1
|
Sachet-Fernandez G, Hindley JW, Ces O, Woscholski R. Imidazole Headgroup Phospholipid Shows Asymmetric Distribution in Vesicles and Zinc-Dependent Esterase Activity. Biomolecules 2024; 14:1363. [PMID: 39595540 PMCID: PMC11592132 DOI: 10.3390/biom14111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial lipids have become increasingly important in generating novel nanoenzymes and nanoparticles. Imidazole has been well established as a versatile catalyst in synthetic chemistry and through its related amino acid histidine in enzymes. By exploiting the transphosphatidylation reaction of phospholipase D, the choline headgroup of phosphatidyl choline was exchanged for the imidazole moiety containing histidinol. Here, we introduce a novel phosphatidylhistidinol (PtdHisOH) lipid and characterise it with respect to its catalytic abilities and its ability to modulate vesicle size. Our data reveal a zinc-dependent esterase activity that was strongest in vesicles and micelles, with slower catalytic rates being observed in flat lipid presentation systems and two-phase systems, indicating the importance of surface presentation and curvature effects on the catalytic activity of PtdHisOH. Such lipids offer the opportunity to impart de novo catalytic functionality to self-assembled lipid systems such as synthetic cells, leading to the development of new technologies for biocatalysis applications.
Collapse
Affiliation(s)
- Gabriela Sachet-Fernandez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Leverhulme Doctoral Scholarships Centre for Cellular Bionics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - James W. Hindley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Leverhulme Doctoral Scholarships Centre for Cellular Bionics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Rüdiger Woscholski
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Leverhulme Doctoral Scholarships Centre for Cellular Bionics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
2
|
Tilly DP, Heeb JP, Webb SJ, Clayden J. Switching imidazole reactivity by dynamic control of tautomer state in an allosteric foldamer. Nat Commun 2023; 14:2647. [PMID: 37156760 PMCID: PMC10167260 DOI: 10.1038/s41467-023-38339-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Molecular biology achieves control over complex reaction networks by means of molecular systems that translate a chemical input (such as ligand binding) into an orthogonal chemical output (such as acylation or phosphorylation). We present an artificial molecular translation device that converts a chemical input - the presence of chloride ions - into an unrelated chemical output: modulation of the reactivity of an imidazole moiety, both as a Brønsted base and as a nucleophile. The modulation of reactivity operates through the allosteric remote control of imidazole tautomer states. The reversible coordination of chloride to a urea binding site triggers a cascade of conformational changes in a chain of ethylene-bridged hydrogen-bonded ureas, switching the chain's global polarity, that in turn modulates the tautomeric equilibrium of a distal imidazole, and hence its reactivity. Switching reactivities of active sites by dynamically controlling their tautomer states is an untapped strategy for building functional molecular devices with allosteric enzyme-like properties.
Collapse
Affiliation(s)
- David P Tilly
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jean-Paul Heeb
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
3
|
Taheri-Ledari R, Asl FR, Saeidirad M, Kashtiaray A, Maleki A. Convenient synthesis of dipeptide structures in solution phase assisted by a thioaza functionalized magnetic nanocatalyst. Sci Rep 2022; 12:4719. [PMID: 35304475 PMCID: PMC8933478 DOI: 10.1038/s41598-022-07303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, a heterogeneous nanocatalyst is presented that is capable to efficiently catalyze the synthetic reactions of amide bond formation between the amino acids. This nanocatalyst which is named Fe3O4@SiO2/TABHA (TABHA stands for thio-aza-bicyclo-hepten amine), was composed of several layers that increased the surface area to be functionalized with 2-aminothiazole rings via Diels-Alder approach. Firstly, various analytic methods such as Fourier-transform infrared (FTIR) and energy-dispersive X-ray (EDX) spectroscopic methods, thermogravimetric analysis (TGA), electron microscopy (EM), and UV-vis diffuse reflectance spectroscopy (UV-DRS) have been used to characterize the desired structure of the Fe3O4@SiO2/TABHA catalyst. Afterward, the application of the presented catalytic system has been studied in the peptide bond formation reactions. Due to the existence of a magnetic core in the structure of the nanocatalyst, the nanoparticles (NPs) could be easily separated from the reaction medium by an external magnet. This special feature has been corroborated by the obtained results from vibrating-sample magnetometer (VSM) analysis that showed 24 emu g-1 magnetic saturation for the catalytic system. Amazingly, a small amount of Fe3O4@SiO2/TABHA particles (0.2 g) has resulted in ca. 90% efficiency in catalyzing the peptide bond formation at ambient temperature, over 4 h. Also, this nanocatalyst has demonstrated an acceptable recycling ability, where ca. 76% catalytic performance has been observed after four recycles. Due to high convenience in the preparation, application, and recyclization processes, and also because of lower cost than the traditional coupling reagents (like TBTU), the presented catalytic system is recommended for the industrial utilization.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
4
|
van der Helm MP, Wang CL, Fan B, Macchione M, Mendes E, Eelkema R. Organocatalytic Control over a Fuel-Driven Transient-Esterification Network*. Angew Chem Int Ed Engl 2020; 59:20604-20611. [PMID: 32700406 PMCID: PMC7693295 DOI: 10.1002/anie.202008921] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Signal transduction in living systems is the conversion of information into a chemical change, and is the principal process by which cells communicate. In nature, these functions are encoded in non-equilibrium (bio)chemical reaction networks (CRNs) controlled by enzymes. However, man-made catalytically controlled networks are rare. We incorporated catalysis into an artificial fuel-driven out-of-equilibrium CRN, where the forward (ester formation) and backward (ester hydrolysis) reactions are controlled by varying the ratio of two organocatalysts: pyridine and imidazole. This catalytic regulation enables full control over ester yield and lifetime. This fuel-driven strategy was expanded to a responsive polymer system, where transient polymer conformation and aggregation are controlled through fuel and catalyst levels. Altogether, we show that organocatalysis can be used to control a man-made fuel-driven system and induce a change in a macromolecular superstructure, as in natural non-equilibrium systems.
Collapse
Affiliation(s)
- Michelle P van der Helm
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Chang-Lin Wang
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Bowen Fan
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Mariano Macchione
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
5
|
Helm MP, Wang C, Fan B, Macchione M, Mendes E, Eelkema R. Organocatalytic Control over a Fuel‐Driven Transient‐Esterification Network**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle P. Helm
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Chang‐Lin Wang
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Bowen Fan
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Mariano Macchione
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
6
|
Cao J, Wang M, Yu H, She Y, Cao Z, Ye J, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7298-7315. [PMID: 32551623 DOI: 10.1021/acs.jafc.0c01962] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acetylcholinesterase inactivating compounds, such as organophosphate (OP) and carbamate (CM) pesticides, are widely used in agriculture to ensure sustainable production of food and feed. As a consequence of their applications, they would result in neurotoxicity, even death. In this essence, the development of enzyme inhibition methods still shows great significance as rapid detection techniques for on-site large-scale screening of OPs and CMs. Initially, mechanisms and applications of various enzyme-inhibition-based methods and devices, including optical colorimetric assay, fluorometric assays, electrochemical biosensors, rapid test card, and microfluidic device, are highlighted in the present overview. Further, to enhance the enzyme sensitivity for detection; alternative enzyme sources or high yield enrichment methods (such as abzyme, artificial enzyme, and recombinant enzyme), as well as enzyme reactivation and identification, are also addressed in this comprehensive overview.
Collapse
Affiliation(s)
- Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - He Yu
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Jiaming Ye
- Yangtze Delta Region Institute of Tsinghua University, 314006, Jiaxing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| | - Shuibing Lao
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| |
Collapse
|
7
|
Tippannanavar M, Verma A, Kumar R, Gogoi R, Kundu A, Patanjali N. Preparation of Nanofungicides Based on Imidazole Drugs and Their Antifungal Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4566-4578. [PMID: 32227935 DOI: 10.1021/acs.jafc.9b06387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In spite of modern crop protection measures, the overall crop losses due to pests and pathogens are huge. Rhizoctonia solani, Macrophomina phaseolina, Sclerotium rolfsii, and Fusarium oxysporum are one of the most devastating soil-borne fungi and cause numerous plant diseases. Therefore, the present study aimed to systematically design and develop new nanofungicides based on imidazole drugs, clotrimazole, econazole nitrate, and miconazole nitrate, for effective and efficient management of plant diseases. The assessment of these antifungal medicines for their fungicide likeness using Hao's rule and their enzyme inhibitory potential by molecular docking was helpful in ensuring their utility as antifungal agents in managing phytopathogenic fungi. Nanotechnological strategies were used to develop nanoformulations of test compounds in poly(ethylene glycol) 300 for further augmenting their bioactivity. Transmission electron microscopy studies confirmed the nanosize of the prepared products. Analysis of their in vitro and in vivo antifungal properties revealed their usefulness in controlling the test fungi, R. solani, M. phaseolina, S. rolfsii, and F. oxysporum. Excellent in vitro antifungal activities were displayed by the clotrimazole nanoformulation with a median effective dose (ED50) of 1.18 μg/mL against R. solani, the econazole nitrate nanoformulation with an ED50 of 5.25 μg/mL against S. rolfsii, and the miconazole nitrate nanoformulation with an ED50 of 1.49 and 1.82 μg/mL against M. phaseolina and F. oxysporum. Furthermore, in vivo studies against test fungi demonstrated the antifungal potency of all the nanoformulations with disease incidences ranging from 11.11 to 27.38% in plants treated with nanoformulations of test chemicals as compared to the inoculated control (39.68-72.38%).
Collapse
Affiliation(s)
- Madhu Tippannanavar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Ankita Verma
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| |
Collapse
|
8
|
Nothling MD, Xiao Z, Hill NS, Blyth MT, Bhaskaran A, Sani MA, Espinosa-Gomez A, Ngov K, White J, Buscher T, Separovic F, O’Mara ML, Coote ML, Connal LA. A multifunctional surfactant catalyst inspired by hydrolases. SCIENCE ADVANCES 2020; 6:eaaz0404. [PMID: 32270041 PMCID: PMC7112759 DOI: 10.1126/sciadv.aaz0404] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 05/04/2023]
Abstract
The remarkable power of enzymes to undertake catalysis frequently stems from their grouping of multiple, complementary chemical units within close proximity around the enzyme active site. Motivated by this, we report here a bioinspired surfactant catalyst that incorporates a variety of chemical functionalities common to hydrolytic enzymes. The textbook hydrolase active site, the catalytic triad, is modeled by positioning the three groups of the triad (-OH, -imidazole, and -CO2H) on a single, trifunctional surfactant molecule. To support this, we recreate the hydrogen bond donating arrangement of the oxyanion hole by imparting surfactant functionality to a guanidinium headgroup. Self-assembly of these amphiphiles in solution drives the collection of functional headgroups into close proximity around a hydrophobic nano-environment, affording hydrolysis of a model ester at rates that challenge α-chymotrypsin. Structural assessment via NMR and XRD, paired with MD simulation and QM calculation, reveals marked similarities of the co-micelle catalyst to native enzymes.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Nicholas S. Hill
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrea Espinosa-Gomez
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin Ngov
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jonathan White
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tim Buscher
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Corresponding author.
| |
Collapse
|
9
|
Ullah S, Akram B, Ali H, Zhang H, Yang H, Liu Q, Wang X. 2-Methylimidazole assisted ultrafast synthesis of carboxylate-based metal-organic framework nano-structures in aqueous medium at room temperature. Sci Bull (Beijing) 2019; 64:1103-1109. [PMID: 36659771 DOI: 10.1016/j.scib.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
Carboxylate-based metal-organic frameworks (CMOFs) have received considerable attentions for their high stability, catalytic activity, and porosity. However, synthesis of CMOFs requires high temperature, pressure, and long reaction time. Here, we explored the activity of 2-methylimidazole (2-MIM) for ultrafast synthesis of CMOF nanostructures (CMOFNs), in aqueous medium at room temperature and reaction time of 10 min. Seven CMOFNs have been synthesized by using Al3+, Cr3+, Cu2+, Fe3+, In3+, or Cd2+ salt and 1,4-bezenedicarboxylic acid, or 1,3,5-benzenetricarboxylic acid. Through this technique, the CMOFs with space time yield 181-501 kg m-3 day-1 and crystal sizes of ca. 200-700 nm was obtained.
Collapse
Affiliation(s)
- Shaheed Ullah
- Key Laboratory of Organic Opteoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bilal Akram
- Key Laboratory of Organic Opteoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hassan Ali
- Key Laboratory of Organic Opteoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Key Laboratory of Organic Opteoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haozhou Yang
- Key Laboratory of Organic Opteoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qingda Liu
- Key Laboratory of Organic Opteoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Key Laboratory of Organic Opteoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
|
11
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Docherty SR, Estes DP, Copéret C. Facile Synthesis of Unsymmetrical Trialkoxysilanols: (RO) 2
(R′O)SiOH. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Scott R. Docherty
- Department of Chemistry and Applied Biology; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich Switzerland
| | - Deven P. Estes
- Department of Chemistry and Applied Biology; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biology; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich Switzerland
| |
Collapse
|