1
|
Zhou J, Zhao L, Liu L, He L, Chen Y, Wang F, Cui D, Wang L, Zhou Q. The Emerging Mechanisms and Therapeutic Potentials of Dendritic Cells in NSCLC. J Inflamm Res 2025; 18:5061-5076. [PMID: 40255658 PMCID: PMC12007507 DOI: 10.2147/jir.s506644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant subtype of lung cancer. Despite the demonstrated effectiveness of established treatments such as radiotherapy, chemotherapy, and immunotherapy, the prognosis for patients with advanced NSCLC remains poor. Dendritic cells (DCs), the most potent antigen-presenting cells (APCs), play a crucial role in the tumor microenvironment (TME) of NSCLC. This review explores the classification and biological functions of DCs, highlighting the specific molecular pathways and external factors that influence their maturation and function in NSCLC, which is novel in this review. Moreover, we discuss the potential therapeutic applications of DCs in the management of NSCLC, presenting novel possibilities for future treatments.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Ling Zhao
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Lianfang Liu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Li He
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Yuanyuan Chen
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Fang Wang
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Wang
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Qinfeng Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
Chen F, Cai Y, Zhou J. Relationship between retinol metabolism and hepatocellular carcinoma: a comprehensive analysis of Mendelian randomization, prognostic characteristic and experiment. Discov Oncol 2025; 16:513. [PMID: 40210831 PMCID: PMC11985832 DOI: 10.1007/s12672-025-02295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
PURPOSE Retinol metabolism is intricately linked to the occurrence and progression of hepatocellular carcinoma (HCC); however, the precise pathogenic relationship between them remains elusive. The aim of this study was to elucidate the characteristics of retinol metabolism in HCC through Mendelian randomization, prognostic model and experimental validation. METHODS We used transcriptomic data related to HCC in TCGA and GEO databases for a variety of machine learning, including differential gene expression analysis, functional enrichment analysis, protein-protein network interaction, ceRNA regulatory network, and single-cell sequencing analysis. Mendelian randomization analysis was used to elucidate the causal analysis of retinol metabolism and the occurrence of HCC. Consensus cluster analysis was performed based on 11 retinol metabolism-related genes, and the prognostic model was constructed by Lasso regression and Cox regression analysis. The expression level of RDH16 gene was detected in cell lines and clinical samples, and finally the function of RDH16 gene and its regulatory relationship with miR- 665 were verified by in vitro cell experiments. RESULTS Differentially expressed genes were mainly concentrated in the retinol metabolic pathway. Mendelian randomization analysis showed that decreased retinol metabolic activity was causally associated with the occurrence of HCC. RDH16 gene was significantly lower expressed in HCC, and inhibition of RDH16 gene expression could promote the proliferation, migration and invasion of HCC cells and inhibit cell apoptosis. miR- 665 is an upstream regulator of RDH16 gene, which can inhibit the expression and function of RDH16. CONCLUSION The decrease of retinol metabolic activity can promote the occurrence and development of HCC. Targeting retinol metabolic pathway may be a new direction for the treatment of HCC.
Collapse
Affiliation(s)
- Fuqing Chen
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, 201 - 209 Hubin South Road, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Yifan Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Jianyin Zhou
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, 201 - 209 Hubin South Road, Xiamen, 361004, Fujian Province, People's Republic of China.
| |
Collapse
|
3
|
Zhang J, Liu J, Ni J, Lin X, Fan L, Sun G. Exosomes Derived from Endoplasmic Reticulum Stressed Hepatocellular Carcinoma Cells Enhance the Antitumor Immunity of Dendritic Cells. Inflammation 2024:10.1007/s10753-024-02214-z. [PMID: 39714721 DOI: 10.1007/s10753-024-02214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Endoplasmic reticulum stress (ERs) is implicated in antitumor immunity. However, the exact role of ERs in mediating the effects of dendritic cells (DCs) is not unclear. In this study, we explored the role of exosomes derived from ER-stressed hepatocellular carcinoma (HCC) cells in the antitumor effects of DCs and the precise underlying mechanism. We found that ER-stressed HCC cells secreted more exosomes (EXO-TM) than those without ER stress (EXO-CON) and that exosomes were effectively taken up by DCs. EXO-TM significantly promoted DCs maturation, as demonstrated by the increased expression of HLA-ABC, CD83, CD80, CD86, and pro-inflammatory cytokines and the decreased expression of IL-10. Moreover, EXO-TM pulsed DCs (DCEXO-TM) significantly enhanced T lymphocyte-mediated lysis against several types of tumor cells by promoting the proliferation of CD3+CD8+ T cells and increasing the expression of INF-γ both in vitro and in vivo. Mechanistically, we found that heat shock protein (HSP) 90 was more significantly enriched in EXO-TM than in EXO-CON cells, and the knockdown of HSP90 remarkably reversed EXO-TM-mediated DC activation. Our results suggest that exosomes derived from ER-stressed HCC cells could enhance the antitumor effect of DC-mediated T lymphocytes, which may be related to the large amount of HSP90 carried in the exosomes. Therefore, regulating the HSP90 carrying capacity of tumor exosomes may be an effective immunotherapy strategy.
Collapse
Affiliation(s)
- Ju Zhang
- Department of Clinical Laboratory, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Ni
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiao Lin
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Cao Y, Yi Y, Han C, Shi B. NF-κB signaling pathway in tumor microenvironment. Front Immunol 2024; 15:1476030. [PMID: 39493763 PMCID: PMC11530992 DOI: 10.3389/fimmu.2024.1476030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The genesis and progression of tumors are multifaceted processes influenced by genetic mutations within the tumor cells and the dynamic interplay with their surrounding milieu, which incessantly impacts the course of cancer. The tumor microenvironment (TME) is a complex and dynamic entity that encompasses not only the tumor cells but also an array of non-cancerous cells, signaling molecules, and the extracellular matrix. This intricate network is crucial in tumor progression, metastasis, and response to treatments. The TME is populated by diverse cell types, including immune cells, fibroblasts, endothelial cells, alongside cytokines and growth factors, all of which play roles in either suppressing or fostering tumor growth. Grasping the nuances of the interactions within the TME is vital for the advancement of targeted cancer therapies. Consequently, a thorough understanding of the alterations of TME and the identification of upstream regulatory targets have emerged as a research priority. NF-κB transcription factors, central to inflammation and innate immunity, are increasingly recognized for their significant role in cancer onset and progression. This review emphasizes the crucial influence of the NF-κB signaling pathway within the TME, underscoring its roles in the development and advancement of cancer. By examining the interactions between NF-κB and various components of the TME, targeting the NF-κB pathway appears as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Yaning Cao
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingwei Shi
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Visser LL, Bleijs M, Margaritis T, van de Wetering M, Holstege FCP, Clevers H. Ewing Sarcoma Single-cell Transcriptome Analysis Reveals Functionally Impaired Antigen-presenting Cells. CANCER RESEARCH COMMUNICATIONS 2023; 3:2158-2169. [PMID: 37823774 PMCID: PMC10595530 DOI: 10.1158/2767-9764.crc-23-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Novel therapeutic strategies are urgently needed for patients with high-risk Ewing sarcoma and for the reduction of severe side effects for all patients. Immunotherapy may fill this need, but its successful application has been hampered by a lack of knowledge on the composition and function of the Ewing sarcoma immune microenvironment. Here, we explore the immune microenvironment of Ewing sarcoma, by single-cell RNA sequencing of 18 Ewing sarcoma primary tissue samples. Ewing sarcoma is infiltrated by natural killer, T, and B cells, dendritic cells, and immunosuppressive macrophages. Ewing sarcoma-associated T cells show various degrees of dysfunction. The antigen-presenting cells found in Ewing sarcoma lack costimulatory gene expression, implying functional impairment. Interaction analysis reveals a clear role for Ewing sarcoma tumor cells in turning the Ewing sarcoma immune microenvironment into an immunosuppressive niche. These results provide novel insights into the functional state of immune cells in the Ewing sarcoma tumor microenvironment and suggest mechanisms by which Ewing sarcoma tumor cells interact with, and shape, the immune microenvironment. SIGNIFICANCE This study is the first presenting a detailed analysis of the Ewing sarcoma microenvironment using single-cell RNA sequencing. We provide novel insight into the functional state of immune cells and suggests mechanisms by which Ewing tumor cells interact with, and shape, their immune microenvironment. These insights provide help in understanding the failures and successes of immunotherapy in Ewing sarcoma and may guide novel targeted (immuno) therapeutic approaches.
Collapse
Affiliation(s)
- Lindy L. Visser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Margit Bleijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Frank C. P. Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre, Utrecht, the Netherlands
| |
Collapse
|
7
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
8
|
Nadukkandy AS, Ganjoo E, Singh A, Dinesh Kumar L. Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, unique and comprehensive cancer treatment has ushered new hope in the holistic management of the disease. Cancer immunotherapy, which harnesses the immune system of the patient to attack the cancer cells in a targeted manner, scores over others by being less debilitating compared to the existing treatment strategies. Significant advancements in the knowledge of immune surveillance in the last few decades have led to the development of several types of immune therapy like monoclonal antibodies, cancer vaccines, immune checkpoint inhibitors, T-cell transfer therapy or adoptive cell therapy (ACT) and immune system modulators. Intensive research has established cancer immunotherapy to be a safe and effective method for improving survival and the quality of a patient’s life. However, numerous issues with respect to site-specific delivery, resistance to immunotherapy, and escape of cancer cells from immune responses, need to be addressed for expanding and utilizing this therapy as a regular mode in the clinical treatment. Development in the field of nanotechnology has augmented the therapeutic efficiency of treatment modalities of immunotherapy. Nanocarriers could be used as vehicles because of their advantages such as increased surface areas, targeted delivery, controlled surface and release chemistry, enhanced permeation and retention effect, etc. They could enhance the function of immune cells by incorporating immunomodulatory agents that influence the tumor microenvironment, thus enabling antitumor immunity. Robust validation of the combined effect of nanotechnology and immunotherapy techniques in the clinics has paved the way for a better treatment option for cancer than the already existing procedures such as chemotherapy and radiotherapy. In this review, we discuss the current applications of nanoparticles in the development of ‘smart’ cancer immunotherapeutic agents like ACT, cancer vaccines, monoclonal antibodies, their site-specific delivery, and modulation of other endogenous immune cells. We also highlight the immense possibilities of using nanotechnology to accomplish leveraging the coordinated and adaptive immune system of a patient to tackle the complexity of treating unique disease conditions and provide future prospects in the field of cancer immunotherapy.
Collapse
|
9
|
Shams F, Golchin A, Azari A, Mohammadi Amirabad L, Zarein F, Khosravi A, Ardeshirylajimi A. Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2022; 49:1389-1412. [PMID: 34716502 PMCID: PMC8555726 DOI: 10.1007/s11033-021-06876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Currently, nanoscale materials and scaffolds carrying antitumor agents to the tumor target site are practical approaches for cancer treatment. Immunotherapy is a modern approach to cancer treatment in which the body's immune system adjusts to deal with cancer cells. Immuno-engineering is a new branch of regenerative medicine-based therapies that uses engineering principles by using biological tools to stimulate the immune system. Therefore, this branch's final aim is to regulate distribution, release, and simultaneous placement of several immune factors at the tumor site, so then upgrade the current treatment methods and subsequently improve the immune system's handling. In this paper, recent research and prospects of nanotechnology-based cancer immunotherapy have been presented and discussed. Furthermore, different encouraging nanotechnology-based plans for targeting various innate and adaptive immune systems will also be discussed. Due to novel views in nanotechnology strategies, this field can address some biological obstacles, although studies are ongoing.
Collapse
Affiliation(s)
- Forough Shams
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Arezo Azari
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Atiyeh Khosravi
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- SinaCell Research and Product Center, Tehran, Iran
| |
Collapse
|
10
|
Zou W, Chen L, Mao W, Hu S, Liu Y, Hu C. Identification of Inflammatory Response-Related Gene Signature Associated With Immune Status and Prognosis of Lung Adenocarcinoma. Front Bioeng Biotechnol 2021; 9:772206. [PMID: 34881236 PMCID: PMC8647082 DOI: 10.3389/fbioe.2021.772206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is an exceedingly diverse disease, making prognostication difficult. Inflammatory responses in the tumor or the tumor microenvironment can alter prognosis in the process of the ongoing cross-talk between the host and the tumor. Nonetheless, Inflammatory response-related genes’ prognostic significance in LUAD, on the other hand, has yet to be determined. Materials and Methods: The clinical data as well as the mRNA expression patterns of LUAD patients were obtained from a public dataset for this investigation. In the TCGA group, a multigene prognostic signature was built utilizing LASSO Cox analysis. Validation was executed on LUAD patients from the GEO cohort. The overall survival (OS) of low- and high-risk cohorts was compared utilizing the Kaplan-Meier analysis. The assessment of independent predictors of OS was carried out utilizing multivariate and univariate Cox analyses. The immune-associated pathway activity and immune cell infiltration score were computed utilizing single-sample gene set enrichment analysis. GO keywords and KEGG pathways were explored utilizing gene set enrichment analysis. Results: LASSO Cox regression analysis was employed to create an inflammatory response-related gene signature model. The high-risk cohort patients exhibited a considerably shorter OS as opposed to those in the low-risk cohort. The prognostic gene signature’s predictive ability was demonstrated using receiver operating characteristic curve analysis. The risk score was found to be an independent predictor of OS using multivariate Cox analysis. The functional analysis illustrated that the immune status and cancer-related pathways for the two-risk cohorts were clearly different. The tumor stage and kind of immune infiltrate were found to be substantially linked with the risk score. Furthermore, the cancer cells’ susceptibility to anti-tumor medication was substantially associated with the prognostic genes expression levels. Conclusion: In LUAD, a new signature made up of 8 inflammatory response-related genes may be utilized to forecast prognosis and influence immunological state. Inhibition of these genes could also be used as a treatment option.
Collapse
Affiliation(s)
- Weijie Zou
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Li Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenwen Mao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Yuanqing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Berzaghi R, Tornaas S, Lode K, Hellevik T, Martinez-Zubiaurre I. Ionizing Radiation Curtails Immunosuppressive Effects From Cancer-Associated Fibroblasts on Dendritic Cells. Front Immunol 2021; 12:662594. [PMID: 34177901 PMCID: PMC8221608 DOI: 10.3389/fimmu.2021.662594] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) participate actively in tumor development and affect treatment responses, by among other mechanisms, promoting an immunosuppressive tumor microenvironment. In contrast to normal fibroblasts, reactive CAFs secrete a myriad of immunomodulatory soluble factors at high levels, i.e. growth factors, cytokines, and chemokines, which directly influence tumor immunity and inflammation. CAFs have been identified as important players in tumor radioresistance. However, knowledge on the immunomodulatory functions of CAFs during/after radiotherapy is still lacking. In this study, we investigated the effects of ionizing radiation on CAF-mediated regulation of dendritic cells (DCs). CAFs were obtained from freshly operated lung cancer tissues, while DCs were procured from peripheral blood of healthy donors. Experimental settings comprised both co-cultures and incubations with conditioned medium from control and irradiated CAFs. Functional assays to study DC differentiation/activation consisted on cytokine release, expression of cell-surface markers, antigen uptake, migration rates, T cell priming, and DC-signaling analysis. We demonstrate that CAFs induce a tolerogenic phenotype in DCs by promoting down-regulation of: i) signature DC markers (CD14, CD1a, CD209); ii) activation markers (CD80, CD86, CD40, and HLA-DR) and iii) functional properties (migration, antigen uptake, and CD4+ T cell priming). Notably, some of these effects were lost in conditioned medium from CAFs irradiated at fractionated medium-dose regimens (3x6 Gy). However, the expression of relevant CAF-derived regulatory agents like thymic stromal lymphopoietin (TSLP) or tryptophan 2,3-dioxygenase (TDO2) was unchanged upon irradiation. This study demonstrates that CAFs interfere with DC immune functions and unveil that certain radiation regimens may reverse CAF-mediated immunosuppressive effects.
Collapse
Affiliation(s)
- Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stian Tornaas
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kristin Lode
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME, Eskandari N. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer 2021; 20:83. [PMID: 34078376 PMCID: PMC8170799 DOI: 10.1186/s12943-021-01376-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-derived exosomes (TDEs) have been shown to impede anti-tumor immune responses via their immunosuppressive cargo. Since dendritic cells (DCs) are the key mediators of priming and maintenance of T cell-mediated responses; thus it is logical that the exosomes released by tumor cells can exert a dominant influence on DCs biology. This paper intends to provide a mechanistic insight into the TDEs-mediated DCs abnormalities in the tumor context. More importantly, we discuss extensively how tumor exosomes induce subversion of DCs differentiation, maturation and function in separate sections. We also briefly describe the importance of TDEs at therapeutic level to help guide future treatment options, in particular DC-based vaccination strategy, and review advances in the design and discovery of exosome inhibitors. Understanding the exosomal content and the pathways by which TDEs are responsible for immune evasion may help to revise treatment rationales and devise novel therapeutic approaches to overcome the hurdles in cancer treatment.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Li RJE, de Haas A, Rodríguez E, Kalay H, Zaal A, Jimenez CR, Piersma SR, Pham TV, Henneman AA, de Goeij-de Haas RR, van Vliet SJ, van Kooyk Y. Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3-Linked Sialic Acid Ligand Binding. Front Immunol 2021; 12:673454. [PMID: 33968084 PMCID: PMC8100677 DOI: 10.3389/fimmu.2021.673454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are key initiators of the adaptive immunity, and upon recognition of pathogens are able to skew T cell differentiation to elicit appropriate responses. DCs possess this extraordinary capacity to discern external signals using receptors that recognize pathogen-associated molecular patterns. These can be glycan-binding receptors that recognize carbohydrate structures on pathogens or pathogen-associated patterns that additionally bind receptors, such as Toll-like receptors (TLRs). This study explores the early signaling events in DCs upon binding of α2-3 sialic acid (α2-3sia) that are recognized by Immune inhibitory Sialic acid binding immunoglobulin type lectins. α2-3sias are commonly found on bacteria, e.g. Group B Streptococcus, but can also be expressed by tumor cells. We investigated whether α2-3sia conjugated to a dendrimeric core alters DC signaling properties. Through phosphoproteomic analysis, we found differential signaling profiles in DCs after α2-3sia binding alone or in combination with LPS/TLR4 co-stimulation. α2-3sia was able to modulate the TLR4 signaling cascade, resulting in 109 altered phosphoproteins. These phosphoproteins were annotated to seven biological processes, including the regulation of the IL-12 cytokine pathway. Secretion of IL-10, the inhibitory regulator of IL-12 production, by DCs was found upregulated after overnight stimulation with the α2-3sia dendrimer. Analysis of kinase activity revealed altered signatures in the JAK-STAT signaling pathway. PhosphoSTAT3 (Ser727) and phosphoSTAT5A (Ser780), involved in the regulation of the IL-12 pathway, were both downregulated. Flow cytometric quantification indeed revealed de- phosphorylation over time upon stimulation with α2-3sia, but no α2-6sia. Inhibition of both STAT3 and -5A in moDCs resulted in a similar cytokine secretion profile as α-3sia triggered DCs. Conclusively, this study revealed a specific alteration of the JAK-STAT pathway in DCs upon simultaneous α2-3sia and LPS stimulation, altering the IL10:IL-12 cytokine secretion profile associated with reduction of inflammation. Targeted control of the STAT phosphorylation status is therefore an interesting lead for the abrogation of immune escape that bacteria or tumors impose on the host.
Collapse
Affiliation(s)
- Rui-Jún Eveline Li
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aram de Haas
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anouk Zaal
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard R de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:169-189. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.
Collapse
Affiliation(s)
- Hong Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Canavan M, Marzaioli V, McGarry T, Bhargava V, Nagpal S, Veale DJ, Fearon U. Rheumatoid arthritis synovial microenvironment induces metabolic and functional adaptations in dendritic cells. Clin Exp Immunol 2020; 202:226-238. [PMID: 32557565 PMCID: PMC7597596 DOI: 10.1111/cei.13479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease which causes degradation of cartilage and bone. It is well appreciated that the pathogenic hallmark of RA is the mass influx of inflammatory cells into the joint. However, the role that dendritic cells (DC) may play in this inflammatory milieu is still relatively unexplored. Moreover, the contribution this unique synovial microenvironment has on DC maturation is still unknown. Using monocyte-derived DC (MoDC), we established an in-vitro model to recapitulate the synovial microenvironment to explore DC maturation. MoDC treated with conditioned media from ex-vivo synovial tissue biopsy cultures [explant-conditioned media (ECM)] have increased expression of proinflammatory cytokines, chemokines and adhesion molecules. ECM DC have increased expression of CD83 and CC-chemokine receptor (CCR)7 and decreased expression of CCR5 and phagocytic capacity, suggestive of heightened DC maturation. ECM-induced maturation is concomitant with altered cellular bioenergetics, whereby increased expression of glycolytic genes and increased glucose uptake are observed in ECM DC. Collectively, this results in a metabolic shift in DC metabolism in favour of glycolysis. These adaptations are in-part mediated via signal transducer and activator of transcription-3 (STAT-3), as demonstrated by decreased expression of proinflammatory cytokines and glycolytic genes in ECM DC in response to STAT-3 inhibition. Finally, to translate these data to a more in-vivo clinically relevant setting, RNA-seq was performed on RA synovial fluid and peripheral blood. We identified enhanced expression of a number of glycolytic genes in synovial CD1c+ DC compared to CD1c+ DC in circulation. Collectively, our data suggest that the synovial microenvironment in RA contributes to DC maturation and metabolic reprogramming.
Collapse
Affiliation(s)
- M. Canavan
- Molecular RheumatologyTrinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Centre for Arthritis and Rheumatic Diseases, EULAR Centre of ExcellenceSt. Vincent’s University Hospital and University College DublinDublinIreland
| | - V. Marzaioli
- Molecular RheumatologyTrinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Centre for Arthritis and Rheumatic Diseases, EULAR Centre of ExcellenceSt. Vincent’s University Hospital and University College DublinDublinIreland
| | - T. McGarry
- Molecular RheumatologyTrinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - V. Bhargava
- ImmunologyJanssen Research & DevelopmentSpring HousePAUSA
| | - S. Nagpal
- ImmunologyJanssen Research & DevelopmentSpring HousePAUSA
| | - D. J. Veale
- Centre for Arthritis and Rheumatic Diseases, EULAR Centre of ExcellenceSt. Vincent’s University Hospital and University College DublinDublinIreland
| | - U. Fearon
- Molecular RheumatologyTrinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Centre for Arthritis and Rheumatic Diseases, EULAR Centre of ExcellenceSt. Vincent’s University Hospital and University College DublinDublinIreland
| |
Collapse
|
16
|
Li R, Liu X, Zhou XJ, Chen X, Li JP, Yin YH, Qu YQ. Identification of a Prognostic Model Based on Immune-Related Genes of Lung Squamous Cell Carcinoma. Front Oncol 2020; 10:1588. [PMID: 33014809 PMCID: PMC7493716 DOI: 10.3389/fonc.2020.01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Immune-related genes (IRGs) play considerable roles in tumor immune microenvironment (IME). This research aimed to discover the differentially expressed immune-related genes (DEIRGs) based on the Cox predictive model to predict survival for lung squamous cell carcinoma (LUSC) through bioinformatics analysis. First of all, the differentially expressed genes (DEGs) were acquired based on The Cancer Genome Atlas (TCGA) using the limma R package, the DEIRGs were obtained from the ImmPort database, whereas the differentially expressed transcription factors (DETFs) were acquired from the Cistrome database. Thereafter, a TFs-mediated IRGs network was constructed to identify the candidate mechanisms for those DEIRGs in LUSC at molecular level. Moreover, Gene Ontology (GO), together with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, was conducted for exploring those functional enrichments for DEIRGs. Besides, univariate as well as multivariate Cox regression analysis was conducted for establishing a prediction model for DEIRGs biomarkers. In addition, the relationship between the prognostic model and immunocytes was further explored through immunocyte correlation analysis. In total, 3,599 DEGs, 223 DEIRGs, and 46 DETFs were obtained from LUSC tissues and adjacent non-carcinoma tissues. According to multivariate Cox regression analysis, 10 DEIRGs (including CALCB, GCGR, HTR3A, AMH, VGF, SEMA3B, NRTN, ENG, ACVRL1, and NR4A1) were retrieved to establish a prognostic model for LUSC. Immunocyte infiltration analysis showed that dendritic cells and neutrophils were positively correlated with IRGs, which possibly exerted an important part within the IME of LUSC. Our study identifies a prognostic model based on IRGs, which is then used to predict LUSC prognosis and analyze immunocyte infiltration. This may provide a novel insight for exploring the potential IRGs in the IME of LUSC.
Collapse
Affiliation(s)
- Rui Li
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Chen
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.,Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Jian-Ping Li
- Department of Pulmonary and Critical Care Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yun-Hong Yin
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Dimitrakopoulos FID, Kottorou AE, Kalofonou M, Kalofonos HP. The Fire Within: NF-κB Involvement in Non-Small Cell Lung Cancer. Cancer Res 2020; 80:4025-4036. [PMID: 32616502 DOI: 10.1158/0008-5472.can-19-3578] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
Thirty-four years since its discovery, NF-κB remains a transcription factor with great potential for cancer therapy. However, NF-κB-targeted therapies have yet to find a way to be clinically translatable. Here, we focus exclusively on the role of NF-κB in non-small cell lung cancer (NSCLC) and discuss its contributing effect on cancer hallmarks such as inflammation, proliferation, survival, apoptosis, angiogenesis, epithelial-mesenchymal transition, metastasis, stemness, metabolism, and therapy resistance. In addition, we present our current knowledge of the clinical significance of NF-κB and its involvement in the treatment of patients with NSCLC with chemotherapy, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Foteinos-Ioannis D Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anastasia E Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
18
|
Yu Q, Lei Y, Huang Y, Zhang J, Chen Y, Chen K, Lin J, Sun S, Lin X. CYLD expression in dendritic cells involved in the immunoregulation of pulmonary adenocarcinoma via NF-κB pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:137-142. [PMID: 31852310 DOI: 10.1080/21691401.2019.1699820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous study found that IL33 repressed the growth of pulmonary adenocarcinoma (PA) via regulation of dendritic cells (DCs). However, the molecular mechanism of DCs in PA is still unclear. The present work showed that CYLD-/- mice have a shorter survival rate of PA, and knockout CYLD in DCs also repress the progression of PA in mice. Subsequently, we found that decreased expression and reduced the nuclear translocation of NF-κB signalling was observed in CYLD knockout DCs, and inhibiting NF-κB pathway repressed DCs-induced proliferation and function of CD4+ T cells. These results indicated that CYLD function as a tumour suppresser in PA via regulates the function of DCs through NF-κB signalling pathway. Our findings support that CYLD serves as a potential target for immunotherapy in PA.
Collapse
Affiliation(s)
- Qinghua Yu
- Department of Radiology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Yujie Lei
- Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiguang Zhang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Yangming Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Kai Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Jianbin Lin
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Shihui Sun
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Xing Lin
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Qi L, Zhang Q, Miao Y, Kang W, Tian Z, Xu D, Xiao W, Fang F. Interleukin-33 activates and recruits natural killer cells to inhibit pulmonary metastatic cancer development. Int J Cancer 2019; 146:1421-1434. [PMID: 31709531 DOI: 10.1002/ijc.32779] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Increasing evidence suggests that IL-33 plays an important role in regulating tumor development. However, conflicting results, obtained from numerous studies, have highlighted the divergent functions of IL-33. The detailed mechanisms by which IL-33 modulates tumor development merit further investigation. Here, we report that IL-33 administration can effectively inhibit the development of pulmonary metastasis of breast cancer in a mouse. In our model, IL-33 promotes the production of TNF-α by macrophages, which increases IL-33 specific receptor (ST2) expression on natural killer (NK) cells and is pivotal in IL-33-induced NK cell activation. IL-33 treatment also facilitates the production of CCL5 in the lung by eosinophils and CD8+ T cells, which mediates the recruitment of NK cells to the tumor microenvironment. The systemic activation and local recruitment of NK cells result in potent tumor rejection in the lung. Our study reports a novel mechanism for the IL-33-meditated suppression of metastatic cancer and provides potential therapeutic strategies for targeting metastatic tumor.
Collapse
Affiliation(s)
- Lu Qi
- Department of Oncology of The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Qiuyan Zhang
- Department of Oncology of The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Yuhui Miao
- Department of Oncology of The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Wenyao Kang
- Department of Oncology of The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Department of Oncology of The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Damo Xu
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Weihua Xiao
- Department of Oncology of The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Fang Fang
- Department of Oncology of The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
21
|
Zhang J, Chen Y, Chen K, Huang Y, Xu X, Chen Q, Huang C, Luo J, Lin X. IL-33 drives the antitumour effects of dendritic cells via upregulating CYLD expression in pulmonary adenocarcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1335-1341. [PMID: 30964341 DOI: 10.1080/21691401.2019.1596926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lung adenocarcinoma is one of the leading causes of cancer-related death worldwide. Low expression of Interleukin-33 (IL-33) was reported to be associated with the progression of pulmonary adenocarcinoma. However, the IL-33-mediated immunoregulation in pulmonary adenocarcinoma remains unclear. In this study, we found that IL-33 treatment evidently repressed tumour growth, induced CD4+ T cells infiltration and IL-17 expression in pulmonary adenocarcinoma. Notably, IL-33 treatment increased the number of Dendritic Cells (DCs) in pulmonary adenocarcinoma. More importantly, IL-33 induced maturation and regulated the function of DCs by increasing expression of DCs mature markers (CD40 and CD80, CD86) DCs-function-related gene including antigen presentation genes (HLA-DMA, HLA-DMB and CD74) and cytokines (IL-1β, IL-6 and TNF). Mechanistic studies demonstrated that IL-33 treatment induced DCs maturation by upregulating CYLD expression in DCs. In addition, CYLD played an important role in DCs-induced T cell proliferation and IL-17 secretion. In conclusion, our study demonstrated that IL-33 mediated immunoregulation in pulmonary adenocarcinoma by improving DC-induced T cell proliferation by upregulating CYLD expression.
Collapse
Affiliation(s)
- Jiguang Zhang
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Yangming Chen
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Kai Chen
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Yunchao Huang
- b Department of thoracic surgery, Yunnan Cancer Hospital , the Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Xunyu Xu
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Qianshun Chen
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Chen Huang
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Jiewei Luo
- c Department of traditional Chinese medicine, Fujian Province Hospital, School of clinical medicine , Fujian Medical University , Fuzhou , Fujian , China
| | - Xing Lin
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| |
Collapse
|
22
|
Wang JB, Huang X, Li FR. Impaired dendritic cell functions in lung cancer: a review of recent advances and future perspectives. Cancer Commun (Lond) 2019; 39:43. [PMID: 31307548 PMCID: PMC6631514 DOI: 10.1186/s40880-019-0387-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Dendritic cells (DCs) are the key factors providing protective immunity against lung tumors and clinical trials have proven that DC function is reduced in lung cancer patients. It is evident that the immunoregulatory network may play a key role in the failure of the immune response to terminate tumors. Lung tumors likely employ numerous strategies to suppress DC-based anti-tumor immunity. Here, we summarize the recent advances in our understanding on lung tumor-induced immunosuppression in DCs, which affects the initiation and development of T-cell responses. We also describe which existing measures to restore DC function may be useful for clinical treatment of lung tumors. Furthering our knowledge of how lung cancer cells alter DC function to generate a tumor-supportive environment will be essential in order to guide the design of new immunotherapy strategies for clinical use.
Collapse
Affiliation(s)
- Jing-Bo Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, 1017 Dongmen Road North, Shenzhen, 518020, Guangdong, P. R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, 218020, Guangdong, P. R. China
| | - Xue Huang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, 1017 Dongmen Road North, Shenzhen, 518020, Guangdong, P. R. China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen, 218020, Guangdong, P. R. China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, 1017 Dongmen Road North, Shenzhen, 518020, Guangdong, P. R. China. .,Shenzhen Cell Therapy Public Service Platform, Shenzhen, 218020, Guangdong, P. R. China.
| |
Collapse
|
23
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
24
|
Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol 2019; 9:3176. [PMID: 30719026 PMCID: PMC6348254 DOI: 10.3389/fimmu.2018.03176] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells, uniquely able to induce naïve T cell activation and effector differentiation. They are, likewise, involved in the induction and maintenance of immune tolerance in homeostatic conditions. Their phenotypic and functional heterogeneity points to their great plasticity and ability to modulate, according to their microenvironment, the acquired immune response and, at the same time, makes their precise classification complex and frequently subject to reviews and improvement. This review will present general aspects of the DC physiology and classification and will address their potential and actual uses in the management of human disease, more specifically cancer, as therapeutic and monitoring tools. New combination treatments with the participation of DC will be also discussed.
Collapse
Affiliation(s)
- Thiago A Patente
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana P Pinho
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline A Oliveira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela C M Evangelista
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia C Bergami-Santos
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Discipline of Molecular Medicine, Department of Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacol Ther 2018; 194:59-72. [PMID: 30240635 DOI: 10.1016/j.pharmthera.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Istvan Boldogh
- Departments of Microbiology and Immunology and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
26
|
Nanomaterials for modulating innate immune cells in cancer immunotherapy. Asian J Pharm Sci 2018; 14:16-29. [PMID: 32104435 PMCID: PMC7032173 DOI: 10.1016/j.ajps.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/24/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has been intensively investigated in both preclinical and clinical studies. Whereas chemotherapies use cytotoxic drugs to kill tumor cells, cancer immunotherapy is based on the ability of the immune system to fight cancer. Tumors are intimately associated with the immune system: they can suppress the immune response and/or control immune cells to support tumor growth. Immunotherapy has yielded promising results in clinical practice, but some patients show limited responses. This may reflect the complexities of the relationship between a tumor and the immune system. In an effort to improve the current immunotherapies, researchers have exploited nanomaterials in creating new strategies to cure tumors via modulation of the immune system in tumor tissues. Although extensive studies have examined the use of immune checkpoint-based immunotherapy, rather less work has focused on manipulating the innate immune cells. This review examines the recent approaches and challenges in the use of nanomaterials to modulate innate immune cells.
Collapse
|
27
|
Attili I, Karachaliou N, Bonanno L, Berenguer J, Bracht J, Codony-Servat J, Codony-Servat C, Ito M, Rosell R. STAT3 as a potential immunotherapy biomarker in oncogene-addicted non-small cell lung cancer. Ther Adv Med Oncol 2018; 10:1758835918763744. [PMID: 29636826 PMCID: PMC5888808 DOI: 10.1177/1758835918763744] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/15/2018] [Indexed: 12/27/2022] Open
Abstract
Immune checkpoint blockade has modified the treatment landscape for many types of tumors, including lung cancer. Still our knowledge on the biology of the interaction between tumor cells and the microenvironment is limited, preventing the optimal use of these new compounds and the maximum benefit that the patients can derive from them. We have actively worked on the role of STAT3, a transcriptional factor that causes innate resistance to targeted therapies in oncogene-addicted tumors. In this short review we take the opportunity to express our opinion and review existing knowledge on the immune role of STAT3 and the possible implications that this may have for the discovery of new biomarkers to predict response to immunotherapy, as well as new partners to combine with and increase the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ilaria Attili
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 53, Padova 35128, Italy
| | - Niki Karachaliou
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
- Instituto Oncológico Dr Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | | | - Jordi Berenguer
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Jillian Bracht
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Jordi Codony-Servat
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Carles Codony-Servat
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Masaoki Ito
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Rafael Rosell
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Spain
- Instituto Oncológico Dr Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
- Institut d’Investigació en Ciències Germans Trias i Pujol, Badalona, Spain
- Institut Català d’Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
28
|
Yang Z, Deng F, Meng L. Effect of dendritic cell immunotherapy on distribution of dendritic cell subsets in non-small cell lung cancer. Exp Ther Med 2018; 15:4856-4860. [PMID: 29805505 PMCID: PMC5952091 DOI: 10.3892/etm.2018.6010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The effect of dendritic cell (DC) immunotherapy on non-small cell lung cancer (NSCLC) and its influence on the distribution of DC subsets were studied. Peripheral blood was drawn from 55 patients, and DCs were cultured in vitro and injected into the patients three times. The changes in DC subsets in NSCLC patients before treatment and after three treatments were observed using a flow cytometer, and the difference in DC subsets between patients and healthy controls was compared. DC subsets in lung cancer tissues, para-carcinoma tissues and normal tissues were analyzed by indirect immunofluorescence and laser scanning confocal microscope (LSCM). The BDCA-1+ DC1 and BDCA-3+ DC2 in lung cancer tissues were significantly increased compared with those in para-carcinoma tissues and normal tissues (P<0.05). The number of DC1 and DC2 in para-carcinoma tissues were increased compared with those in normal tissues (P<0.05). The ratio of DC1 in peripheral blood in the normal control group was obviously higher than that in NSCLC patients (P<0.01). There were significant differences in DC1 and DC1/DC2 ratio in NSCLC patients with different tumor staging, and there were also obvious differences in patients with a different Karnofsky performance status (KPS) score. Moreover, compared with those before treatment, DC1 and DC1/DC2 ratio were significantly increased after three treatments, and there was a significant difference in the comparison of DC1/DC2 ratio between the NSCLC patients with survival time greater than and less than one year. The immune function of NSCLC patients was improved after DC immunotherapy. The survival time of NSCLC patients was closely associated with the DC1/DC2 ratio in peripheral blood. The detection of DC subsets in peripheral blood can help clinicians understand the immune function of NSCLC patients and provide a basis for the clinical judgment of prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Zhongfei Yang
- Department of Pneumology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Fang Deng
- Department of Oncology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Lingjun Meng
- Department of Oncology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| |
Collapse
|