1
|
Shi Y, Wan Y, Yang J, Lu Y, Xie X, Pan J, Wang H, Qu H. Bioprocess biomarker identification and diagnosis for industrial mAb production based on metabolic profiling and multivariate data analysis. Bioprocess Biosyst Eng 2025; 48:771-783. [PMID: 40064687 DOI: 10.1007/s00449-025-03142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
Monoclonal antibody (mAb) production is a complex bioprocess influenced by various cellular and metabolic factors. Understanding these interactions is critical for optimizing manufacturing and improving yields. In this study, we proposed a diagnostic and identification strategy using quantitative proton nuclear magnetic resonance (1H qNMR) technology-based pharmaceutical process-omics to analyze bioprocess variability and unveil significant metabolites affecting cell growth and yield during industrial mAb manufacturing. First, batch level model (BLM) and orthogonal partial least squares-discriminant analysis (OPLS-DA) identified glucose and lactate as primary contributors to culture run variability. Maintaining an optimal glucose set point was crucial for high-yield runs. Second, a partial least squares (PLS) regression model was established, which revealed viable cell density (VCD), along with glutamine, maltose, tyrosine, citrate, methionine, and lactate, as critical variables impacting mAb yield. Finally, hierarchical clustering analysis (HCA) highlighted one-carbon metabolism metabolites, such as choline, pyroglutamate, and formate, as closely associated with VCD. These findings provide a foundation for future bioprocess optimization through cell line engineering and media formulation adjustments, ultimately enhancing mAb production efficiency.
Collapse
Affiliation(s)
- Yingting Shi
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Wan
- BioRay Pharmaceutical Co., Ltd, Taizhou, 318000, China
| | - Jiayu Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyuan Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haibin Wang
- BioRay Pharmaceutical Co., Ltd, Taizhou, 318000, China.
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Freeman MJ, Eral NJ, Sauer JD. Listeria monocytogenes requires phosphotransferase systems to facilitate intracellular growth and virulence. PLoS Pathog 2025; 21:e1012492. [PMID: 40233105 PMCID: PMC12052390 DOI: 10.1371/journal.ppat.1012492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 05/05/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
The metabolism of bacterial pathogens is exquisitely evolved to support virulence in the nutrient-limiting host. Many bacterial pathogens utilize bipartite metabolism to support intracellular growth by splitting carbon utilization between two carbon sources and dividing flux to distinct metabolic needs. For example, previous studies suggest that the professional cytosolic pathogen Listeria monocytogenes (L. monocytogenes) utilizes glycerol and hexose phosphates (e.g., Glucose-6-Phosphate) as catabolic and anabolic carbon sources in the host cytosol, respectively. However, the role of this putative bipartite metabolism in L. monocytogenes virulence has not been fully assessed. Here, we demonstrate that when L. monocytogenes is unable to consume either glycerol (ΔglpD/ΔgolD), hexose phosphates (ΔuhpT), or both (ΔglpD/ΔgolD/ΔuhpT), it is still able to grow in the host cytosol and is 10- to 100-fold attenuated in vivo suggesting that L. monocytogenes consumes alternative carbon source(s) in the host. An in vitro metabolic screen using BioLog's phenotypic microarrays unexpectedly demonstrated that WT and PrfA* (G145S) L. monocytogenes, a strain with constitutive virulence gene expression, use phosphotransferase system (PTS) mediated carbon sources. These findings contrast with the existing metabolic model that cytosolic L. monocytogenes expressing PrfA does not use PTS mediated carbon sources. We next demonstrate that two independent and universal phosphocarrier proteins (PtsI [EI] and PtsH [HPr]), essential for the function of all PTS, are critical for intracellular growth and virulence in vivo. Constitutive virulence gene expression using a PrfA* (G145S) allele in ΔglpD/ΔgolD/ΔuhpT and ΔptsI failed to rescue in vivo virulence defects suggesting phenotypes are due to metabolic disruption and not virulence gene regulation. Finally, in vivo attenuation of ΔptsI and ΔptsH was additive to ΔglpD/ΔgolD/ΔuhpT, suggesting that hexose phosphates and glycerol and PTS mediated carbon source are relevant metabolites. Taken together, these studies indicate that PTS are critical virulence factors for the cytosolic growth and virulence of L. monocytogenes.
Collapse
Affiliation(s)
- Matthew J. Freeman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Noah J. Eral
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Quek JP, Gaffoor AA, Tan YX, Tan TRM, Chua YF, Leong DSZ, Ali AS, Ng SK. Exploring cost reduction strategies for serum free media development. NPJ Sci Food 2024; 8:107. [PMID: 39709448 DOI: 10.1038/s41538-024-00352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
Cultivated meat production offers solutions in addressing global food security and sustainability challenges. However, serum-free media (SFM) used in cultivating the cells are expensive, contributing to at least 50% of variable operating costs. This review explores technologies for cost-effective SFM, focusing on reducing cost from using growth factors and recombinant proteins, using affordable raw materials for basal media, and implementing cost-saving measures like media recycling and reducing waste build-up.
Collapse
Grants
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- W22W3D0004 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
Collapse
Affiliation(s)
- Jun Ping Quek
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Azra Anwar Gaffoor
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Yu Xuan Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Tessa Rui Min Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Yu Feng Chua
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Dawn Sow Zong Leong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Alif Sufiyan Ali
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
4
|
Leong J, Tang WQ, Chng J, Ler WX, Manan NA, Sim LC, Zheng ZY, Zhang W, Walsh I, Zijlstra G, Pennings M, Ng SK. Biomass specific perfusion rate as a control lever for the continuous manufacturing of biosimilar monoclonal antibodies from CHO cell cultures. Biotechnol J 2024; 19:e2400092. [PMID: 38987222 DOI: 10.1002/biot.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Continuous manufacturing enables high volumetric productivities of biologics such as monoclonal antibodies. However, it is challenging to maintain both high viable cell densities and productivities at the same time for long culture durations. One of the key controls in a perfusion process is the perfusion rate which determines the nutrient availability and potentially controls the cell metabolism. Cell Specific Perfusion Rate (CSPR) is a feed rate proportional to the viable cell density while Biomass Specific Perfusion Rate (BSPR) is a feed rate proportional to the biomass (cell volume multiply by cell density). In this study, perfusion cultures were run at three BSPRs in the production phase. Low BSPR favored a growth arresting state that led to gradual increase in cell volume, which in turn led to an increase in net perfusion rate proportional to the increase in cell volume. Consequently, at low BSPR, while the cell viability and cell density decreased, high specific productivity of 55 pg per cell per day was achieved. In contrast, the specific productivity was lower in bioreactors operating at a high BSPR. The ability to modulate the cell metabolism by using BSPR was confirmed when the specific productivity increased after lowering the BSPR in one of the bioreactors that was initially operating at a high BSPR. This study demonstrated that BSPR significantly influenced cell growth, metabolism, and productivity in cultures with variable cell volumes.
Collapse
Affiliation(s)
- Jiayu Leong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wen Qin Tang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jake Chng
- BiosanaProcess Pte. Ltd., Singapore, Republic of Singapore
| | - Wei Xuan Ler
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Lyn Chiin Sim
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Zi Ying Zheng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Gerben Zijlstra
- Sartorius Stedim Netherlands B.V., Rotterdam, The Netherlands
| | | | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| |
Collapse
|
5
|
Kulus M, Jankowski M, Kranc W, Golkar Narenji A, Farzaneh M, Dzięgiel P, Zabel M, Antosik P, Bukowska D, Mozdziak P, Kempisty B. Bioreactors, scaffolds and microcarriers and in vitro meat production-current obstacles and potential solutions. Front Nutr 2023; 10:1225233. [PMID: 37743926 PMCID: PMC10513094 DOI: 10.3389/fnut.2023.1225233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
In vitro meat production presents a potential viable alternative for meat consumption, which could provide the consumer with a product indistinguishable from the original, with very similar nutritional and culinary values. Indeed, the alternative products currently accessible often lack comparable nutritional value or culinary attributes to their animal-derived counterparts. This creates challenges for their global acceptance, particularly in countries where meat consumption holds cultural significance. However, while cultured meat research has been progressing rapidly in recent years, some significant obstacles still need to be overcome before its possible commercialization. Hence, this review summarizes the most current knowledge regarding the history of cultured meat, the currently used cell sources and methods used for the purpose of in vitro meat production, with particular focus on the role of bioreactors, scaffolds and microcarriers in overcoming the current obstacles. The authors put the potential microcarrier and scaffold-based solutions in a context, discussing the ways in which they can impact the way forward for the technology, including the use of considering the potential practical and societal barriers to implementing it as a viable food source worldwide.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznań, Poland
| | - Afsaneh Golkar Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Dorota Bukowska
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Rivera KO, Cuylear DL, Duke VR, O’Hara KM, Zhong JX, Elghazali NA, Finbloom JA, Kharbikar BN, Kryger AN, Miclau T, Marcucio RS, Bahney CS, Desai TA. Encapsulation of β-NGF in injectable microrods for localized delivery accelerates endochondral fracture repair. Front Bioeng Biotechnol 2023; 11:1190371. [PMID: 37284244 PMCID: PMC10241161 DOI: 10.3389/fbioe.2023.1190371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Currently, there are no non-surgical FDA-approved biological approaches to accelerate fracture repair. Injectable therapies designed to stimulate bone healing represent an exciting alternative to surgically implanted biologics, however, the translation of effective osteoinductive therapies remains challenging due to the need for safe and effective drug delivery. Hydrogel-based microparticle platforms may be a clinically relevant solution to create controlled and localized drug delivery to treat bone fractures. Here, we describe poly (ethylene glycol) dimethacrylate (PEGDMA)-based microparticles, in the shape of microrods, loaded with beta nerve growth factor (β-NGF) for the purpose of promoting fracture repair. Methods: Herein, PEGDMA microrods were fabricated through photolithography. PEGDMA microrods were loaded with β-NGF and in vitro release was examined. Subsequently, bioactivity assays were evaluated in vitro using the TF-1 tyrosine receptor kinase A (Trk-A) expressing cell line. Finally, in vivo studies using our well-established murine tibia fracture model were performed and a single injection of the β-NGF loaded PEGDMA microrods, non-loaded PEGDMA microrods, or soluble β-NGF was administered to assess the extent of fracture healing using Micro-computed tomography (µCT) and histomorphometry. Results: In vitro release studies showed there is significant retention of protein within the polymer matrix over 168 hours through physiochemical interactions. Bioactivity of protein post-loading was confirmed with the TF-1 cell line. In vivo studies using our murine tibia fracture model show that PEGDMA microrods injected at the site of fracture remained adjacent to the callus for over 7 days. Importantly, a single injection of β-NGF loaded PEGDMA microrods resulted in improved fracture healing as indicated by a significant increase in the percent bone in the fracture callus, trabecular connective density, and bone mineral density relative to soluble β-NGF control indicating improved drug retention within the tissue. The concomitant decrease in cartilage fraction supports our prior work showing that β-NGF promotes endochondral conversion of cartilage to bone to accelerate healing. Discussion: We demonstrate a novel and translational method wherein β-NGF can be encapsulated within PEGDMA microrods for local delivery and that β-NGF bioactivity is maintained resulting in improved bone fracture repair.
Collapse
Affiliation(s)
- Kevin O. Rivera
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Darnell L. Cuylear
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Victoria R. Duke
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Kelsey M. O’Hara
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Justin X. Zhong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Nafisa A. Elghazali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Joel A. Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Bhushan N. Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Alex N. Kryger
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Chelsea S. Bahney
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A. Desai
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, CA, United States
- School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Choa JBD, Sasaki T, Kajiura H, Ikuta K, Fujiyama K, Misaki R. Effects of various disaccharide adaptations on recombinant IgA1 production in CHO-K1 suspension cells. Cytotechnology 2023; 75:219-229. [PMID: 37163134 PMCID: PMC10018586 DOI: 10.1007/s10616-023-00571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/09/2023] [Indexed: 03/28/2023] Open
Abstract
Immunoglobulin A (IgA) has been showing potential as a new therapeutic antibody. However, recombinant IgA suffers from low yield. Supplementation of the medium is an effective approach to improving the production and quality of recombinant proteins. In this study, we adapted IgA1-producing CHO-K1 suspension cells to a high concentration (150 mM) of different disaccharides, namely sucrose, maltose, lactose, and trehalose, to improve the production and quality of recombinant IgA1. The disaccharide-adapted cell lines had slower cell growth rates, but their cell viability was extended compared to the nonadapted IgA1-producing cell line. Glucose consumption was exhausted in all cell lines except for the maltose-adapted one, which still contained glucose even after the 9th day of culturing. Lactate production was higher among the disaccharide-adapted cell lines. The specific productivity of the maltose-adapted IgA1-producing line was 4.5-fold that of the nonadapted line. In addition, this specific productivity was higher than in previous productions of recombinant IgA1 with a lambda chain. Lastly, secreted IgA1 aggregated in all cell lines, which may have been caused by self-aggregation. This aggregation was also found to begin inside the cells for maltose-adapted cell line. These results suggest that a high concentration of disaccharide-supplemented induced hyperosmolarity in the IgA1-producing CHO-K1 cell lines. In addition, the maltose-adapted CHO-K1 cell line benefited from having an additional source of carbohydrate.
Collapse
Affiliation(s)
- John Benson D. Choa
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Tadahiro Sasaki
- grid.136593.b0000 0004 0373 3971Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Hiroyuki Kajiura
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Kazuyoshi Ikuta
- grid.136593.b0000 0004 0373 3971Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- BioAcademia, Inc, 3-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Kazuhito Fujiyama
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.10223.320000 0004 1937 0490Faculty of Science, Osaka University Cooperative Research Station in Southeast Asia (OU:CRS), Mahidol University, Bangkok, Thailand
| | - Ryo Misaki
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
8
|
Saldanha M, Shelar A, Patil V, Warke VG, Dandekar P, Jain R. A case study: Correlation of the nutrient composition in Chinese Hamster Ovary cultures with cell growth, antibody titre and quality attributes using multivariate analyses for guiding medium and feed optimization in early upstream process development. Cytotechnology 2023; 75:77-91. [PMID: 36713064 PMCID: PMC9880107 DOI: 10.1007/s10616-022-00561-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
In this case-study, we demonstrate an approach for identifying correlations between nutrients/metabolites in the spent medium of CHO cell cultures and cell growth, mAb titre and critical quality attributes, using multivariate analyses, which can aid in selection of targets for medium and feed optimization. An extensive LC-MS-based method was used to analyse the spent medium composition. Partial least squares (PLS) model was used to identify correlations between nutrient composition and cell growth and mAb titre and orthogonal projections to latent structures (OPLS) model was used to determine the effect of the changing nutrient composition during the culture on critical quality attributes. The PLS model revealed that the initial concentrations of several amino acids as well as pyruvic acid and pyridoxine, governed the early cell growth, while the concentrations of TCA cycle intermediates and several vitamins highly influenced the stationary phase, in which mAb production was maximum. For the first time, with the help of the OPLS model, we were able to draw correlations between nutrients/metabolites during the culture and critical quality attributes, for example, optimizing the supply of certain amino acids and vitamins could reduce impurities while simultaneously increasing desirable glycoforms. The unique correlations obtained from such an exploratory analysis, utilizing conditions that are commonly adopted in early process development, present opportunities for optimizing the compositions of the growth media and the feed media for enhancing cell growth, mAb production and quality, thereby proving to be a useful preliminary step in bioprocess optimization. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00561-z.
Collapse
Affiliation(s)
- Marianne Saldanha
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Ashutosh Shelar
- Shimadzu Analytical (India) Private Limited, Rushabh Chambers, Marol, Andheri East, Mumbai, 400059 India
| | - Vaibhav Patil
- Sartorius Stedim India Private Limited, No. 69/2 & 69/3, Jakkasandra, Nelamangala, Bangalore, 562123 India
| | - Vishal G. Warke
- Himedia Laboratories Private Limited, Plot No. C40, MIDC, Wagle Industrial Area, Thane, 400604 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
9
|
Jang M, Pete ES, Bruheim P. The impact of serum-free culture on HEK293 cells: From the establishment of suspension and adherent serum-free adaptation cultures to the investigation of growth and metabolic profiles. Front Bioeng Biotechnol 2022; 10:964397. [PMID: 36147538 PMCID: PMC9485887 DOI: 10.3389/fbioe.2022.964397] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
Serum-free cultures are preferred for application in clinical cell therapy and facilitate the purification processes of bioproducts, such as vaccines and recombinant proteins. It can replace traditional cell culture - eliminating potential issues posed by animal-derived serum supplementation, such as lot to lot variation and risks of pathogen infection from the host animal. However, adapting cells to serum-free conditions can be challenging and time-consuming, and is cell line and medium dependent. In addition, the knowledge of the impact of serum-free culture on cellular metabolism is limited. Herein, we successfully established serum-free suspension and adherent cultures through two adaptation procedures for HEK293 cells in serum-free Freestyle 293 medium. Furthermore, growth kinetics and intracellular metabolic profiles related to central carbon metabolism were investigated. The entire adaptation procedure took 1 month, and high cell viability (>90%) was maintained throughout. The serum-free adherent culture showed the best growth performance, measured as the highest cell density and growth rate. The largest differences in metabolic profiles were observed between culture modes (adherent vs. suspension), followed by culture medium condition (control growth medium vs. serum-free medium). Metabolic differences related to the adaptation procedures were only seen in suspension cultures. Interestingly, the intracellular itaconate concentration was significantly higher in suspension cells compared to adherent cells. Furthermore, when the cells back-adapted from serum-free to serum-supplemented control medium, their metabolic profiles were immediately reversed, highlighting the effect of extracellular components on metabolic phenotype. This study provides strategies for efficient serum-free cultivation and deeper insights into the cellular responses related to growth and metabolism responses to diverse culture conditions.
Collapse
|
10
|
Beauglehole AC, Roche Recinos D, Pegg CL, Lee YY, Turnbull V, Herrmann S, Marcellin E, Howard CB, Schulz BL. Recent advances in the production of recombinant factor IX: bioprocessing and cell engineering. Crit Rev Biotechnol 2022; 43:484-502. [PMID: 35430942 DOI: 10.1080/07388551.2022.2036691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.
Collapse
Affiliation(s)
- Aiden C. Beauglehole
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Cassandra L. Pegg
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Victor Turnbull
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Susann Herrmann
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Christopher B. Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L. Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
11
|
Park JU, Han HJ, Baik JY. Energy metabolism in Chinese hamster ovary (CHO) cells: Productivity and beyond. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Teixeira AP, Stücheli P, Ausländer S, Ausländer D, Schönenberger P, Hürlemann S, Fussenegger M. CelloSelect - A synthetic cellobiose metabolic pathway for selection of stable transgenic CHO cell lines. Metab Eng 2022; 70:23-30. [PMID: 35007751 DOI: 10.1016/j.ymben.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Current protocols for generating stable transgenic cell lines mostly rely on antibiotic selection or the use of specialized cell lines lacking an essential part of their metabolic machinery, but these approaches require working with either toxic chemicals or knockout cell lines, which can reduce productivity. Since most mammalian cells cannot utilize cellobiose, a disaccharide consisting of two β-1,4-linked glucose molecules, we designed an antibiotic-free selection system, CelloSelect, which consists of a selection cassette encoding Neurospora crassa cellodextrin transporter CDT1 and β-glucosidase GH1-1. When cultivated in glucose-free culture medium containing cellobiose, CelloSelect-transfected cells proliferate by metabolizing cellobiose as a primary energy source, and are protected from glucose starvation. We show that the combination of CelloSelect with a PiggyBac transposase-based integration strategy provides a platform for the swift and efficient generation of stable transgenic cell lines. Growth rate analysis of metabolically engineered cells in cellobiose medium confirmed the expansion of cells stably expressing high levels of a cargo fluorescent marker protein. We further validated this strategy by applying the CelloSelect system for stable integration of sequences encoding two biopharmaceutical proteins, erythropoietin and the monoclonal antibody rituximab, and confirmed that the proteins are efficiently produced in either cellobiose- or glucose-containing medium in suspension-adapted CHO cells cultured in chemically defined media. We believe coupling heterologous metabolic pathways additively to the endogenous metabolism of mammalian cells has the potential to complement or to replace current cell-line selection systems.
Collapse
Affiliation(s)
- Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Pascal Stücheli
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Pascal Schönenberger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Samuel Hürlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
13
|
Combe M, Sokolenko S. Quantifying the impact of cell culture media on CHO cell growth and protein production. Biotechnol Adv 2021; 50:107761. [PMID: 33945850 DOI: 10.1016/j.biotechadv.2021.107761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
In recombinant protein production, cell culture media development and optimization is typically seen as a useful strategy to increase titer and cell density, reduce by-products, as well as improve product quality (with cell density and titer often serving as the primary reported outcome of media studies). However, despite the large number of media optimization studies, there have been few attempts to comprehensively assess the overall effectiveness of media additives. The aim of this review is therefore both to document published media optimization studies over the last twenty years (in the context of Chinese hamster ovary cell recombinant production) and quantitatively estimate the impact of this media optimization on cell culture performance. In considering 78 studies, we have identified 238 unique media components that have been supplemented over the last 20 years. Among these additives, trace elements stood out as having a positive impact on cell density while nucleotides show potential for increasing titer, with commercial supplements benefiting both. However, we also identified that the impact of specific additives is far more variable than often perceived. With relatively few media studies considering multiple cell lines or multiple basal media, teasing out consistent and general trends becomes a considerable challenge. By extracting cell density and titer values from all of the reviewed studies, we were able to build a mixed-effect model capable of estimating the relative impact of additives, cell line, product type, basal medium, cultivation method (flask or reactor), and feeding strategy (batch or fed-batch). Overall, additives only accounted for 3% of the variation in cell density and 1% of the variation in titer. Similarly, the impact of basal media was also relatively modest, at 10% for cell density and 0% for titer. Cell line, product type, and feeding strategy were all found to have more impact. These results emphasize the need for media studies to consider more factors to ensure that reported observations can be generalized and further developed.
Collapse
Affiliation(s)
- Michelle Combe
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., PO Box 15000, Halifax, NS B3H 4R2, Canada
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., PO Box 15000, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
14
|
O'Neill EN, Cosenza ZA, Baar K, Block DE. Considerations for the development of cost-effective cell culture media for cultivated meat production. Compr Rev Food Sci Food Saf 2020; 20:686-709. [PMID: 33325139 DOI: 10.1111/1541-4337.12678] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Innovation in cultivated meat development has been rapidly accelerating in recent years because it holds the potential to help attenuate issues facing production of dietary protein for a growing world population. There are technical obstacles still hindering large-scale commercialization of cultivated meat, of which many are related to the media that are used to culture the muscle, fat, and connective tissue cells. While animal cell culture media has been used and refined for roughly a century, it has not been specifically designed with the requirements of cultivated meat in mind. Perhaps the most common industrial use of animal cell culture is currently the production of therapeutic monoclonal antibodies, which sell for orders of magnitude more than meat. Successful production of cultivated meat requires media that is food grade with minimal cost, can regulate large-scale cell proliferation and differentiation, has acceptable sensory qualities, and is animal ingredient-free. Much insight into strategies for achieving media formulations with these qualities can be obtained from knowledge of conventional culture media applications and from the metabolic pathways involved in myogenesis and protein synthesis. In addition, application of principles used to optimize media for large-scale microbial fermentation processes producing lower value commodity chemicals and food ingredients can also be instructive. As such, the present review shall provide an overview of the current understanding of cell culture media as it relates to cultivated meat.
Collapse
Affiliation(s)
- Edward N O'Neill
- Department of Food Science and Technology, University of California, Davis, California.,Department of Viticulture and Enology, University of California, Davis, California
| | - Zachary A Cosenza
- Department of Viticulture and Enology, University of California, Davis, California.,Department of Chemical Engineering, University of California, Davis, California
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California.,Department of Physiology and Membrane Biology, University of California, Davis, California
| | - David E Block
- Department of Viticulture and Enology, University of California, Davis, California.,Department of Chemical Engineering, University of California, Davis, California
| |
Collapse
|
15
|
Zhang G, Zhao X, Li X, Du G, Zhou J, Chen J. Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
Disaccharides obtained from carrageenans as potential antitumor agents. Sci Rep 2019; 9:6654. [PMID: 31040376 PMCID: PMC6491800 DOI: 10.1038/s41598-019-43238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
Carrageenans are sulfated galactans found in certain red seaweeds with proven biological activities. In this work, we have prepared purified native and degraded κ-, ι-; and λ-carrageenans, including the disaccharides (carrabioses) and disaccharide-alditols (carrabiitols) from seaweed extracts as potential antitumor compounds and identified the active principle of the cytotoxic and potential antitumor properties of these compounds. Both κ and ι-carrageenan, as well as carrageenan oligosaccharides showed cytotoxic effect over LM2 tumor cells. Characterized disaccharides (carrabioses) and the reduced product carrabiitols, were also tested. Only carrabioses were cytotoxic, and among them, κ-carrabiose was the most effective, showing high cytotoxic properties, killing the cells through an apoptotic pathway. In addition, the cells surviving treatment with κ-carrabiose, showed a decreased metastatic ability in vitro, together with a decreased cell-cell and cell-matrix interactions, thus suggesting possible antitumor potential. Overall, our results indicate that most cytotoxic compounds derived from carrageenans have lower molecular weights and sulfate content. Potential applications of the results emerging from the present work include the use of disaccharide units such as carrabioses coupled to antineoplasics in order to improve its cytotoxicity and antimetastatic properties, and the use of ι-carrageenan as adjuvant or carrier in anticancer treatments.
Collapse
|
18
|
Field LD, Walper SA, Susumu K, Lasarte-Aragones G, Oh E, Medintz IL, Delehanty JB. A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release. Bioconjug Chem 2018; 29:2455-2467. [DOI: 10.1021/acs.bioconjchem.8b00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lauren D. Field
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragones
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- George Mason University, College of Sciences, Fairfax, Virginia 22030 United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
19
|
Leong DSZ, Teo BKH, Tan JGL, Kamari H, Yang YS, Zhang P, Ng SK. Application of maltose as energy source in protein-free CHO-K1 culture to improve the production of recombinant monoclonal antibody. Sci Rep 2018; 8:4037. [PMID: 29511312 PMCID: PMC5840386 DOI: 10.1038/s41598-018-22490-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/23/2018] [Indexed: 11/24/2022] Open
Abstract
Oligosaccharides are generally considered to be un-utilized for growth of mammalian cells because their permeability across the cell membrane is low. However, in our previous study, we discovered that CHO and HEK293 cells consume maltose in culture media without serum and glucose. This is interesting because the transporter for maltose in mammalian cells has not been discovered to-date, and the only animal disaccharide transporter that is recently discovered is a sucrose transporter. The application of oligosaccharides in mammalian cell-based biopharmaceutical manufacturing can be beneficial, because it can theoretically increase carbohydrate content of the culture medium and decrease lactate production. Here, we first determined that specific maltose consumption rate in CHO cells was similar to galactose and fructose at 0.257 ng/cell/day. We then demonstrated that CHO cells can be cultivated with reasonable cell growth using higher maltose concentrations. After which, we evaluated the use of maltose supplementation in the production of a recombinant monoclonal antibody in batch and fed-batch cultures, demonstrating improvements in recombinant monoclonal antibody titer of 15% and 23% respectively. Finally, glycosylation profiles of the antibodies were analyzed.
Collapse
Affiliation(s)
- Dawn Sow Zong Leong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Brian Kah Hui Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Janice Gek Ling Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hayati Kamari
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuan Sheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|