1
|
Ning K, Xie Y, Sun W, Feng L, Fang C, Pan R, Li Y, Yu L. Non-destructive in situ monitoring of structural changes of 3D tumor spheroids during the formation, migration, and fusion process. eLife 2025; 13:RP101886. [PMID: 39937097 PMCID: PMC11820107 DOI: 10.7554/elife.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
For traditional laboratory microscopy observation, the multi-dimensional, real-time, in situ observation of three-dimensional (3D) tumor spheroids has always been the pain point in cell spheroid observation. In this study, we designed a side-view observation petri dish/device that reflects light, enabling in situ observation of the 3D morphology of cell spheroids using conventional inverted laboratory microscopes. We used a 3D-printed handle and frame to support a first-surface mirror, positioning the device within a cell culture petri dish to image cell spheroid samples. The imaging conditions, such as the distance between the mirror and the 3D spheroids, the light source, and the impact of the culture medium, were systematically studied to validate the in situ side-view observation. The results proved that placing the surface mirror adjacent to the spheroids enables non-destructive in situ real-time tracking of tumor spheroid formation, migration, and fusion dynamics. The correlation between spheroid thickness and dark core appearance under light microscopy and the therapeutic effects of chemotherapy doxorubicin and natural killer cells on spheroids' 3D structure was investigated.
Collapse
Affiliation(s)
- Ke Ning
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest UniversityChongqingChina
| | - Yuanyuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest UniversityChongqingChina
| | - Wen Sun
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation LtdWuhanChina
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company LimitedBeijingChina
| | - Lingke Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest UniversityChongqingChina
| | - Can Fang
- School of Computer and Information Science, Southwest UniversityChongqingChina
| | - Rong Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest UniversityChongqingChina
| | - Yan Li
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation LtdWuhanChina
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company LimitedBeijingChina
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest UniversityChongqingChina
| |
Collapse
|
2
|
Delage E, Guilbert T, Yates F. Successful 3D imaging of cleared biological samples with light sheet fluorescence microscopy. J Cell Biol 2023; 222:e202307143. [PMID: 37847528 PMCID: PMC10583220 DOI: 10.1083/jcb.202307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
In parallel with the development of tissue-clearing methods, over the last decade, light sheet fluorescence microscopy has contributed to major advances in various fields, such as cell and developmental biology and neuroscience. While biologists are increasingly integrating three-dimensional imaging into their research projects, their experience with the technique is not always up to their expectations. In response to a survey of specific challenges associated with sample clearing and labeling, image acquisition, and data analysis, we have critically assessed the recent literature to characterize the difficulties inherent to light sheet fluorescence microscopy applied to cleared biological samples and to propose solutions to overcome them. This review aims to provide biologists interested in light sheet fluorescence microscopy with a primer for the development of their imaging pipeline, from sample preparation to image analysis. Importantly, we believe that issues could be avoided with better anticipation of image analysis requirements, which should be kept in mind while optimizing sample preparation and acquisition parameters.
Collapse
Affiliation(s)
- Elise Delage
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| | - Thomas Guilbert
- Institut Cochin, Institut national de la santé et de la recherche médicale (U1016), Centre National de la Recherche Scientifique (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | - Frank Yates
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Kumar A, Cai S, Allam M, Henderson S, Ozbeyler M, Saiontz L, Coskun AF. Single-Cell and Spatial Analysis of Emergent Organoid Platforms. Methods Mol Biol 2023; 2660:311-344. [PMID: 37191807 DOI: 10.1007/978-1-0716-3163-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applications. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to obtain information about the structural and molecular cellular states. Culture media diversity and varying lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for different organoid types. Molecular profiling of individual cells in organoids and data organization of the organoid landscape will impact biomedical applications from basic science to translational use.
Collapse
Affiliation(s)
- Aditi Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Samuel Henderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa Ozbeyler
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lilly Saiontz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, , Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
5
|
Luna-Palacios YY, Licea-Rodriguez J, Camacho-Lopez MD, Teichert I, Riquelme M, Rocha-Mendoza I. Multicolor light-sheet microscopy for a large field of view imaging: A comparative study between Bessel and Gaussian light-sheets configurations. JOURNAL OF BIOPHOTONICS 2022; 15:e202100359. [PMID: 35184408 DOI: 10.1002/jbio.202100359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) is useful for developmental biology studies, which require a simultaneous visualization of dynamic microstructures over large fields of views (FOVs). A comparative study between multicolor Bessel and Gaussian-based LSFM systems is presented. Discussing the chromatic implications to achieve colocalized and large FOVs when both optical arrays are implemented under the same excitation objective is the purpose of this work. The light-sheets FOVs, optical sectioning, and resolution are experimentally characterized and discussed. The advantages of using Bessel beams and the main drawbacks of using Gaussian beams for multicolor imaging are highlighted. Multiple Bessel excitation minimizes the FOV's mismatch's effects due to the beams chromatic defocusing and alleviates the aside object blurring obtained with multiple Gaussian beams. It also offers a fair homogeneous axial resolution and optical sectioning over a larger effective FOV. Imaging over perithecia samples of the fungus Sordaria macrospora demonstrates such advantages. This work complements previous comparative studies that discuss only single wavelengths light-sheets excitations.
Collapse
Affiliation(s)
- Yryx Y Luna-Palacios
- Department of Optics, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Carretera Ensenada-Tijuana, Ensenada, Mexico
| | - Jacob Licea-Rodriguez
- Department of Optics, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Carretera Ensenada-Tijuana, Ensenada, Mexico
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Carretera Ensenada-Tijuana, Ensenada, Mexico
| | - M Dolores Camacho-Lopez
- Cátedras CONACYT-Deparment of Optics, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Ines Teichert
- Department of General and Molecular Botany, Ruhr-University Bochum, Bochum, Germany
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Carretera Ensenada-Tijuana, Ensenada, Mexico
| | - Israel Rocha-Mendoza
- Department of Optics, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Carretera Ensenada-Tijuana, Ensenada, Mexico
| |
Collapse
|
6
|
Multiple asters organize the yolk microtubule network during dclk2-GFP zebrafish epiboly. Sci Rep 2022; 12:4072. [PMID: 35260695 PMCID: PMC8904445 DOI: 10.1038/s41598-022-07747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
It is known that the organization of microtubule (MT) networks in cells is orchestrated by subcellular structures named MT organizing centers (MTOCs). In this work, we use Light Sheet Fluorescence and Confocal Microscopy to investigate how the MT network surrounding the spherical yolk is arranged in the dclk2-GFP zebrafish transgenic line. We found that during epiboly the MT network is organized by multiple aster-like MTOCS. These structures form rings around the yolk sphere. Importantly, in wt embryos, aster-like MTOCs are only found upon pharmacological or genetic induction. Using our microscopy approach, we underscore the variability in the number of such asters in the transgenic line and report on the variety of global configurations of the yolk MT network. The asters’ morphology, dynamics, and their distribution in the yolk sphere are also analyzed. We propose that these features are tightly linked to epiboly timing and geometry. Key molecules are identified which support this asters role as MTOCs, where MT nucleation and growth take place. We conclude that the yolk MT network of dclk2-GFP transgenic embryos can be used as a model to organize microtubules in a spherical geometry by means of multiple MTOCs.
Collapse
|
7
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|
8
|
Niora M, Pedersbæk D, Münter R, Weywadt MFDV, Farhangibarooji Y, Andresen TL, Simonsen JB, Jauffred L. Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS OMEGA 2020; 5:21162-21171. [PMID: 32875252 PMCID: PMC7450641 DOI: 10.1021/acsomega.0c02879] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Most tumor-targeted drug delivery systems must overcome a large variety of physiological barriers before reaching the tumor site and diffuse through the tight network of tumor cells. Many studies focus on optimizing the first part, the accumulation of drug carriers at the tumor site, ignoring the penetration efficiency, i.e., a measure of the ability of a drug delivery system to overcome tumor surface adherence and uptake. We used three-dimensional (3D) tumor spheroids in combination with light-sheet fluorescence microscopy in a head-to-head comparison of a variety of commonly used lipid-based nanoparticles, including liposomes, PEGylated liposomes, lipoplexes, and reconstituted high-density lipoproteins (rHDL). Whilst PEGylation of liposomes only had minor effects on the penetration efficiency, we show that lipoplexes are mainly associated with the periphery of tumor spheroids, possibly due to their positive surface charge, leading to fusion with the cells at the spheroid surface or aggregation. Surprisingly, the rHDL showed significantly higher penetration efficiency and high accumulation inside the spheroid. While these findings indeed could be relevant when designing novel drug delivery systems based on lipid-based nanoparticles, we stress that the used platform and the detailed image analysis are a versatile tool for in vitro studies of the penetration efficiency of nanoparticles in tumors.
Collapse
Affiliation(s)
- Maria Niora
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| | - Dennis Pedersbæk
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Münter
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Thomas L. Andresen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B. Simonsen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Liselotte Jauffred
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| |
Collapse
|
9
|
Turaga D, Matthys OB, Hookway TA, Joy DA, Calvert M, McDevitt TC. Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. Tissue Eng Part C Methods 2020; 26:207-215. [PMID: 32111148 DOI: 10.1089/ten.tec.2020.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Native cardiac tissue is composed of heterogeneous cell populations that work cooperatively for proper tissue function; thus, engineered tissue models have moved toward incorporating multiple cardiac cell types in an effort to recapitulate native multicellular composition and organization. Cardiac tissue models composed of stem cell-derived cardiomyocytes (CMs) require inclusion of non-myocytes to promote stable tissue formation, yet the specific contributions of the supporting non-myocyte population on the parenchymal CMs and cardiac microtissues have to be fully dissected. This gap can be partly attributed to limitations in technologies able to accurately study the individual cellular structure and function that comprise intact three-dimensional (3D) tissues. The ability to interrogate the cell-cell interactions in 3D tissue constructs has been restricted by conventional optical imaging techniques that fail to adequately penetrate multicellular microtissues with sufficient spatial resolution. Light sheet fluorescence microscopy (LSFM) overcomes these constraints to enable single-cell resolution structural and functional imaging of intact cardiac microtissues. Multicellular spatial distribution analysis of heterotypic cardiac cell populations revealed that CMs and cardiac fibroblasts were randomly distributed throughout 3D microtissues. Furthermore, calcium imaging of live cardiac microtissues enabled single-cell detection of CM calcium activity, which showed that functional heterogeneity correlated with spatial location within the tissues. This study demonstrates that LSFM can be utilized to determine single-cell spatial and functional interactions of multiple cell types within intact 3D engineered microtissues, thereby facilitating the determination of structure-function relationships at both tissue-level and single-cell resolution. Impact statement The ability to achieve single-cell resolution by advanced three-dimensional light imaging techniques enables exquisite new investigation of multicellular analyses in native and engineered tissues. In this study, light sheet fluorescence microscopy was used to define structure-function relationships of distinct cell types in engineered cardiac microtissues by determining heterotypic cell distributions and interactions throughout the tissues as well as by assessing regional differences in calcium handing functional properties at the individual cardiomyocyte level.
Collapse
Affiliation(s)
| | - Oriane B Matthys
- Gladstone Institutes, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California
| | | | - David A Joy
- Gladstone Institutes, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California
| | | | - Todd C McDevitt
- Gladstone Institutes, San Francisco, California
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| |
Collapse
|
10
|
Steuwe C, Vaeyens MM, Jorge-Peñas A, Cokelaere C, Hofkens J, Roeffaers MBJ, Van Oosterwyck H. Fast quantitative time lapse displacement imaging of endothelial cell invasion. PLoS One 2020; 15:e0227286. [PMID: 31910228 PMCID: PMC6946139 DOI: 10.1371/journal.pone.0227286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
In order to unravel rapid mechano-chemical feedback mechanisms in sprouting angiogenesis, we combine selective plane illumination microscopy (SPIM) and tailored image registration algorithms - further referred to as SPIM-based displacement microscopy - with an in vitro model of angiogenesis. SPIM successfully tackles the problem of imaging large volumes while upholding the spatial resolution required for the analysis of matrix displacements at a subcellular level. Applied to in vitro angiogenic sprouts, this unique methodological combination relates subcellular activity - minute to second time scale growing and retracting of protrusions - of a multicellular systems to the surrounding matrix deformations with an exceptional temporal resolution of 1 minute for a stack with multiple sprouts simultaneously or every 4 seconds for a single sprout, which is 20 times faster than with a conventional confocal setup. Our study reveals collective but non-synchronised, non-continuous activity of adjacent sprouting cells along with correlations between matrix deformations and protrusion dynamics.
Collapse
Affiliation(s)
- Christian Steuwe
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
| | - Marie-Mo Vaeyens
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alvaro Jorge-Peñas
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Célie Cokelaere
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Maarten B. J. Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Sci Rep 2019; 9:17292. [PMID: 31754183 PMCID: PMC6872575 DOI: 10.1038/s41598-019-53380-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/31/2019] [Indexed: 01/09/2023] Open
Abstract
In three-dimensional light microscopy, the heterogeneity of the optical density in a specimen ultimately limits the achievable penetration depth and hence the three-dimensional resolution. The most direct approach to reduce aberrations, improve the contrast and achieve an optimal resolution is to minimise the impact of changes of the refractive index along an optical path. Many implementations of light sheet fluorescence microscopy operate with a large chamber filled with an aqueous immersion medium and a further inner container with the specimen embedded in a possibly entirely different non-aqueous medium. In order to minimise the impact of the latter on the optical quality of the images, we use multi-facetted cuvettes fabricated from vacuum-formed ultra-thin fluorocarbon (FEP) foils. The ultra-thin FEP-foil cuvettes have a wall thickness of about 10–12 µm. They are impermeable to liquids, but not to gases, inert, durable, mechanically stable and flexible. Importantly, the usually fragile specimen can remain in the same cuvette from seeding to fixation, clearing and observation, without the need to remove or remount it during any of these steps. We confirm the improved imaging performance of ultra-thin FEP-foil cuvettes with excellent quality images of whole organs such us mouse oocytes, of thick tissue sections from mouse brain and kidney as well as of dense pancreas and liver organoid clusters. Our ultra-thin FEP-foil cuvettes outperform many other sample-mounting techniques in terms of a full separation of the specimen from the immersion medium, compatibility with aqueous and organic clearing media, quick specimen mounting without hydrogel embedding and their applicability for multiple-view imaging and automated image segmentation. Additionally, we show that ultra-thin FEP foil cuvettes are suitable for seeding and growing organoids over a time period of at least ten days. The new cuvettes allow the fixation and staining of specimens inside the holder, preserving the delicate morphology of e.g. fragile, mono-layered three-dimensional organoids.
Collapse
|
12
|
Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol 2019; 35:655-681. [PMID: 31299171 DOI: 10.1146/annurev-cellbio-100818-125311] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
13
|
Rakotoson I, Delhomme B, Djian P, Deeg A, Brunstein M, Seebacher C, Uhl R, Ricard C, Oheim M. Fast 3-D Imaging of Brain Organoids With a New Single-Objective Planar-Illumination Two-Photon Microscope. Front Neuroanat 2019; 13:77. [PMID: 31481880 PMCID: PMC6710410 DOI: 10.3389/fnana.2019.00077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Human inducible pluripotent stem cells (hiPSCs) hold a large potential for disease modeling. hiPSC-derived human astrocyte and neuronal cultures permit investigations of neural signaling pathways with subcellular resolution. Combinatorial cultures, and three-dimensional (3-D) embryonic bodies (EBs) enlarge the scope of investigations to multi-cellular phenomena. The highest level of complexity, brain organoids that-in many aspects-recapitulate anatomical and functional features of the developing brain permit the study of developmental and morphological aspects of human disease. An ideal microscope for 3-D tissue imaging at these different scales would combine features from both confocal laser-scanning and light-sheet microscopes: a micrometric optical sectioning capacity and sub-micrometric spatial resolution, a large field of view and high frame rate, and a low degree of invasiveness, i.e., ideally, a better photon efficiency than that of a confocal microscope. In the present work, we describe such an instrument that uses planar two-photon (2P) excitation. Its particularity is that-unlike two- or three-lens light-sheet microscopes-it uses a single, low-magnification, high-numerical aperture objective for the generation and scanning of a virtual light sheet. The microscope builds on a modified Nipkow-Petráň spinning-disk scheme for achieving wide-field excitation. However, unlike the Yokogawa design that uses a tandem disk, our concept combines micro lenses, dichroic mirrors and detection pinholes on a single disk. This new design, advantageous for 2P excitation, circumvents problems arising with the tandem disk from the large wavelength difference between the infrared excitation light and visible fluorescence. 2P fluorescence excited by the light sheet is collected with the same objective and imaged onto a fast sCMOS camera. We demonstrate 3-D imaging of TO-PRO3-stained EBs and of brain organoids, uncleared and after rapid partial transparisation with triethanolamine formamide (RTF) and we compare the performance of our instrument to that of a confocal laser-scanning microscope (CLSM) having a similar numerical aperture. Our large-field 2P-spinning disk microscope permits one order of magnitude faster imaging, affords less photobleaching and permits better depth penetration than a confocal microscope with similar spatial resolution.
Collapse
Affiliation(s)
- Irina Rakotoson
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
- Master Program: MASTER Mention Biologie Cellulaire, Physiologie, Pathologies (BCPP), Spécialité Neurosciences, Université Paris Descartes - Paris 5, Paris, France
| | - Brigitte Delhomme
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Philippe Djian
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | | | - Maia Brunstein
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | | | | | - Clément Ricard
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Martin Oheim
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Morgado Brajones J, Clouvel G, Dovillaire G, Levecq X, Lorenzo C. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy. Methods Protoc 2019; 2:mps2030059. [PMID: 31336779 PMCID: PMC6789751 DOI: 10.3390/mps2030059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
High-quality in-depth imaging of three-dimensional samples remains a major challenge in modern microscopy. Selective plane illumination microscopy (SPIM) is a widely used technique that enables imaging of living tissues with subcellular resolution. However, scattering, absorption, and optical aberrations limit the depth at which useful imaging can be done. Adaptive optics (AOs) is a method capable of measuring and correcting aberrations in different kinds of fluorescence microscopes, thereby improving the performance of the optical system. We have incorporated a wavefront sensor adaptive optics scheme to SPIM (WAOSPIM) to correct aberrations induced by optically-thick samples, such as multi-cellular tumor spheroids (MCTS). Two-photon fluorescence provides us with a tool to produce a weak non-linear guide star (NGS) in any region of the field of view. The faintness of NGS; however, led us to develop a high-sensitivity Shack–Hartmann wavefront sensor (SHWS). This paper describes this newly developed SHWS and shows the correction capabilities of WAOSPIM using NGS in thick, inhomogeneous samples like MCTS. We report improvements of up to 79% for spatial frequencies corresponding to cellular and subcellular size features.
Collapse
|
15
|
Enhanced Light Sheet Elastic Scattering Microscopy by Using a Supercontinuum Laser. Methods Protoc 2019; 2:mps2030057. [PMID: 31284373 PMCID: PMC6789506 DOI: 10.3390/mps2030057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022] Open
Abstract
Light sheet fluorescence microscopy techniques have revolutionized biological microscopy enabling low-phototoxic long-term 3D imaging of living samples. Although there exist many light sheet microscopy (LSM) implementations relying on fluorescence, just a few works have paid attention to the laser elastic scattering source of contrast available in every light sheet microscope. Interestingly, elastic scattering can potentially disclose valuable information from the structure and composition of the sample at different spatial scales. However, when coherent scattered light is detected with a camera sensor, a speckled intensity is generated on top of the native imaged features, compromising their visibility. In this work, we propose a novel light sheet based optical setup which implements three strategies for dealing with speckles of elastic scattering images: (i) polarization filtering; (ii) reducing the temporal coherence of the excitation laser light; and, (iii) reducing the spatial coherence of the light sheet. Finally, we show how these strategies enable pristine light-sheet elastic-scattering imaging of structural features in challenging biological samples avoiding the deleterious effects of speckle, and without relying on, but complementing, fluorescent labelling.
Collapse
|
16
|
Booij TH, Price LS, Danen EHJ. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:615-627. [PMID: 30817892 PMCID: PMC6589915 DOI: 10.1177/2472555219830087] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
The introduction of more relevant cell models in early preclinical drug discovery, combined with high-content imaging and automated analysis, is expected to increase the quality of compounds progressing to preclinical stages in the drug development pipeline. In this review we discuss the current switch to more relevant 3D cell culture models and associated challenges for high-throughput screening and high-content analysis. We propose that overcoming these challenges will enable front-loading the drug discovery pipeline with better biology, extracting the most from that biology, and, in general, improving translation between in vitro and in vivo models. This is expected to reduce the proportion of compounds that fail in vivo testing due to a lack of efficacy or to toxicity.
Collapse
Affiliation(s)
- Tijmen H. Booij
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- NEXUS Personalized Health Technologies, ETH Zürich, Switzerland
| | - Leo S. Price
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- OcellO B.V., Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
17
|
Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. Eur J Pharm Biopharm 2019; 142:195-203. [PMID: 31228557 DOI: 10.1016/j.ejpb.2019.06.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 02/01/2023]
Abstract
We recently constructed a multicellular spheroid model of pancreatic tumor based on a triple co-culture of cancer cells, fibroblasts and endothelial cells and characterized by the presence of fibronectin, an important component of the tumor extracellular matrix. By combining cancer cells and stromal components, this model recreates in vitro the three-dimensional (3D) architecture of solid tumors. In this study, we used these hetero-type spheroids as a tool to assess the penetration of doxorubicin (used as a model drug) through the whole tumor mass either in a free form or loaded into polymer nanoparticles (NPs), and we investigated whether microscopy images, acquired by Confocal Laser Scanning Microscopy (CLSM) and Light Sheet Fluorescence Microscopy (LSFM), would be best to provide reliable information on this process. Results clearly demonstrated that CLSM was not suitable to accurately monitor the diffusion of small molecules such as the doxorubicin. Indeed, it only allowed to scan a layer of 100 µm depth and no information on deeper layers could be available because of a progressive loss of the fluorescence signal. On the contrary, a complete 3D tomography of the hetero-type multicellular tumor spheroids (MCTS) was obtained by LSFM and multi-view image fusion which revealed that the fluorescent molecule was able to reach the core of spheroids as large as 1 mm in diameter. However, no doxorubicin-loaded polymer nanoparticles were detected in the spheroids, highlighting the challenge of nanomedicine delivery through biological barriers. Overall, the combination of hetero-type MCTS and LSFM allowed to carry out a highly informative microscopic assessment and represents a suitable approach to precisely follow up the drug penetration in tumors. Accordingly, it could provide useful support in the preclinical investigation and optimization of nanoscale systems for drug delivery to solid tumors.
Collapse
|
18
|
Cancellation of Bessel beam side lobes for high-contrast light sheet microscopy. Sci Rep 2018; 8:17178. [PMID: 30464219 PMCID: PMC6249239 DOI: 10.1038/s41598-018-35006-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 01/25/2023] Open
Abstract
An ideal illumination for light sheet fluorescence microscopy entails both a localized and a propagation invariant optical field. Bessel beams and Airy beams satisfy these conditions, but their non-diffracting feature comes at the cost of the presence of high-energy side lobes that notably degrade the imaging contrast and induce photobleaching. Here, we demonstrate the use of a light droplet illumination whose side lobes are suppressed by interfering Bessel beams of specific k-vectors. Our droplet illumination readily achieves more than 50% extinction of the light distributed across the Bessel side lobes, providing a more efficient energy localization without loss in transverse resolution. In a standard light sheet fluorescence microscope, we demonstrate a two-fold contrast enhancement imaging micron-scale fluorescent beads. Results pave the way to new opportunities for rapid and deep in vivo observations of large-scale biological systems.
Collapse
|
19
|
Aulner N, Danckaert A, Fernandes J, Nicola MA, Roux P, Salles A, Tinevez JY, Shorte SL. Fluorescence imaging host pathogen interactions: fifteen years benefit of hindsight…. Curr Opin Microbiol 2018; 43:193-198. [PMID: 29567588 DOI: 10.1016/j.mib.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/24/2023]
Abstract
We consider in review current state-of-the-art fluorescence microscopy for investigating the host-pathogen interface. Our perspective is honed from years with literally thousands of microbiologists using the variety of imaging technologies available within our dedicated BSL2/BSL3 optical imaging research service facilities at the Institut Pasteur Paris founded from scratch in 2001. During fifteen years learning from the success and failures of introducing different fluorescence imaging technologies, methods, and technical development strategies we provide here a synopsis review of our experience to date and a synthesis of how we see the future in perspective for fluorescence imaging at the host-pathogen interface.
Collapse
Affiliation(s)
- Nathalie Aulner
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Anne Danckaert
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Julien Fernandes
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Marie-Anne Nicola
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Pascal Roux
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Audrey Salles
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Spencer L Shorte
- Institut Pasteur, Citech, Imagopole-UTechS-PBI Photonic BioImaging, 25-28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
20
|
Large Scale Imaging by Fine Spatial Alignment of Multi-Scanning Data with Gel Cube Device. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Elisa Z, Toon B, De Smedt SC, Katrien R, Kristiaan N, Kevin B. Technical implementations of light sheet microscopy. Microsc Res Tech 2018; 81:941-958. [PMID: 29322581 DOI: 10.1002/jemt.22981] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Fluorescence-based microscopy is among the most successful methods in biological studies. It played a critical role in the visualization of subcellular structures and in the analysis of complex cellular processes, and it is nowadays commonly employed in genetic and drug screenings. Among the fluorescence-based microscopy techniques, light sheet fluorescence microscopy (LSFM) has shown a quite interesting set of benefits. The technique combines the speed of epi-fluorescence acquisition with the optical sectioning capability typical of confocal microscopes. Its unique configuration allows the excitation of only a thin plane of the sample, thus fast, high resolution imaging deep inside tissues is nowadays achievable. The low peak intensity with which the sample is illuminated diminishes phototoxic effects and decreases photobleaching of fluorophores, ensuring data collection for days with minimal adverse consequences on the sample. It is no surprise that LSFM applications have raised in just few years and the technique has been applied to study a wide variety of samples, from whole organism, to tissues, to cell clusters, and single cells. As a consequence, in recent years numerous set-ups have been developed, each one optimized for the type of sample in use and the requirements of the question at hand. Hereby, we aim to review the most advanced LSFM implementations to assist new LSFM users in the choice of the LSFM set-up that suits their needs best. We also focus on new commercial microscopes and "do-it-yourself" strategies; likewise we review recent designs that allow a swift integration of LSFM on existing microscopes.
Collapse
Affiliation(s)
- Zagato Elisa
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Brans Toon
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Remaut Katrien
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Neyts Kristiaan
- Liquid Crystals and Photonics Group, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Braeckmans Kevin
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| |
Collapse
|
22
|
Rieckher M, Psycharakis SE, Ancora D, Liapis E, Zacharopoulos A, Ripoll J, Tavernarakis N, Zacharakis G. Demonstrating Improved Multiple Transport-Mean-Free-Path Imaging Capabilities of Light Sheet Microscopy in the Quantification of Fluorescence Dynamics. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/23/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD); University Hospital Cologne; Cologne 50931 Germany
| | - Stylianos E. Psycharakis
- Foundation for Research and Technology Hellas; Institute of Electronic Structure and Laser; N. Plastira 100 Heraklion GR-70013 Crete Greece
| | - Daniele Ancora
- Foundation for Research and Technology Hellas; Institute of Electronic Structure and Laser; N. Plastira 100 Heraklion GR-70013 Crete Greece
| | - Evangelos Liapis
- Foundation for Research and Technology Hellas; Institute of Electronic Structure and Laser; N. Plastira 100 Heraklion GR-70013 Crete Greece
| | - Athanasios Zacharopoulos
- Foundation for Research and Technology Hellas; Institute of Electronic Structure and Laser; N. Plastira 100 Heraklion GR-70013 Crete Greece
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering; Universidad Carlos III de Madrid; Madrid 28911 Spain
| | - Nektarios Tavernarakis
- Foundation for Research and Technology Hellas; Institute of Molecular Biology and Biotechnology; N. Plastira 100 Heraklion GR-70013 Crete Greece
| | - Giannis Zacharakis
- Foundation for Research and Technology Hellas; Institute of Electronic Structure and Laser; N. Plastira 100 Heraklion GR-70013 Crete Greece
| |
Collapse
|
23
|
Hu B, Bolus D, Brown JQ. Improved contrast in inverted selective plane illumination microscopy of thick tissues using confocal detection and structured illumination. BIOMEDICAL OPTICS EXPRESS 2017; 8:5546-5559. [PMID: 29296487 PMCID: PMC5745102 DOI: 10.1364/boe.8.005546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 05/08/2023]
Abstract
Inverted selective plane illumination microscopy (iSPIM) enables fast, large field-of-view, long term imaging with compatibility with conventional sample mounting. However, the imaging quality can be deteriorated in thick tissues due to sample scattering. Three strategies have been adopted in this paper to optimize the imaging performance of iSPIM on thick tissue imaging: electronic confocal slit detection (eCSD), structured illumination (SI) and the two combined. We compared the image contrast when using SPIM, confocal SPIM (using eCSD alone), SI SPIM (using SI alone) or confocal-SI SPIM (combining both methods) on images of gelatin phantom and highly-scattering fluorescently-stained human tissue. We demonstrate that all the three methods showed remarkable contrast enhancement on both samples compared to iSPIM alone, and SI SPIM and the combined confocal-SI mode outperformed confocal SPIM in contrast enhancement. Moreover, the use of SI at high pattern frequencies outperformed confocal SPIM in terms of optical sectioning capability. However, image signal-to-noise ratio (SNR) was decreased at high pattern frequencies when imaging scattering samples with SI SPIM. By combining eCSD with SI to reduce background signal and noise, the superior optical sectioning performance of SI could be achieved while also maintaining high image SNR.
Collapse
|