells with substrates for click chemistry either in vitro or in vivo. As such, click chemistry has become a powerful tool for cell transplantation and drug delivery. In this review, we describe some applications of click chemistry for cell engineering in cell transplantation and for drug delivery in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
41
|
Wang X, Chen H, Zeng X, Guo W, Jin Y, Wang S, Tian R, Han Y, Guo L, Han J, Wu Y, Mei L. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin B 2019; 9:167-176. [PMID: 30766788 PMCID: PMC6362298 DOI: 10.1016/j.apsb.2018.08.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/26/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023] Open
Abstract
Low targeting efficiency limits the applications of nanoparticles in cancer therapy. The fact that mesenchymal stem cells (MSC) trapped in the lung after systemic infusion is a disadvantage for cell therapy purposes. Here, we utilized MSC as lung cancer-targeted drug delivery vehicles by loading nanoparticles (NP) with anti-cancer drug. MSC showed a higher drug intake capacity than fibroblasts. In addition, MSC showed predominant lung trapping in both rabbit and monkey. IR-780 dye, a fluorescent probe used to represent docetaxel (DTX) in NP, delivered via MSC accumulated in the lung. Both in vitro MSC/A549 cell experiments and in vivo MSC/lung cancer experiments validated the intercellular transportation of NP between MSC and cancer cells. In vivo assays showed that the MSC/NP/DTX drug delivery system exerted primary tumor inhibition efficiency similar to that of a NP/DTX drug system. Collectively, the MSC/NP drug delivery system is promising for lung-targeted drug delivery for the treatment of lung cancer and other lung-related diseases.
Collapse
Affiliation(s)
- Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyan Chen
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Wenpeng Guo
- The First Affiliated Hospital of Shenzhen University (Shenzhen Second People׳s Hospital), Shenzhen 518000, China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University (Shenzhen Second People׳s Hospital), Shenzhen 518000, China
| | - Shan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruiyun Tian
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanjiang Han
- NanFang PET/CT Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Guo
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| | - Jimin Han
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaojiong Wu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
42
|
Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release 2018; 294:102-113. [PMID: 30553849 DOI: 10.1016/j.jconrel.2018.12.019] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Owing to the diversity and ease of preparation of nanomaterials, the rational nanocarriers with a rational design have become increasingly popular in medical researches. Although nanoparticle-based drug delivery exhibits great potential, there are some challenges facing like rapid plasma clearance, triggering or aggravation of immune response, etc. Herein, cell-based targeted drug delivery systems have drawn more and more attention owing to low immunogenicity and intrinsic mutation rate, and innate ability to allow targeted delivery. Mesenchymal stem cells (MSCs) have been used in gene and drug delivery. The use of MSCs is a promising approach for the development of gene transfer systems and drug loading strategies because of their intrinsic properties, including homing ability and tumor tropism. By combining the inherent cell properties and merits of synthetic nanoparticles (NPs), cell membrane coated NPs emerge as the time requires. Overall, we provide a comprehensive overview of the utility of MSCs in drug and gene delivery as well as MSC membrane coated nanoparticles for therapy and drug delivery, aiming to figure out the significant room for development and highlight the potential future directions.
Collapse
|
43
|
Mesenchymal stem cell-driven activatable photosensitizers for precision photodynamic oncotherapy. Biomaterials 2018; 187:18-26. [DOI: 10.1016/j.biomaterials.2018.09.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
|
44
|
New Strategies and In Vivo Monitoring Methods for Stem Cell-Based Anticancer Therapies. Stem Cells Int 2018; 2018:7315218. [PMID: 30581474 PMCID: PMC6276456 DOI: 10.1155/2018/7315218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a devastating disease and the second cause of death in the developed world. Despite significant advances in recent years, such as the introduction of targeted therapies such as receptor tyrosine kinase inhibitors and immunotherapy, current approaches are insufficient to stop the advance of the disease and many cancer types remain largely intractable. In this review, we describe the latest and most revolutionary stem cell-based approaches for the treatment of cancer. We also summarize the emerging imaging modalities being applied for monitoring anticancer stem cell therapy success and discuss the implications of these novel technologies for precision medicine.
Collapse
|
45
|
Wang X, Gao J, Ouyang X, Wang J, Sun X, Lv Y. Mesenchymal stem cells loaded with paclitaxel-poly(lactic- co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine 2018; 13:5231-5248. [PMID: 30237710 PMCID: PMC6136913 DOI: 10.2147/ijn.s167142] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) possess inherent tropism towards tumor cells, and so have attracted increased attention as targeted-therapy vehicles for glioma treatment. Purpose The objective of this study was to demonstrate the injection of MSCs loaded with paclitaxel (Ptx)-encapsulated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for orthotopic glioma therapy in rats. Methods Ptx-PLGA NP-loaded MSC was obtained by incubating MSCs with Ptx-PLGA NPs. The drug transfer and cytotoxicity of Ptx-PLGA NP-loaded MSC against tumor cells were investigated in the transwell system. Biodistribution and antitumor activity was evaluated in the orthotopic glioma rats after contralateral injection. Results The optimal dose of MSC-loaded Ptx-PLGA NPs (1 pg/cell Ptx) had little effect on MSC-migration capacity, cell cycle, or multilineage-differentiation potential. Compared with Ptx-primed MSCs, Ptx-PLGA NP-primed MSCs had enhanced sustained Ptx release in the form of free Ptx and Ptx NPs. Ptx transfer from MSCs to glioma cells could induce tumor cell death in vitro. As for distribution in vivo, NP-loaded fluorescent MSCs were tracked throughout the tumor mass for 2 days after therapeutic injection. Survival was significantly longer after contralateral implantation of Ptx-PLGA NP-loaded MSCs than those injected with Ptx-primed MSCs or Ptx-PLGA NPs alone. Conclusion Based on timing and sufficient Ptx transfer from the MSCs to the tumor cells, Ptx-PLGA NP-loaded MSC is effective for glioma treatment. Incorporation of chemotherapeutic drug-loaded NPs into MSCs is a promising strategy for tumor-targeted therapy.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, ;.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xumei Ouyang
- Department of Pharmacy, Zhejiang University City College, ;.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Junbo Wang
- Department of Pharmacy, Zhejiang University City College,
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College,
| | - Yuanyuan Lv
- Department of Pharmacy, Zhejiang University City College,
| |
Collapse
|
46
|
Cao H, Wang H, He X, Tan T, Hu H, Wang Z, Wang J, Li J, Zhang Z, Li Y. Bioengineered Macrophages Can Responsively Transform into Nanovesicles To Target Lung Metastasis. NANO LETTERS 2018; 18:4762-4770. [PMID: 30028623 DOI: 10.1021/acs.nanolett.8b01236] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific drug delivery to metastatic tumors remains a great challenge for antimetastasis therapy. We herein report a bioengineered macrophage-based delivery system (LD-MDS) that can be preferentially delivered to lung metastases and intelligently transformed into nanovesicles and secondary nanovesicles for antimetastasis therapy. LD-MDS was prepared by anchoring a legumain-specific propeptide of melittin (legM) and cytotoxic soravtansine (DM4) prodrug onto the membrane of living macrophages. LD-MDS is responsively activated by legumain protease and converted into DM4-loaded exosome-like nanovesicles (DENs), facilitating efficient internalization by metastatic 4T1 cancer cells and considerable cell death. Afterward, the damaged 4T1 cells can release secondary nanovesicles and free drug molecules to destroy neighboring cancer cells. In vivo, LD-MDS displays superior targeting efficiency for lung metastatic lesions with diameters less than 100 μm and remarkably inhibits lung metastasis. This study provides a new opportunity to explore endogenous macrophages as living drug delivery vehicles with controlled drug release to target metastatic lung tumors.
Collapse
Affiliation(s)
- Haiqiang Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences, Beijing 100049 , China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences, Beijing 100049 , China
| | - Xinyu He
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences, Beijing 100049 , China
| | - Tao Tan
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Haiyan Hu
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhiwan Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences, Beijing 100049 , China
| | - Jing Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- School of Pharmacy , Yantai University , Yantai 264005 , Shandong , China
| |
Collapse
|
47
|
LeValley PJ, Noren B, Kharkar PM, Kloxin AM, Gatlin JC, Oakey JS. Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation. ACS Biomater Sci Eng 2018; 4:3078-3087. [PMID: 31984222 DOI: 10.1021/acsbiomaterials.8b00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The in situ fabrication of poly(ethylene glycol) diacrylate (PEGDA) hydrogel microstructures within poly(dimethylsiloxane) (PDMS)-based microfluidic networks is a versatile technique that has enabled unique applications in biosensing, medical diagnostics, and the fundamental life sciences. Hydrogel structures have previously been patterned by the lithographic photopolymerization of PEGDA hydrogel forming solutions, a process that is confounded by oxygen-permeable PDMS. Here, we introduce an alternate PEG patterning technique that relies upon the optical sculpting of features by patterned light-induced erosion of photodegradable PEGDA deemed negative projection lithography. We quantitatively compared the hydrogel micropatterning fidelity of negative projection lithography to positive projection lithography, using traditional PEGDA photopolymerization, within PDMS devices. We found that the channel depth, the local oxygen atmosphere, and the UV exposure time dictated the size and resolution of hydrogel features formed using positive projection lithography. In contrast, negative projection lithography was observed to deliver high-resolution functional features with dimensions on the order of single micrometers enabled by its facilely controlled mechanism of feature formation that is insensitive to oxygen. Next, the utility of photodegradable PEGDA was further assessed by encapsulating or conjugating bioactive molecules within photodegradable PEG matrixes to provide a route to the formation of complex and dynamically reconfigurable chemical microenvironments. Finally, we demonstrated that negative projection lithography enabled photopatterning of multilayered microscale objects without the need for precise mask alignment. The described approach for photopatterning high-resolution photolabile hydrogel microstructures directly within PDMS microchannels could enable novel microsystems of increasing complexity and sophistication for a variety of clinical and biological applications.
Collapse
Affiliation(s)
- Paige J LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Ben Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Prathamesh M Kharkar
- Department of Biomolecular and Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - April M Kloxin
- Department of Biomolecular and Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John S Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
48
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
49
|
Kalimuthu S, Zhu L, Oh JM, Gangadaran P, Lee HW, Baek SH, Rajendran RL, Gopal A, Jeong SY, Lee SW, Lee J, Ahn BC. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin. Int J Med Sci 2018; 15:1051-1061. [PMID: 30013447 PMCID: PMC6036160 DOI: 10.7150/ijms.25760] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show therapeutic effects in various types of diseases. MSCs have been shown to migrate towards inflamed or cancerous tissues, and visualized after sacrificing the animal. MSCs are able to deliver drugs to target cells, and are an ideal candidate for cancer therapy. The purpose of this study was to track the migration of MSCs in tumor-bearing mice; MSCs were also used as drug delivery vehicles. Human breast cancer cells (MDA-MB-231) and anaplastic thyroid cancer cells (CAL62) were transduced with lentiviral particles, to express the Renilla luciferase and mCherry (mCherry-Rluc) reporter genes. Human bone marrow-derived MSCs were transduced with lentiviral particles, to express the firefly luciferase and enhanced green fluorescence protein (Fluc2-eGFP) reporter genes (MSC/Fluc). Luciferase activity of the transduced cells was measured by bioluminescence imaging (BLI). Further in vitro migration assays were performed to confirm cancer cells conditioned medium dependent MSC and doxorubicin (DOX) treated MSC migration. MSCs were loaded with DOX, and their therapeutic effects against the cancer cells were studied in vitro. In vivo MSC/Fluc migration in mice having thyroid or breast cancer xenografts was evaluated after systemic injection. Rluc activity of CAL62/Rluc (R2=0.911), MDA-MB-231/Rluc (R2=0.934) cells and Fluc activity of MSC/Fluc (R2=0.91) cells increased with increasing cell numbers, as seen by BLI. eGFP expression of MSC/Fluc was confirmed by confocal microscopy. Similar migration potential was observed between MSC/Fluc and naïve MSCs in migration assay. DOX treated MSCs migration was not decreased compared than MSCs. Migration of the systemically injected MSC/Fluc cells into tumor xenografts (thyroid and breast cancer) was visualized in animal models (p<0.05) and confirmed by ex vivo (p<0.05) BLI. Additionally, MSCs delivered DOX to CAL62/Rluc and MDA-MB-231/Rluc cells, thereby decreasing their Rluc activities. In this study, we confirmed the migration of MSCs to tumor sites in cancer xenograft models using both in vivo and ex vivo BLI imaging. DOX-pretreated MSCs showed enhanced cytotoxic effects. Therefore, this noninvasive reporter gene (Fluc2)-based BLI may be useful for visualizing in vivo tracking of MSCs, which can be used as a drug delivery vehicle for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
50
|
Pinho S, Macedo MH, Rebelo C, Sarmento B, Ferreira L. Stem cells as vehicles and targets of nanoparticles. Drug Discov Today 2018; 23:1071-1078. [DOI: 10.1016/j.drudis.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/22/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022]
|