1
|
Sears JC, Broadie K. PKA restricts ERK signaling in learning and memory Kenyon cell neurons. Cell Signal 2025; 132:111818. [PMID: 40250698 DOI: 10.1016/j.cellsig.2025.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Protein Kinase A (PKA) and Extracellular Signal-Regulated Kinase (ERK) have core roles in learning and memory. Here, we investigate kinase-kinase signaling interactions in the Drosophila brain Kenyon cell learning/memory circuit using separation of phases-based activity reporter of kinase (SPARK) biosensors to image circuit-localized functions in vivo. We find that constitutively active Rapidly Accelerated Fibrosarcoma (RAFgof) enhances ERK signaling only in Kenyon cell domains with low baseline PKA signaling, and that transgenic inhibition of PKA function elevates ERK signaling. Conversely, loss of ERK has no impact on PKA signaling, whereas RAFgof expands PKA signaling. Importantly, transgenic PKA inhibition together with RAFgof synergistically elevates ERK signaling. These findings indicate a negative PKA-ERK pathway interaction within learning/memory Kenyon cells. We find that potentiating circuit activity using an exogenous NaChBac ion channel elevates PKA signaling in circuit domains with low baseline PKA function, and uniformly strongly increases ERK signaling. Similarly, thermogenetic stimulation of circuit activity with a temperature-sensitive TRPA1 channel increases PKA signaling in circuit domains of low baseline PKA, and elevates ERK signaling. Importantly, potentiating circuit activity (NaChBac) while also inhibiting PKA function synergistically elevates ERK signaling. Likewise, conditional induction of circuit activity (TRPA1) together with PKA inhibition increases activity-dependent ERK signaling. Finally, a mechanically-induced seizure model (bang-sensitive sesB mutant) elevates PKA signaling, while simultaneous transgenic PKA inhibition in this model acts to synergistically increase ERK signaling. Taken together, we conclude PKA limits ERK signaling in Kenyon cells within the learning and memory circuit, with PKA function acting to restrict activity-dependent ERK signaling.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA; Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
2
|
Nakajima K, Idegami A, Oiso S. Preventive Effects of Hochuekkito on Decline in Brain-Derived Neurotrophic Factor Serum Levels in Senescence-Accelerated Mouse Prone 10. J Oleo Sci 2025; 74:429-434. [PMID: 40175123 DOI: 10.5650/jos.ess24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The reduction of brain-derived neurotrophic factor (BDNF) is associated with Alzheimer's disease and depression. Senescence-accelerated mouse prone 10 (SAMP10), a rapid aging animal model, exhibits age-related cognitive deficits and depression-like behavior; however, it is unclear the variation of serum BDNF levels. Here, we showed that serum BDNF levels in SAMP10 were lower than those in the normal aging characteristics mouse SAM-resistant 1 (SAMR1), and Hochuekkito suppressed the decline of serum BDNF levels in SAMP10. These results suggest that SAMP10 may be used as an animal model in decreasing serum BDNF levels and Hochuekkito could prevent the age-related BDNF decline.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Aimi Idegami
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
3
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
4
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Sears JC, Broadie K. Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry. J Neurosci 2024; 44:e1126232024. [PMID: 38267256 PMCID: PMC10957217 DOI: 10.1523/jneurosci.1126-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
6
|
Sibarov DA, Tsytsarev V, Volnova A, Vaganova AN, Alves J, Rojas L, Sanabria P, Ignashchenkova A, Savage ED, Inyushin M. Arc protein, a remnant of ancient retrovirus, forms virus-like particles, which are abundantly generated by neurons during epileptic seizures, and affects epileptic susceptibility in rodent models. Front Neurol 2023; 14:1201104. [PMID: 37483450 PMCID: PMC10361770 DOI: 10.3389/fneur.2023.1201104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
A product of the immediate early gene Arc (Activity-regulated cytoskeleton-associated protein or Arc protein) of retroviral ancestry resides in the genome of all tetrapods for millions of years and is expressed endogenously in neurons. It is a well-known protein, very important for synaptic plasticity and memory consolidation. Activity-dependent Arc expression concentrated in glutamatergic synapses affects the long-time synaptic strength of those excitatory synapses. Because it modulates excitatory-inhibitory balance in a neuronal network, the Arc gene itself was found to be related to the pathogenesis of epilepsy. General Arc knockout rodent models develop a susceptibility to epileptic seizures. Because of activity dependence, synaptic Arc protein synthesis also is affected by seizures. Interestingly, it was found that Arc protein in synapses of active neurons self-assemble in capsids of retrovirus-like particles, which can transfer genetic information between neurons, at least across neuronal synaptic boutons. Released Arc particles can be accumulated in astrocytes after seizures. It is still not known how capsid assembling and transmission timescale is affected by seizures. This scientific field is relatively novel and is experiencing swift transformation as it grapples with difficult concepts in light of evolving experimental findings. We summarize the emergent literature on the subject and also discuss the specific rodent models for studying Arc effects in epilepsy. We summarized both to clarify the possible role of Arc-related pseudo-viral particles in epileptic disorders, which may be helpful to researchers interested in this growing area of investigation.
Collapse
Affiliation(s)
- Dmitry A. Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Janaina Alves
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | - Legier Rojas
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | - Priscila Sanabria
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | | | | | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| |
Collapse
|
7
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
8
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Nakajima K, Okubo S, Oiso S. Increasing Effect of Citrus natsudaidai on Brain-Derived Neurotrophic Factor. J Oleo Sci 2023; 72:245-255. [PMID: 36631105 DOI: 10.5650/jos.ess22324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The increase in brain-derived neurotrophic factor (BDNF) in the brain is beneficial for the treatment of depression, Alzheimer's disease (AD), and Parkinson's disease (PD); BDNF can cross the blood-brain barrier. Therefore, foods that elevate BDNF concentration in peripheral tissues may increase BDNF in the brain and thereby induce preventive and therapeutic effects against depression, AD, and PD. In this study, we aimed to determine whether Citrus natsudaidai extracts can increase BDNF concentration using the human kidney adenocarcinoma cell line ACHN, which has BDNF-producing and -secreting abilities. As test samples, methanol extracts of C. natsudaidai peel and pulp, and their n-hexane, ethyl acetate, n-butanol, and water fractions were prepared. The BDNF concentrations in culture medium of ACHN cells were assayed after 24 h cultivation in the presence of test samples. Compared with that of control (non-treated) cells, the BDNF concentration increased in the culture medium of ACHN cells treated with the methanol extract of C. natsudaidai peel and its hexane, butanol, and water fractions, as well as the butanol and water fractions of the pulp extract. Quantitative reverse transcription-polymerase chain reaction analysis revealed that ACHN cells treated with the butanol fractions of the peel and pulp extracts showed elevated levels of BDNF mRNA compared with those of non-treated cells. C. natsudaidai may increase BDNF concentration by acting on peripheral tissues and could be a medication for the prevention and treatment of depression, AD, and PD.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shinya Okubo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
10
|
Gao Q, Zhang C, Li J, Xu H, Guo X, Guo Q, Zhao C, Yao H, Jia Y, Zhu H. Melatonin Attenuates H 2O 2-Induced Oxidative Injury by Upregulating LncRNA NEAT1 in HT22 Hippocampal Cells. Int J Mol Sci 2022; 23:12891. [PMID: 36361683 PMCID: PMC9657978 DOI: 10.3390/ijms232112891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/16/2023] Open
Abstract
More research is required to understand how melatonin protects neurons. The study aimed to find out if and how long non-coding RNA (lncRNA) contributes to melatonin's ability to defend the hippocampus from H2O2-induced oxidative injury. LncRNAs related to oxidative injury were predicted by bioinformatics methods. Mouse hippocampus-derived neuronal HT22 cells were treated with H2O2 with or without melatonin. Viability and apoptosis were detected by Cell Counting Kit-8 and Hoechst33258. RNA and protein levels were measured by quantitative real-time PCR, Western blot, and immunofluorescence. Bioinformatics predicted that 38 lncRNAs were associated with oxidative injury in mouse neurons. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) was related to H2O2-induced oxidative injury and up-regulated by melatonin in HT22 cells. The knockdown of NEAT1 exacerbated H2O2-induced oxidative injury, weakened the moderating effect of melatonin, and abolished the increasing effect of melatonin on the mRNA and protein level of Slc38a2. Taken together, melatonin attenuates H2O2-induced oxidative injury by upregulating lncRNA NEAT1, which is essential for melatonin stabilizing the mRNA and protein level of Slc38a2 for the survival of HT22 cells. The research may assist in the treatment of oxidative injury-induced hippocampal degeneration associated with aging using melatonin and its target lncRNA NEAT1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
11
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
12
|
Hanuscheck N, Thalman C, Domingues M, Schmaul S, Muthuraman M, Hetsch F, Ecker M, Endle H, Oshaghi M, Martino G, Kuhlmann T, Bozek K, van Beers T, Bittner S, von Engelhardt J, Vogt J, Vogelaar CF, Zipp F. Interleukin-4 receptor signaling modulates neuronal network activity. J Exp Med 2022; 219:213227. [PMID: 35587822 PMCID: PMC9123307 DOI: 10.1084/jem.20211887] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/13/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα–deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα–deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα–deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.
Collapse
Affiliation(s)
- Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Ecker
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko Endle
- Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mohammadsaleh Oshaghi
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Münster, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne; University of Cologne, Cologne, Germany
| | - Tim van Beers
- Molecular Cell Biology, Institute I of Anatomy, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jakob von Engelhardt
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
13
|
The Emerging Roles of Long Non-Coding RNAs in Intellectual Disability and Related Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23116118. [PMID: 35682796 PMCID: PMC9181295 DOI: 10.3390/ijms23116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
In the human brain, long non-coding RNAs (lncRNAs) are widely expressed in an exquisitely temporally and spatially regulated manner, thus suggesting their contribution to normal brain development and their probable involvement in the molecular pathology of neurodevelopmental disorders (NDD). Bypassing the classic protein-centric conception of disease mechanisms, some studies have been conducted to identify and characterize the putative roles of non-coding sequences in the genetic pathogenesis and diagnosis of complex diseases. However, their involvement in NDD, and more specifically in intellectual disability (ID), is still poorly documented and only a few genomic alterations affecting the lncRNAs function and/or expression have been causally linked to the disease endophenotype. Considering that a significant fraction of patients still lacks a genetic or molecular explanation, we expect that a deeper investigation of the non-coding genome will unravel novel pathogenic mechanisms, opening new translational opportunities. Here, we present evidence of the possible involvement of many lncRNAs in the etiology of different forms of ID and NDD, grouping the candidate disease-genes in the most frequently affected cellular processes in which ID-risk genes were previously collected. We also illustrate new approaches for the identification and prioritization of NDD-risk lncRNAs, together with the current strategies to exploit them in diagnosis.
Collapse
|
14
|
Hwang Y, Kim HC, Shin EJ. Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology 2021; 460:152887. [PMID: 34352349 DOI: 10.1016/j.tox.2021.152887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Microcystin-leucine-arginine (MLCR) is a cyanobacterial toxin, and has been demonstrated to cause neurotoxicity. In addition, MCLR has been identified as an inhibitor of protein phosphatase (PP)1 and PP2A, which are known to regulate the phosphorylation of various molecules related to synaptic excitability. Thus, in the present study, we examined whether MCLR exposure affects seizures induced by a low dose of kainic acid (KA; 0.05 μg, i.c.v.) administration. KA-induced seizure occurrence and seizure score significantly increased after repeated exposure to MCLR (2.5 or 5.0 μg/kg, i.p., once a day for 10 days), but not after acute MCLR exposure (2.5 or 5.0 μg/kg, i.p., 2 h and 30 min prior to KA administration), and hippocampal neuronal loss was consistently facilitated by repeated exposure to MCLR. In addition, repeated MCLR significantly elevated the membrane expression of kainate receptor GluK2 subunits, p-pan-protein kinase C (PKC), and p-extracellular signal-related kinase (ERK) at 1 h after KA. However, KA-induced membrane expression of Ca2+/calmodulin-dependent kinase II (CaMKII) was significantly reduced by repeated MCLR exposure. Consistent with the enhanced seizures and neurodegeneration, MCLR exposure significantly potentiated KA-induced oxidative stress and microglial activation, which was accompanied by increased expression of p-ERK and p-PKCδ in the hippocampus. The combined results suggest that repeated MCLR exposure potentiates KA-induced excitotoxicity in the hippocampus by increasing membrane GluK2 expression and enhancing oxidative stress and neuroinflammation through the modulation of p-CaMKII, p-PKC, and p-ERK.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Kohtala S. Ketamine-50 years in use: from anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol Rep 2021; 73:323-345. [PMID: 33609274 PMCID: PMC7994242 DOI: 10.1007/s43440-021-00232-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Over the past 50 years, ketamine has solidified its position in both human and veterinary medicine as an important anesthetic with many uses. More recently, ketamine has been studied and used for several new indications, ranging from chronic pain to drug addiction and post-traumatic stress disorder. The discovery of the rapid-acting antidepressant effects of ketamine has resulted in a surge of interest towards understanding the precise mechanisms driving its effects. Indeed, ketamine may have had the largest impact for advancements in the research and treatment of psychiatric disorders in the past few decades. While intense research efforts have been aimed towards uncovering the molecular targets underlying ketamine's effects in treating depression, the underlying neurobiological mechanisms remain elusive. These efforts are made more difficult by ketamine's complex dose-dependent effects on molecular mechanisms, multiple pharmacologically active metabolites, and a mechanism of action associated with the facilitation of synaptic plasticity. This review aims to provide a brief overview of the different uses of ketamine, with an emphasis on examining ketamine's rapid antidepressant effects spanning molecular, cellular, and network levels. Another focus of the review is to offer a perspective on studies related to the different doses of ketamine used in antidepressant research. Finally, the review discusses some of the latest hypotheses concerning ketamine's action.
Collapse
Affiliation(s)
- Samuel Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P. O. Box 56, 00014, Helsinki, Finland.
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Feil Family Brain and Mind Research Institute, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Lo AC, Rajan N, Gastaldo D, Telley L, Hilal ML, Buzzi A, Simonato M, Achsel T, Bagni C. Absence of RNA-binding protein FXR2P prevents prolonged phase of kainate-induced seizures. EMBO Rep 2021; 22:e51404. [PMID: 33779029 PMCID: PMC8024897 DOI: 10.15252/embr.202051404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Status epilepticus (SE) is a condition in which seizures are not self-terminating and thereby pose a serious threat to the patient's life. The molecular mechanisms underlying SE are likely heterogeneous and not well understood. Here, we reveal a role for the RNA-binding protein Fragile X-Related Protein 2 (FXR2P) in SE. Fxr2 KO mice display reduced sensitivity specifically to kainic acid-induced SE. Immunoprecipitation of FXR2P coupled to next-generation sequencing of associated mRNAs shows that FXR2P targets are enriched in genes that encode glutamatergic post-synaptic components. Of note, the FXR2P target transcriptome has a significant overlap with epilepsy and SE risk genes. In addition, Fxr2 KO mice fail to show sustained ERK1/2 phosphorylation induced by KA and present reduced burst activity in the hippocampus. Taken together, our findings show that the absence of FXR2P decreases the expression of glutamatergic proteins, and this decrease might prevent self-sustained seizures.
Collapse
Affiliation(s)
- Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicholas Rajan
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Muna L Hilal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Buzzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
17
|
McCluggage F, Fox AH. Paraspeckle nuclear condensates: Global sensors of cell stress? Bioessays 2021; 43:e2000245. [PMID: 33748979 DOI: 10.1002/bies.202000245] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Paraspeckles are nuclear condensates, or membranelees organelles, that are built on the long noncoding RNA, NEAT1, and have been linked to many diseases. Although originally described as constitutive structures, here, in reviewing this field, we develop the hypothesis that cells increase paraspeckle abundance as part of a general stress response, to aid pro-survival pathways. Paraspeckles increase in many scenarios: when cells transform from one state to another, become infected with viruses and bacteria, begin to degenerate, under inflammation, in aging, and in cancer. Cells increase paraspeckles by increasing transcription of NEAT1 and adjusting its RNA processing. These increases in NEAT1 are driven by numerous stress-sensing signaling pathways, including signaling to mitochondria and stress granules, revealing crosstalk between the cytoplasm and nucleoplasm in the stress response. Thus, paraspeckles are an important piece of the puzzle in cellular homeostasis, and could be considered RNA-scaffolded nuclear equivalents of dynamic stress-induced structures that form in the cytoplasm. We speculate that, in general, cells rely on phase-separated paraspeckles to transiently tweak gene regulation in times of cellular flux.
Collapse
Affiliation(s)
- Finn McCluggage
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia.,School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Archa H Fox
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia.,School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
18
|
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021; 7:ncrna7010022. [PMID: 33799572 PMCID: PMC8005948 DOI: 10.3390/ncrna7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.
Collapse
Affiliation(s)
- Isabela I. Barros
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Vitor Leão
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Jessica O. Santis
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Reginaldo C. A. Rosa
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Danielle B. Brotto
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Camila B. Storti
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Ádamo D. D. Siena
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Greice A. Molfetta
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Wilson A. Silva
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Center for Integrative Systems Biology-CISBi, NAP/USP, Ribeirão Preto Medical School, University of São Paulo, Rua Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Department of Medicine at the Midwest State University of Paraná-UNICENTRO, and Guarapuava Institute for Cancer Research, Rua Fortim Atalaia, 1900, Cidade dos Lagos, Guarapuava 85100-000, Brazil
- Correspondence: ; Tel.: +55-16-3315-3293
| |
Collapse
|
19
|
Matsukawa K, Kukharsky MS, Park SK, Park S, Watanabe N, Iwatsubo T, Hashimoto T, Liebman SW, Shelkovnikova TA. Long non-coding RNA NEAT1_1 ameliorates TDP-43 toxicity in in vivo models of TDP-43 proteinopathy. RNA Biol 2021; 18:1546-1554. [PMID: 33427561 PMCID: PMC8583295 DOI: 10.1080/15476286.2020.1860580] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathological changes involving TDP-43 protein (‘TDP-43 proteinopathy’) are typical for several neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). FTLD-TDP cases are characterized by increased binding of TDP-43 to an abundant lncRNA, NEAT1, in the cortex. However it is unclear whether enhanced TDP-43-NEAT1 interaction represents a protective mechanism. We show that accumulation of human TDP-43 leads to upregulation of the constitutive NEAT1 isoform, NEAT1_1, in cultured cells and in the brains of transgenic mice. Further, we demonstrate that overexpression of NEAT1_1 ameliorates TDP-43 toxicity in Drosophila and yeast models of TDP-43 proteinopathy. Thus, NEAT1_1 upregulation may be protective in TDP-43 proteinopathies affecting the brain. Approaches to boost NEAT1_1 expression in the CNS may prove useful in the treatment of these conditions.
Collapse
Affiliation(s)
- Koji Matsukawa
- Department of Neuropathology, University of Tokyo, Tokyo, Japan
| | - Michail S Kukharsky
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | | | - Sangeun Park
- Department of Pharmacology, University of Nevada, Reno, USA
| | | | | | | | | | | |
Collapse
|
20
|
Nguyen LP, Nguyen HT, Yong HJ, Reyes-Alcaraz A, Lee YN, Park HK, Na YH, Lee CS, Ham BJ, Seong JY, Hwang JI. Establishment of a NanoBiT-Based Cytosolic Ca 2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels. Mol Cells 2020; 43:909-920. [PMID: 33162399 PMCID: PMC7700839 DOI: 10.14348/molcells.2020.0144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.
Collapse
Affiliation(s)
- Lan Phuong Nguyen
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Huong Thi Nguyen
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyo Jeong Yong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | | | - Yoo-Na Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hee-Kyung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Yun Hee Na
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Cheol Soon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul 02841, Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
21
|
Denkena J, Zaisser A, Merz B, Klinger B, Kuhl D, Blüthgen N, Hermey G. Neuronal activity regulates alternative exon usage. Mol Brain 2020; 13:148. [PMID: 33172478 PMCID: PMC7656758 DOI: 10.1186/s13041-020-00685-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Neuronal activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. A large number of genes regulated by different neuronal plasticity inducing pathways have been identified, but altered gene expression levels represent only part of the complexity of the activity-regulated transcriptional program. Alternative splicing, the differential inclusion and exclusion of exonic sequence in mRNA, is an additional mechanism that is thought to define the activity-dependent transcriptome. Here, we present a genome wide microarray-based survey to identify exons with increased expression levels at 1, 4 or 8 h following neuronal activity in the murine hippocampus provoked by generalized seizures. We used two different bioinformatics approaches to identify alternative activity-induced exon usage and to predict alternative splicing, ANOSVA (ANalysis Of Splicing VAriation) which we here adjusted to accommodate data from different time points and FIRMA (Finding Isoforms using Robust Multichip Analysis). RNA sequencing, in situ hybridization and reverse transcription PCR validate selected activity-dependent splicing events of previously described and so far undescribed activity-regulated transcripts, including Homer1a, Homer1d, Ania3, Errfi1, Inhba, Dclk1, Rcan1, Cda, Tpm1 and Krt75. Taken together, our survey significantly adds to the comprehensive understanding of the complex activity-dependent neuronal transcriptomic signature. In addition, we provide data sets that will serve as rich resources for future comparative expression analyses.
Collapse
Affiliation(s)
- Johanna Denkena
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Andrea Zaisser
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Barbara Merz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bertram Klinger
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
22
|
Simko EAJ, Liu H, Zhang T, Velasquez A, Teli S, Haeusler AR, Wang J. G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res 2020; 48:7421-7438. [PMID: 32496517 PMCID: PMC7367201 DOI: 10.1093/nar/gkaa475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
The long non-coding RNA NEAT1 serves as a scaffold for the assembly of paraspeckles, membraneless nuclear organelles involved in gene regulation. Paraspeckle assembly requires NEAT1 recruitment of the RNA-binding protein NONO, however the NEAT1 elements responsible for recruitment are unknown. Herein we present evidence that previously unrecognized structural features of NEAT1 serve an important role in these interactions. Led by the initial observation that NONO preferentially binds the G-quadruplex conformation of G-rich C9orf72 repeat RNA, we find that G-quadruplex motifs are abundant and conserved features of NEAT1. Furthermore, we determine that NONO binds NEAT1 G-quadruplexes with structural specificity and provide evidence that G-quadruplex motifs mediate NONO-NEAT1 association, with NONO binding sites on NEAT1 corresponding largely to G-quadruplex motifs, and treatment with a G-quadruplex-disrupting small molecule causing dissociation of native NONO-NEAT1 complexes. Together, these findings position G-quadruplexes as a primary candidate for the NONO-recruiting elements of NEAT1 and provide a framework for further investigation into the role of G-quadruplexes in paraspeckle formation and function.
Collapse
Affiliation(s)
- Eric A J Simko
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adan Velasquez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shraddha Teli
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron R Haeusler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Kukharsky MS, Ninkina NN, An H, Telezhkin V, Wei W, Meritens CRD, Cooper-Knock J, Nakagawa S, Hirose T, Buchman VL, Shelkovnikova TA. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry 2020; 10:171. [PMID: 32467583 PMCID: PMC7256041 DOI: 10.1038/s41398-020-0854-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
NEAT1 is a highly and ubiquitously expressed long non-coding RNA (lncRNA) which serves as an important regulator of cellular stress response. However, the physiological role of NEAT1 in the central nervous system (CNS) is still poorly understood. In the current study, we addressed this by characterising the CNS function of the Neat1 knockout mouse model (Neat1-/- mice), using a combination of behavioural phenotyping, electrophysiology and expression analysis. RNAscope® in situ hybridisation revealed that in wild-type mice, Neat1 is expressed across the CNS regions, with high expression in glial cells and low expression in neurons. Loss of Neat1 in mice results in an inadequate reaction to physiological stress manifested as hyperlocomotion and panic escape response. In addition, Neat1-/- mice display deficits in social interaction and rhythmic patterns of activity but retain normal motor function and memory. Neat1-/- mice do not present with neuronal loss, overt neuroinflammation or gross synaptic dysfunction in the brain. However, cultured Neat1-/- neurons are characterised by hyperexcitability and dysregulated calcium homoeostasis, and stress-induced neuronal activity is also augmented in Neat1-/- mice in vivo. Gene expression analysis showed that Neat1 may act as a weak positive regulator of multiple genes in the brain. Furthermore, loss of Neat1 affects alternative splicing of genes important for the CNS function and implicated in neurological diseases. Overall, our data suggest that Neat1 is involved in stress signalling in the brain and fine-tunes the CNS functions to enable adaptive behaviour in response to physiological stress.
Collapse
Affiliation(s)
- Michail S Kukharsky
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Natalia N Ninkina
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Haiyan An
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
| | - Wenbin Wei
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Tetsuro Hirose
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Tatyana A Shelkovnikova
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation.
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
24
|
Naumova AA, Oleynik EA, Chernigovskaya EV, Glazova MV. Glutamatergic Fate of Neural Progenitor Cells of Rats with Inherited Audiogenic Epilepsy. Brain Sci 2020; 10:brainsci10050311. [PMID: 32455746 PMCID: PMC7288135 DOI: 10.3390/brainsci10050311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is associated with aberrant neurogenesis in the hippocampus and may underlie the development of hereditary epilepsy. In the present study, we analyzed the differentiation fate of neural progenitor cells (NPC), which were isolated from the hippocampus of embryos of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic epilepsy. NPCs from embryos of Wistar rats were used as the control. We found principal differences between Wistar and KM NPC in unstimulated controls: Wistar NPC culture contained both gamma-aminobutyric acid (GABA) and glutamatergic neurons; KM NPC culture was mainly represented by glutamatergic cells. The stimulation of glutamatergic differentiation of Wistar NPC resulted in a significant increase in glutamatergic cell number that was accompanied by the activation of protein kinase A. The stimulation of KM NPC led to a decrease in immature glutamatergic cell number and was associated with the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B/ glycogen synthase kinase 3 beta (Akt/GSK3β), which indicates the activation of glutamatergic cell maturation. These results suggest genetically programmed abnormalities in KM rats that determine the glutamatergic fate of NPC and contribute to the development of audiogenic epilepsy.
Collapse
|
25
|
Hermey G, Hoffmeister-Ullerich SA, Merz B, Groß D, Kuhl D, Kins S. Amyloidosis causes downregulation of SorLA, SorCS1 and SorCS3 expression in mice. Biol Chem 2020; 400:1181-1189. [PMID: 31095505 DOI: 10.1515/hsz-2019-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022]
Abstract
Accumulation of β-amyloid peptide (Aβ) is regarded as a primary cause of Alzheimer's disease (AD). Aβ is derived by sequential cleavage of the amyloid precursor protein (APP). Alterations in the subcellular targeting of APP are thought to affect the degree of Aβ production. Sorting receptors, such as SorLA, convey subcellular targeting of APP. Dysfunction of SorLA, and likely of the related receptors SorCS1 and SorCS3, cause AD. Nevertheless, disease progression could also provoke altered expression of the receptors. Here, we assessed if Aβ plaque formation promotes altered expression of SorLA, SorCS1 and SorCS3. We analyzed transcript levels during aging and after amyloidosis in brain areas characterized by early amyloid plaque formation in an AD mouse model (APPPS1) and wild types. We observed stable expression levels during aging (1-12 months). After plaque formation, SorCS1 and SorLA expression were markedly reduced in the frontal cerebral cortex and to a minor extent in the hippocampus, whereas SorCS3 expression was solely reduced in the frontal cerebral cortex. Our results indicate that disease progression, associated with Aβ accumulation, can negatively regulate expression of the receptors.
Collapse
Affiliation(s)
- Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Sabine A Hoffmeister-Ullerich
- Bioanalytics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Barbara Merz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Dagmar Groß
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
26
|
Long noncoding RNA NEAT1 is involved in the protective effect of Klotho on renal tubular epithelial cells in diabetic kidney disease through the ERK1/2 signaling pathway. Exp Mol Med 2020; 52:266-280. [PMID: 32054986 PMCID: PMC7062691 DOI: 10.1038/s12276-020-0381-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 01/01/2020] [Indexed: 11/16/2022] Open
Abstract
Klotho, an antiaging protein, has been shown to play a protective role in renal tubular epithelial-mesenchymal transition (EMT) during the development of diabetic kidney disease (DKD). Long noncoding RNAs (lncRNAs) participate in the progression of EMT in many diseases. However, the effect of Klotho on lncRNAs during the development of DKD is still unknown. In this study, we found that Klotho overexpression in high-fat diet (HFD)- and streptozotocin (STZ)-induced DKD mice significantly inhibited the expression of lncRNA nuclear-enriched abundant transcript 1 (Neat1). We demonstrated that NEAT1 was significantly upregulated in both bovine serum albumin (BSA)-stimulated HK2 cells and mice with HFD- and STZ-induced diabetes. In addition, we observed that Klotho displays colocalization with NEAT1. Furthermore, overexpression of Klotho can inhibit the high expression of NEAT1 in BSA-stimulated HK2 cells, while silencing Klotho can further upregulate the expression of NEAT1. Silencing NEAT1 in HK2 cells resulted in inhibition of the EMT-related markers alpha smooth muscle actin (α-SMA) and vimentin (VIM) and the renal fibrosis-related markers transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). The effect of NEAT1 on DKD was partly mediated by regulation of the ERK1/2 signaling pathway. Finally, we found that silencing NEAT1 can reverse the activation of EMT and fibrosis caused by Klotho silencing in a manner dependent on the ERK1/2 signaling pathway. These findings reveal a new regulatory pathway by which Klotho regulates ERK1/2 signaling via NEAT1 to protect against EMT and renal fibrosis, suggesting that NEAT1 is a potential therapeutic target for DKD. An anti-ageing protein called Klotho helps protect against kidney failure in mice and human cells by silencing a long non-coding RNA molecule. The regulatory RNA involved, known as NEAT1, promotes cellular transformations associated with the disease process. A team led by Yao-Ming Xue from Southern Medical University in Guangdong, China, showed that levels of NEAT1 are elevated in mouse models of diabetic kidney disease and in injured human kidney calls. The identification of NEAT1 in kidney disease thus provides a novel therapeutic target. After demonstrating that Klotho and NEAT1 interact directly with each other in cells, they experimentally boosted Klotho expression and observed suppressed levels of NEAT1. As a consequence, the cells displayed lower levels of the proteins linked to the progressive deposition of fibrosis in the kidneys.
Collapse
|
27
|
Effect of Bortezomib on Global Gene Expression in PC12-Derived Nerve Cells. Int J Mol Sci 2020; 21:ijms21030751. [PMID: 31979371 PMCID: PMC7038167 DOI: 10.3390/ijms21030751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Peripheral neuropathy is one of the main side-effects of novel therapeutics used in oncohematological diseases, but the molecular basis underlying its development and progression as well as neurotoxicity mechanisms induced by the use of these therapeutics are still not fully elucidated. The aim of this study was to demonstrate the effect of bortezomib on global gene and miRNA expression on PC12-derived nerve cells. Microarray analysis showed that expression of 1383 genes was downregulated at least two fold and 671 genes were upregulated at least two fold in PC12-derived nerve cells treated with bortezomib compared to untreated/control cells. Analysis of functional annotations mainly identified downregulated processes (e.g., regulation of cell cycle, DNA replication and repair, regulation of cell migration, neuron projection morphogenesis and neurotransmitter secretion). The result of miRNA expression analysis demonstrated only 11 significantly downregulated miRNAs (at least two fold) in bortezomib-treated PC12-derived nerve cells vs. control cells. MiRNAs regulate gene expression, therefore we decided to conduct an analysis comparing the outcomes of miRNA microarray expression data to the obtained mRNA data. The most interesting miRNA–target gene correlation is downregulated expression of miR-130a-3p and miR-152-3p and as a result of this downregulation the expression of the Gadd45 increased. This gene is a member of a group of genes, the transcript expression of which is enhanced after stressful growth arrest conditions and treatment with DNA-damaging agents like drugs or mutagens.
Collapse
|
28
|
Chen A, Jiang P, Zeb F, Wu X, Xu C, Chen L, Feng Q. EGCG regulates CTR1 expression through its pro-oxidative property in non-small-cell lung cancer cells. J Cell Physiol 2020; 235:7970-7981. [PMID: 31943177 DOI: 10.1002/jcp.29451] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Copper transporter 1 (CTR1) plays an important role in increasing cisplatin intake. Our previous studies showed that CTR1 expression was upregulated by (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, therefore enhanced cisplatin sensitivity in ovary cancer and non-small-cell lung cancer (NSCLC) cells. In the current study in the non-small-cell lung cancer cells, we uncovered a potential mechanism of EGCG-induced CTR1 through its pro-oxidative property. We found that EGCG increased reactive oxygen species (ROS) generation, while in the presence of ROS scavenger N-acetyl-cysteine (NAC), ROS production was eliminated. Changes of CTR1 expression were consistent with the ROS level. Simultaneously, EGCG downregulated ERK1/2 while upregulated lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) through ROS to induce CTR1 expression. Besides, in a nude mouse xenografts model, EGCG treatment raised ROS level, expression of CTR1 and NEAT1 in tumor tissue. Also, ERK1/2 and p-ERK1/2 were suppressed as well. Taken together, these results suggested a novel mechanism that EGCG mediated ROS to regulate CTR1 expression through the ERK1/2/NEAT1 signaling pathway, which provided more possibilities for EGCG as a natural agent in adjuvant therapy of lung cancer.
Collapse
Affiliation(s)
- Aochang Chen
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Jiang
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Falak Zeb
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyue Wu
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuyue Xu
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijun Chen
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Feng
- Key Laboratory of Toxicology, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Karouzaki S, Peta C, Tsirimonaki E, Mangoura D. PKCε-dependent H-Ras activation encompasses the recruitment of the RasGEF SOS1 and of the RasGAP neurofibromin in the lipid rafts of embryonic neurons. Neurochem Int 2019; 131:104582. [PMID: 31629778 DOI: 10.1016/j.neuint.2019.104582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
The spatial organization of plasma membrane proteins is a key factor in the generation of distinct signal outputs, especially for PKC/Ras/ERK signalling. Regulation of activation of the membrane-bound Ras, critical for neuronal differentiation and highly specialized functions, is controlled by exchanges in nucleotides catalyzed by nucleotide exchange factors (GEFs) for GTP loading and Ras activation, and by Ras GTPase Activated Proteins (RasGAPs) that lead to activation of the intrinsic GTPase activity of Ras and thus its inactivation. PKCs are potent Ras activators yet the mechanistic details of these interactions, or the involvement of specific PKC isoforms are now beginning to be addressed. Even less known is the topology where RasGAPs terminate Ras activation. Towards this aim, we isolated lipid rafts from chick embryo neural tissue and primary neuronal cultures when PKCε is the prominent isoform and in combination with in vitro kinase assays, we now show that, in response the PKCε-specific activating peptide ψεRACK, an activated PKCε is recruited to lipid rafts; similar mobility was established when PKCε was physiologically activated with the Cannabinoid receptor 1 (CB1) agonist methanandamide. Activation of H-Ras for both agents was then established for the first time using in vivo RasGAP activity assays, which showed similar temporal profiles of activation and lateral mobility. Moreover, we found that the GEF SOS1, and the major neuronal RasGAP neurofibromin, a specific PKCε substrate, were both transiently significantly enriched in the rafts. Finally, our in silico analysis revealed a highly probable, conserved palmitoylation site adjacent to a CARC motif on neurofibromin, both of which are included only in the RasGAP related domain type I (GRDI) with the known high H-RasGAP activity. Taken together, these results suggest that PKCε activation regulates the spatial plasma membrane enrichments of both SOS1 and neurofibromin, thus controlling the output of activated H-Ras available for downstream signalling in neurons.
Collapse
Affiliation(s)
- Sophia Karouzaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Charoula Peta
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Emmanouella Tsirimonaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece.
| |
Collapse
|
30
|
Gangarossa G, Castell L, Castro L, Tarot P, Veyrunes F, Vincent P, Bertaso F, Valjent E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J Neurochem 2019; 151:204-226. [PMID: 31245856 DOI: 10.1111/jnc.14804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
The caudal part of the striatum, also named the tail of the striatum (TS), defines a fourth striatal domain. Determining whether rewarding, aversive and salient stimuli regulate the activity of striatal spiny projections neurons (SPNs) of the TS is therefore of paramount importance to understand its functions, which remain largely elusive. Taking advantage of genetically encoded biosensors (A-kinase activity reporter 3) to record protein kinase A signals and by analyzing the distribution of dopamine D1R- and D2R-SPNs in the TS, we characterized three subterritories: a D2R/A2aR-lacking, a D1R/D2R-intermingled and a D1R/D2R-SPNs-enriched area (corresponding to the amygdalostriatal transition). In addition, we provide evidence that the distribution of D1R- and D2R-SPNs in the TS is evolutionarily conserved (mouse, rat, gerbil). The in vivo analysis of extracellular signal-regulated kinase (ERK) phosphorylation in these TS subterritories in response to distinct appetitive, aversive and pharmacological stimuli revealed that SPNs of the TS are not recruited by stimuli triggering innate aversive responses, fasting, satiety, or palatable signals whereas a reduction in ERK phosphorylation occurred following learned avoidance. In contrast, D1R-SPNs of the intermingled and D2R/A2aR-lacking areas were strongly activated by both D1R agonists and psychostimulant drugs (d-amphetamine, cocaine, 3,4-methyl enedioxy methamphetamine, or methylphenidate), but not by hallucinogens. Finally, a similar pattern of ERK activation was observed by blocking selectively dopamine reuptake. Together, our results reveal that the caudal TS might participate in the processing of specific reward signals and discrete aversive stimuli. Cover Image for this issue: doi: 10.1111/jnc.14526. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Giuseppe Gangarossa
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Laia Castell
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pauline Tarot
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Federica Bertaso
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Emmanuel Valjent
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
31
|
Fu R, Wang X, Hu Y, Du H, Dong B, Ao S, Zhang L, Sun Z, Zhang L, Lv G, Ji J. Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway. Int J Oncol 2019; 54:1545-1554. [PMID: 30864686 PMCID: PMC6438418 DOI: 10.3892/ijo.2019.4744] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Solamargine, a derivative from the steroidal solasodine in Solanum species, has exhibited anticancer activities in numerous types of cancer; however, its role in gastric cancer (GC) remains unknown. In the present study, it was demonstrated that Solamargine suppressed the viability of five gastric cancer cell lines in a dose‑dependent manner and induced notable alterations in morphology. Treatment with Solamargine promoted cell apoptosis (P<0.01). Solamargine increased the expression of long noncoding RNA (lnc) p53 induced transcript and lnc nuclear paraspeckle assembly transcript 1 (NEAT1)_2 (P<0.01) in GC by reducing the phosphorylation of extracellular signal‑regulated kinase (Erk)1/2 mitogen‑activated protein kinase (MAPK). To gain insight into the potential mechanism, an Erk1/2 inhibitor (U0126) was applied. The results revealed that lncNEAT1_2 expression levels increased, which was consistent with the effects of Solamargine. Downregulation of lncNEAT1_2 in GC cells revealed no effect on the expression levels of total Erk1/2 and, and counteracted the effect of Solamargine. Solamargine was observed to increase the expression of lncNEAT1_2 via the Erk1/2 MAPK signaling pathway. Of note, the knockdown of lncNEAT1_2 reduced the inhibitory effect of Solamargine (P<0.05). Additionally, experiments in vivo and in primary GC cells from patients demonstrated that Solamargine significantly suppressed tumor growth (P<0.05). In vivo analysis of a xenograft mouse model further supported that Solamargine could induce the apoptosis of cancer cells in tumor tissue as observed by a terminal deoxynucleotidyl transferase‑mediated dUTP‑biotin nick end labeling and H&E staining (P<0.05). Experiments in primary GC cells from patients verified the anti‑tumor effect of Solamargine. In summary, the findings of the present study indicated that Solamargine inhibited the progression of GC by regulating lncNeat1_2 via the MAPK pathway.
Collapse
Affiliation(s)
- Runjia Fu
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiaohong Wang
- Department of Central Biobank, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ying Hu
- Department of Central Biobank, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Hong Du
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Bin Dong
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Li Zhang
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zhijian Sun
- K2 Oncology Co., Ltd., Beijing 100061, P.R. China
| | - Lianhai Zhang
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jiafu Ji
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
32
|
An T, He ZC, Zhang XQ, Li J, Chen AL, Tan F, Chen HD, Lv BH, Lian J, Gao SH, Jiang GJ. Baduanjin exerts anti-diabetic and anti-depression effects by regulating the expression of mRNA, lncRNA, and circRNA. Chin Med 2019; 14:3. [PMID: 30733823 PMCID: PMC6359771 DOI: 10.1186/s13020-019-0225-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/22/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Baduanjin, a traditional Chinese exercise therapy, has been widely used in China to treat type 2 diabetes (T2DM) with depression (DD). However, the underlying mechanism of Baduanjin in anti-DD is unclear. This study was focused on investigating the effects of Baduanjin on symptoms of depression and blood glucose in patients with DD and the underlying mechanism. METHODS We performed a 12-week Baduanjin intervention on patients with DD and longitudinally compared the differential expressions of lncRNAs, circRNAs, and mRNAs between pre- (BDD) and post- (ADD) Baduanjin intervention in the same group. Subsequently, Gene Ontology (GO) and pathway analysis was performed to investigate the function of differentially expressed mRNAs. Finally, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to verify the sequencing result and the mRNA-lncRNA regulatory network was constructed. RESULTS The blood glucose level, depression index scores, and PHQ9 scores of the patients with DD were significantly decreased (P < 0.05) after Baduanjin intervention. Compared to BDD, 207 lncRNAs, 266 circRNAs, and 610 differentially expressed mRNAs were identified in ADD. Kyoto Encyclopedia of Genes and Genomes (KEGG) and GO showed that the significantly dysregulated mRNAs were mainly involved in immune function and inflammatory response pathways, and various signaling pathways including IL-17 and TNF. In addition, we selected five differentially expressed lncRNAs to construct an lncRNA-mRNA regulatory network, and found a total of 1045 mRNAs associated with them. CONCLUSIONS Our research is the first systematic profiling of mRNA, lncRNA, and circRNA in patients of ADD and BDD, and provides valuable insights in the potential mechanism of Baduanjin in anti-DD. Further, it was confirmed that Baduanjin is a safe and effective intervention for patients with DD because it can effectively ameliorate the symptoms of depression and blood glucose levels in patients with DD by regulating the dysregulated expression of lncRNA, mRNA, and circRNA.
Collapse
Affiliation(s)
- Tian An
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Zhong-Chen He
- Department of endocrinology, Beijing He ping li Hospital, Beijing, 100013 China
| | - Xin-Qing Zhang
- Department of Neurosurgery, ChuiYangLiu Hospital affiliated to Tsinghua University, Beijing, 100022 China
| | - Jun Li
- Department of endocrinology, Beijing He ping li Hospital, Beijing, 100013 China
| | - Ai-Ling Chen
- Chinese Medicine Department, ChuiYangLiu Hospital Affiliated To Tsinghua University, Beijing, 100022 China
| | - Fang Tan
- Department of endocrinology, Beijing He ping li Hospital, Beijing, 100013 China
| | - Hong-Dong Chen
- Department of endocrinology, Beijing He ping li Hospital, Beijing, 100013 China
| | - Bo-Han Lv
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Juan Lian
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Si-Hua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Guang-Jian Jiang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
33
|
An H, Williams NG, Shelkovnikova TA. NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found? Noncoding RNA Res 2018; 3:243-252. [PMID: 30533572 PMCID: PMC6257911 DOI: 10.1016/j.ncrna.2018.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are among the most common causes of disability worldwide. Although neurodegenerative diseases are heterogeneous in both their clinical features and the underlying physiology, they are all characterised by progressive loss of specific neuronal populations. Recent experimental evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the CNS in health and disease. Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) is an abundant, ubiquitously expressed lncRNA, which forms a scaffold for a specific RNA granule in the nucleus, or nuclear body, the paraspeckle. Paraspeckles act as molecular hubs for cellular processes commonly affected by neurodegeneration. Transcriptomic analyses of the diseased human tissue have revealed altered NEAT1 levels in the CNS in major neurodegenerative disorders as well as in some disease models. Although it is clear that changes in NEAT1 expression (and in some cases, paraspeckle assembly) accompany neuronal damage, our understanding of NEAT1 contribution to the disease pathogenesis is still rudimentary. In this review, we have summarised the available knowledge on NEAT1 involvement in the molecular processes linked to neurodegeneration and on NEAT1 dysregulation in this type of disease, with a special focus on amyotrophic lateral sclerosis. The goal of this review is to attract the attention of researchers in the field of neurodegeneration to NEAT1 and paraspeckles.
Collapse
Affiliation(s)
- Haiyan An
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Non G Williams
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Tatyana A Shelkovnikova
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
34
|
Margineanu MB, Mahmood H, Fiumelli H, Magistretti PJ. L-Lactate Regulates the Expression of Synaptic Plasticity and Neuroprotection Genes in Cortical Neurons: A Transcriptome Analysis. Front Mol Neurosci 2018; 11:375. [PMID: 30364173 PMCID: PMC6191511 DOI: 10.3389/fnmol.2018.00375] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Lactate, a product of aerobic glycolysis in astrocytes, is required for memory formation and consolidation, and has recently emerged as a signaling molecule for neurons and various cell types in peripheral tissues. In particular lactate stimulates mRNA expression of a few plasticity-related genes. Here, we describe a RNA-seq study that unravels genome-wide transcriptomic responses to this energy metabolite in cortical neurons. Our results show that mRNA expression of 20 immediate-early genes involved in the MAPK signaling pathway and in synaptic plasticity were increased by more than twofold following 1 h of lactate stimulation. This effect was dependent on NMDA receptor (NMDAR) activity since it was prevented by pre-treatment with MK-801. Comparison with published datasets showed that a significant proportion of genes modulated by lactate were similarly regulated by a stimulation protocol activating specifically synaptic NMDARs known to result in upregulation of pro-survival and downregulation of pro-death genes. Remarkably, transcriptional responses to lactate were reproduced by NADH (for 74 of the 113 genes, FDR < 0.05), suggesting a redox-dependent mechanism of action. Longer-term gene expression changes observed after 6 h of lactate treatment affected genes involved in regulating neuronal excitability and genes coding for proteins localized at synapses. Gene set enrichment analyses performed with ranked lists of expressed genes revealed effects on molecular functions involved in epigenetic modulation, and on processes relevant to sleep physiology and behavioral phenotypes such as anxiety and hyperactivity. Overall, these results strengthen the notion that lactate effectively regulates activity-dependent and synaptic genes, and highlight new signaling effects of lactate in plasticity and neuroprotection.
Collapse
Affiliation(s)
- Michael B Margineanu
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hanan Mahmood
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hubert Fiumelli
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pierre J Magistretti
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
35
|
Sellers KJ, Watson IA, Gresz RE, Raval P, Srivastava DP. Cyto-nuclear shuttling of afadin is required for rapid estradiol-mediated modifications of histone H3. Neuropharmacology 2018; 143:153-162. [PMID: 30268521 PMCID: PMC6277849 DOI: 10.1016/j.neuropharm.2018.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Estrogens have been shown to rapidly regulate local signalling at synapses and within the nucleus. The result of these signalling events is to rapidly modulate synapse structure and function, as well as epigenetic mechanisms including histone modifications. Ultimately these mechanisms are thought to contribute to long-lasting changes in neural circuitry, and thus influence cognitive functions such as learning and memory. However, the mechanisms by which estrogen-mediated local synaptic and nuclear signalling events are coordinated are not well understood. In this study we have found that the scaffold protein afadin, (also known as AF-6), undergoes a bi-directional trafficking to both synaptic and nuclear compartment in response to acute 17β-estradiol (estradiol) treatment, in mixed sex neuronal cultures derived from fetal cortex. Interestingly, nuclear accumulation of afadin was coincidental with an increase in the phosphorylation of histone H3 at serine 10 (H3S10p). This epigenetic modification is associated with the remodeling of chromatin into an open euchromatin state, allowing for transcriptional activation and related learning and memory processes. Critically, the cyto-nuclear trafficking of afadin was required for estradiol-dependent H3S10p. We further determined that nuclear accumulation of afadin is sufficient to induce phosphorylation of the mitogentic kinases ERK1/2 (pERK1/2) within the nucleus. Moreover, nuclear pERK1/2 was required for estradiol-dependent H3S10p. Taken together, we propose a model whereby estradiol induces the bi-directional trafficking of afadin to synaptic and nuclear sub-compartments. Within the nucleus, afadin is required for increased pERK1/2 which in turn is required for H3S10p. Therefore this represents a mechanism through which estrogens may be able to coordinate both synaptic and nucleosomal events within the same neuronal population. 17β-estradiol targets afadin to membrane and nuclear subcompartments. Histone H3 is rapidly phosphorylated by 17β-estradiol. Histone H3 phosphorylation by 17β-estradiol requires afadin nuclear accumulation. 17β-estradiol-mediated ERK1/2 activation is required for histone H3 phosphorylation.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Iain A Watson
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Rahel E Gresz
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
36
|
Paraspeckles: Where Long Noncoding RNA Meets Phase Separation. Trends Biochem Sci 2018; 43:124-135. [DOI: 10.1016/j.tibs.2017.12.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
|
37
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
38
|
Carmichael RE, Henley JM. Transcriptional and post-translational regulation of Arc in synaptic plasticity. Semin Cell Dev Biol 2017; 77:3-9. [PMID: 28890422 DOI: 10.1016/j.semcdb.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/21/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
One of the most interesting features of Arc-dependent synaptic plasticity is how multiple types of synaptic activity can converge to alter Arc transcription and then diverge to induce different plasticity outcomes, ranging from AMPA receptor internalisation that promotes long-term depression (LTD), to actin stabilisation that promotes long-term potentiation (LTP). This diversity suggests that there must be numerous levels of control to ensure the temporal profile, abundance, localisation and function of Arc are appropriately regulated to effect learning and memory in the correct contexts. The activity-dependent transcription and post-translational modification of Arc are crucial regulators of synaptic plasticity, fine-tuning the function of this key protein depending on the specific situation. The extensive cross-talk between signalling pathways and the numerous routes of Arc regulation provide a complex interplay of processes in which Arc-mediated plasticity can be broadly induced, but specifically tailored to synaptic activity. Here we provide an overview what is currently known about these processes and potential future directions.
Collapse
Affiliation(s)
- Ruth E Carmichael
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jeremy M Henley
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
39
|
Nikolaienko O, Eriksen MS, Patil S, Bito H, Bramham CR. Stimulus-evoked ERK-dependent phosphorylation of activity-regulated cytoskeleton-associated protein (Arc) regulates its neuronal subcellular localization. Neuroscience 2017; 360:68-80. [DOI: 10.1016/j.neuroscience.2017.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
|
40
|
Neuronal activity-regulated alternative mRNA splicing. Int J Biochem Cell Biol 2017; 91:184-193. [PMID: 28591617 DOI: 10.1016/j.biocel.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. Numerous genes whose expression is induced by different neuronal plasticity inducing pathways have been identified, but the alteration of gene expression levels represents only part of the complexity of the activity-regulated transcriptional program. Alternative splicing of precursor mRNA is an additional mechanism that modulates the activity-dependent transcriptional signature. Recently developed splicing sensitive transcriptome wide analyses improve our understanding of the underlying mechanisms and demonstrate to what extend the activity regulated transcriptome is alternatively spliced. So far, only for a small group of differentially spliced mRNAs of synaptic proteins, the functional implications have been studied in detail. These include examples in which differential exon usage can result in the expression of alternative proteins which interfere with or alter the function of preexisting proteins and cause a dominant negative functional block of constitutively expressed variants. Such altered proteins contribute to the structural and functional reorganization of pre- and postsynaptic terminals and to the maintenance and formation of synapses. In addition, activity-induced alternative splicing can affect the untranslated regions (UTRs) and generates mRNAs harboring different cis-regulatory elements. Such differential UTRs can influence mRNA stability, translation, and can change the targeting of mRNAs to subcellular compartments. Here, we summarize different categories of alternative splicing which are thought to contribute to synaptic remodeling, give an overview of activity-regulated alternatively spliced mRNAs of synaptic proteins that impact synaptic functions, and discuss splicing factors and epigenetic modifications as regulatory determinants.
Collapse
|