1
|
Saravanan K, Vellingiri K, Kathirvel P. Screening of multi-metal tolerant plant growth promoting bacteria (PGPB) Stutzerimonas stutzeri WA4 and its assistance on phytoextraction of heavy metals (Cu, Ag and Pb). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:505-525. [PMID: 39535150 DOI: 10.1080/15226514.2024.2427384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current study, coal fly ash contaminated soil was collected in and around Mettur Thermal Power Station, Salem district, Tamil Nadu. The metal concentrations present in the coal fly ash soil samples were analyzed and also used for the isolation of bacteria. The isolates were screened for their multi-metal resistance against three heavy metals (Cu, Ag and Pb) and plant growth-promoting traits (siderophore, phosphate solubilization, IAA, cellulase, HCN, and ammonia production). Among the 12 isolates, the WA4 strain revealed promising results for both metal-resistant and plant growth-promoting activity. In the in vitro pot experiment, Spinacia oleracea (Palak), Red amaranth (Red spinach), Capsicum annum (Green chilly) and Solanum melongena (Brinjal) plants were grown in ash-contaminated soil treated with different concentrations of selected bacterial inoculum (25%, 50%, 75% and 100%) along with a control pot. The results of the study indicated that the ash-contaminated soil treated with bacterial inoculum distinctly increased the growth of plants when compared to untreated soil (control). Thus, the best-performing strain WA4 could be utilized as a good bio-stimulant for promoting the growth of selected plants in the re-vegetation programs of ash-contaminated soil.
Collapse
Affiliation(s)
- Koushika Saravanan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kavya Vellingiri
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Mandal RR, Bashir Z, Raj D. Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124199. [PMID: 39848176 DOI: 10.1016/j.jenvman.2025.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations. These include high costs, environmental impacts, and the potential for generating secondary pollutants, highlighting the need for sustainable alternatives. Phytoremediation, enhanced by microbial interactions, offers an eco-friendly solution to this issue. The unique physiological and biochemical traits of plants, combined with microbial metabolic capabilities, enable efficient uptake and detoxification of HMs. Microbial enzymes play a crucial role in these processes by breaking down complex compounds, enhancing HM bioavailability, and facilitating their conversion into less toxic forms. Synergistic interactions between root-associated microbes and plants further improves metal absorption and stabilization, boosting phytoremediation efficiency. However, challenges remain, including the limited bioavailability of contaminants and plant resilience in highly polluted environments. Recent advancements focus on improving microbial-assisted phytoremediation through mechanisms like bioavailability facilitation, phytoextraction, and phytostabilization. Genetic engineering facilitates the altering of genes that control plant immune responses and growth which improves the ability of plants to interact beneficially with microbes to thrive in HM rich environments while efficiently cleaning contaminated wastewater. This review examines these strategies and highlights future research directions to enhance wastewater remediation using phytoremediation technologies.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
3
|
Shan H, Wen H, Zhang J, Wang Y, Lu L, Liu Y, Yang B, Ji W. Synergistic Role of Streptomyces Composite Inoculants in Mitigating Wheat Drought Stress Under Field Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:366. [PMID: 39942929 PMCID: PMC11820025 DOI: 10.3390/plants14030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Wheat (Triticum aestivum L.) is a globally important staple crop; however, its growth and yield are severely limited by drought stress. This study evaluated the effects of a combined microbial inoculant, Streptomyces pactum Act12 and Streptomyces rochei D74, on wheat photosynthesis, physiological traits, and yield under drought conditions. Key physiological and yield parameters were measured during the jointing, heading, and grain-filling stages. Drought stress significantly reduced chlorophyll content, maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), and antioxidant enzyme activities, while increasing malondialdehyde (MDA) levels, leading to a notable yield decline. In contrast, inoculation with Streptomyces strains alleviated these adverse effects, with the combined inoculant (Act12+D74) group demonstrating the most significant improvement. Chlorophyll content increased by up to 32.60%, Fv/Fm improved by 43.07%, and antioxidant enzyme activities were enhanced, with superoxide dismutase (SOD) activity increasing by 19.32% and peroxidase (POD) activity by 75.44%. Meanwhile, MDA levels were reduced by 61.61%. The proline content in the combined inoculant group increased by 90.44% at the jointing stage and the soluble protein content increased by 60.17% at the heading stage. Furthermore, it improved the yield by 26.19% by increasing both effective spikes and grains per spike. For the first time, this study revealed the synergistic effects of Act12 and D74 in enhancing photosynthesis, strengthening antioxidant defenses, and optimizing osmotic regulation under drought conditions. These findings provide a theoretical basis for developing environmentally friendly drought management strategies and highlight the potential applications of this inoculant in sustainable agriculture.
Collapse
Affiliation(s)
- Hao Shan
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Hongwei Wen
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Jinhui Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Yuzhi Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Lahu Lu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Yutao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
| | - Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Wei Ji
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
4
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
5
|
Madany MMY, AbdElgawad H, Galilah DA, Khalil AMA, Saleh AM. Elevated CO 2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3792. [PMID: 38005689 PMCID: PMC10674191 DOI: 10.3390/plants12223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Abstract
Zirconium (Zr) is one of the toxic metals that are heavily incorporated into the ecosystem due to intensive human activities. Their accumulation in the ecosystem disrupts the food chain, causing undesired alterations. Despite Zr's phytotoxicity, its impact on plant growth and redox status remains unclear, particularly if combined with elevated CO2 (eCO2). Therefore, a greenhouse pot experiment was conducted to test the hypothesis that eCO2 can alleviate the phytotoxic impact of Zr upon oat (Avena sativa) plants by enhancing their growth and redox homeostasis. A complete randomized block experimental design (CRBD) was applied to test our hypothesis. Generally, contamination with Zr strikingly diminished the biomass and photosynthetic efficiency of oat plants. Accordingly, contamination with Zr triggered remarkable oxidative damage in oat plants, with concomitant alteration in the antioxidant defense system of oat plants. Contrarily, elevated levels of CO2 (eCO2) significantly mitigated the adverse effect of Zr upon both fresh and dry weights as well as the photosynthesis of oat plants. The improved photosynthesis consequently quenched the oxidative damage caused by Zr by reducing the levels of both H2O2 and MDA. Moreover, eCO2 augmented the total antioxidant capacity with the concomitant accumulation of molecular antioxidants (e.g., polyphenols, flavonoids). In addition, eCO2 not only improved the activities of antioxidant enzymes such as peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) but also boosted the ASC/GSH metabolic pool that plays a pivotal role in regulating redox homeostasis in plant cells. In this regard, our research offers a novel perspective by delving into the previously unexplored realm of the alleviative effects of eCO2. It sheds light on how eCO2 distinctively mitigates oxidative stress induced by Zr, achieving this by orchestrating adjustments to the redox balance within oat plants.
Collapse
Affiliation(s)
- Mahmoud M. Y. Madany
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Doaa A. Galilah
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. Khalil
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia
| |
Collapse
|
6
|
Weirich CE, Marques MR, de Castro AP, Assumpção Benitez B, Roque FDO, Marchetti CR, Rodrigues AD, de Lima DP, Dos Santos EDA. Impact of Iron Mining Activity on the Endophytic Fungal Community of Aspilia grazielae. J Fungi (Basel) 2023; 9:632. [PMID: 37367568 DOI: 10.3390/jof9060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023] Open
Abstract
Aspilia grazielae (J. U. Santos) is an endemic plant species in Morro do Urucum in the Pantanal wetland (Brazil). A. grazielae is used for the restoration of areas impacted by iron mining activities. This study evaluates the diversity (composition, value and abundance) of endophytic fungal communities, considering parts of the plant and soil condition. The leaves and roots of A. grazielae were collected from native vegetation areas (NVA) and recovery areas (RCA) in Morro do Urucum. Illumina sequencing technology was used to investigate variation in endophytic fungal biodiversity. The operational taxonomic units detected in NVA ranged from 183 to 263 (leaf) and 115 to 285 (root), while RCA samples ranged from 200 to 282 (leaf) and 156 to 348 (root). Ascomycota phylum was the most common species among all plant samples. The most significant classes identified were Lecanoromycetes and Dothideomycetes that differed significantly (p ≤ 0.05) according to their plant hosts and soil stress. The relative abundance of Pestalotiopsis (Sordariomycetes class) and Stereocaulon (Lecanoromycetes class) genera was influenced by the iron mining activities according to the leaf samples analysed. However, the abundance and wealth of endophytic fungal communities in A. grazielae from RCA were evidence that could explain their high resilience to environmental disturbances and the source-sink dynamics of fungal propagules.
Collapse
Affiliation(s)
- Carlos Eduardo Weirich
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Maria Rita Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Alinne Pereira de Castro
- Departamento de Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| | | | - Fabio de Oliveira Roque
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Centre for Tropical Environmental and Sustainability Science (TESS), James Cook University, Cairns, QLD 4878, Australia
| | - Clarice Rossato Marchetti
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Dênis Pires de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Edson Dos Anjos Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
7
|
Liu B, WeiXie L, Deng R, Lei N, Pu S, Li J. Effects of different fertilization methods on Lolium multiflorum Lam. growth and bacterial community in waste slag. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60538-60551. [PMID: 37036646 DOI: 10.1007/s11356-023-26386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023]
Abstract
Waste slag has low nutrient content, so it has insufficient nutrient cycling and transformation in the soil ecosystem. There are few studies on the application of oligotrophic phosphate-solubilizing bacteria and phosphate (P) fertilizer to improve the properties of waste slags. In this study, three oligotrophic bacterial strains with P solubilizing activity, namely, Bacillus subtilis 2C (7.23 μg/mL), Bacillus subtilis 6C (4.07 μg/mL), and Bacillus safensis 2N (5.05 μg/mL), were isolated from waste slags. In the pot experiment, compared with no application of P fertilizer, inoculation of Bacillus subtilis 2C with a 50% recommended dose of P fertilizer significantly increased the available phosphorus (AP), total phosphorus (TP), and total nitrogen (TN) in slag by 33.16%, 76.70%, and 233.33%, respectively. The N, P uptake and fresh weight of Lolium multiflorum Lam. were significantly improved by 114.15%, 139.02%, and 100%, respectively. The analysis of the bacterial community showed that the application of P fertilizer decreased the diversity and richness of the bacterial community, and with the addition of phosphorus fertilizer and Bacillus subtilis 2C, the bacterial community in the slag developed towards eutrophication. Redundancy analysis (RDA) showed that the TP content in the slag was significantly correlated with the bacterial community (P = 0.001, < 0.01), followed by the TN content. This study on different P fertilizer application methods can provide some basic ideas for improving the performance of waste slag.
Collapse
Affiliation(s)
- Boyu Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - LuYao WeiXie
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Ran Deng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Shengyan Pu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Jing Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| |
Collapse
|
8
|
Alves ARA, Yin Q, Oliveira RS, Silva EF, Novo LAB. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156435. [PMID: 35660615 DOI: 10.1016/j.scitotenv.2022.156435] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Soil metal contamination is a major concern due to the ever-rising number of areas afflicted worldwide and the detrimental effects of metals to the environment and human health. Due to their non-biodegradability and toxicity, it is paramount to prevent further metal contamination and remediate the thousands of contaminated sites across the planet. Yet, conventional reclamation based on physical and chemical methods is often expensive, impractical, and triggers secondary pollution issues. Hence, microbe-aided phytoremediation has been gaining significant traction due to its environment-friendly character, cost-effectiveness, and the breakthroughs achieved during the past few decades. Microorganisms are an essential part of natural ecosystems and play a crucial role in their restoration. Indeed, plant-microbe associations in metal-polluted soils are pivotal for plants to tolerate metal toxicity and thrive in these harsh environments. Therefore, improving the understanding of this intricate relationship is invaluable for boosting phytoremediation. In this review, we focus on the potential of plant growth promoting bacteria (PGPB) for enhancing phytoremediation of metal-polluted soils. We discuss the mechanisms employed by microbes to promote plant growth and assist the removal or immobilization of metals in soil, thereby enhancing phytoextraction and phytostabilization, respectively. Microbe-mediated metal removal and detoxification through processes entailing adsorption, chelation, transformation, and precipitation, to list but a few, are also critically examined. Moreover, this work covers the direct and indirect mechanisms used by PGPB to facilitate plant acquisition of nutrients like nitrogen and phosphorus, supply and regulate phytohormones, and exert control over antagonistic microorganisms. Lastly, we provide an outlook on the future directions of microbe-aided phytoremediation and phytomining. Clearly, to fully validate and comprehend the potential of PGPB-aided phytoremediation, a considerable shift from bench-scale to field research is necessary. What's more, it is envisaged that recent advancements in genetic engineering may soon help furthering the efficiency of microbe-assisted phytoremediation.
Collapse
Affiliation(s)
- Ana R A Alves
- GeoBioTec, Department of Geosciences, University of Aveiro, Portugal
| | - Qifan Yin
- School of Geosciences, University of Edinburgh, Edinburgh, UK; Scotland's Rural College, Edinburgh, UK
| | - Rui S Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Eduardo F Silva
- GeoBioTec, Department of Geosciences, University of Aveiro, Portugal
| | | |
Collapse
|
9
|
Yang J, Huang Y, Zhao G, Li B, Qin X, Xu J, Li X. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil. CHEMOSPHERE 2022; 296:134045. [PMID: 35183585 DOI: 10.1016/j.chemosphere.2022.134045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Screening or breeding exceptional plant species for heavy metal phytoremediation is as important as adopting feasible measures to enhance phytoremediation efficiency, which are largely based on clarifying the mechanisms of heavy metal tolerance and accumulation by plants. In this study, cadmium (Cd) and lead (Pb) tolerance and accumulation characteristics of Rheum officinale, R. palmatum, and R. tanguticum were analysed to assess their phytoremediation potential. The seed germination test indicated that these three rhubarb species could tolerate 10 mg L-1 Cd and 100 mg L-1 Pb. However, when sown in Cd- and Pb-contaminated soil, all three rhubarb species exhibited a relatively high Cd accumulation capacity but a considerably low Pb accumulation capacity according to the bioconcentration factors of Cd (0.42-0.47 in shoots and 0.11-0.15 in roots) and Pb (0.004-0.008 in shoots and 0.007-0.013 in roots). The high Cd translocation factors (3.04-4.24) indicated that these three rhubarb species were suitable for Cd phytoextraction. The changes in rhizospheric physicochemical indices were generally similar among the three rhubarb plants in comparison with those of the unplanted soil. However, differential indicator rhizobacteria were identified for the three rhubarb plants, which may be primarily attributed to their different root system characteristics. These enriched rhizobacteria included many plant growth-promoting bacteria, and several of them were also involved in regulating heavy metal uptake by plants, indicating that three rhubarb species likely recruit differentially beneficial rhizobacteria to maintain plant growth and vitality and to regulate heavy metal uptake in the Cd- and Pb-polluted soil. This study identifies new candidate plant resources for the phytoremediation of Cd-polluted soils and provides novel insights into understanding the interactions among heavy metals, rhizobacteria, and plants.
Collapse
Affiliation(s)
- Jingya Yang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingqi Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaojuan Zhao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China.
| | - Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
10
|
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int J Mol Sci 2022; 23:5031. [PMID: 35563429 PMCID: PMC9105715 DOI: 10.3390/ijms23095031] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.
Collapse
Affiliation(s)
- Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre Agro-Biotech URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
11
|
Influence of Ascophyllum nodosum Extract Foliar Spray on the Physiological and Biochemical Attributes of Okra under Drought Stress. PLANTS 2022; 11:plants11060790. [PMID: 35336672 PMCID: PMC8949179 DOI: 10.3390/plants11060790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Drought stress restricts the growth of okra (Abelmoschus esculentus L.) primarily by disrupting its physiological and biochemical functions. This study evaluated the role of Ascophyllum nodosum extract (ANE) in improving the drought tolerance of okra. Drought stress (3 days (control), 6 days (mild stress), and 9 days (severe stress)) and 4 doses of ANE (0, 0.1%, 0.2%, and 0.3%) were imposed after 30 days of cultivation. The results indicate that drought stress decreases the chlorophyll content (total chlorophyll, chlorophyll a, chlorophyll b, and carotenoid) but increases the activity of anthocyanin, proline, and antioxidant enzymes such as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT). Physiological and biochemical plant disturbances and visible growth reduction in okra under drought stress were significantly decreased by the application of ANE foliar spray. ANE spray (0.3%) significantly increased the chlorophyll abundance and activity of anthocyanin, proline, and antioxidants (APX, POD, and CAT). ANE regulated and improved biochemical and physiological functions in okra under both drought and control conditions. The results of the current study show that ANE foliar spray may improve the growth performance of okra and result in the development of drought tolerance in okra.
Collapse
|
12
|
Selim S, AbdElgawad H, Alsharari SS, Atif M, Warrad M, Hagagy N, Madany MMY, Abuelsoud W. Soil enrichment with actinomycete mitigates the toxicity of arsenic oxide nanoparticles on wheat and maize growth and metabolism. PHYSIOLOGIA PLANTARUM 2021; 173:978-992. [PMID: 34237152 DOI: 10.1111/ppl.13496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The use of plant growth-promoting bacteria (PGPB) to enhance plant growth and protection against heavy metal toxicity has been extensively studied. However, its potentiality to reduce arsenate toxicity, a threat to plant growth and metabolism, has been hardly investigated. Moreover, the toxic effect of arsenic oxide nanoparticles (As-NPs) on plants and possible mechanisms for its alleviation has not yet been explored. In this study, the impact of the bioactive actinomycete Streptomyces spp. on the growth, physiology and stress-related metabolites, such as sugars and proline, on As-NPs-stressed wheat and maize plants was investigated. Soil amendment with arsenic oxide nanoparticles (As-NPs) induced the uptake and accumulation of As in the plants of both species, resulting in reduced growth and photosynthesis, but less marked in maize than in wheat plants. Under As-NPs-free conditions, Streptomyces spp. treatment markedly improved growth and photosynthesis in wheat only. The application of Streptomyces spp. reduced As accumulation, recovered the As-NPs-induced growth, photosynthesis inhibition, and oxidative damage in plants of both species. Wheat plants specifically accumulated soluble sugars, while both species accumulated proline. Under As-NPs stress, the ornithine pathway of proline biosynthesis was more important in maize than in wheat plants, while the glutamine pathway was dominant in wheat ones. The addition of Streptomyces spp. further induced the accumulation of proline and starch in both plant species. Overall, despite a different response to Streptomyces spp. under nontoxic conditions, the amendment of as-contaminated soil with Streptomyces spp. induced similar metabolic responses in the two tested species, which trigger stress recovery.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hamada AbdElgawad
- Faculty of Science, Department of Botany and Microbiology, Beni-Suef University, Beni-Suef, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Salam S Alsharari
- Department of Biology, Jouf University, College of Science, Sakaka, Saudi Arabia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, Jouf University, College of Applied Medical Sciences, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, Jouf University, College of Applied Medical Sciences at Al-Quriat, Al-Quriat, Saudi Arabia
| | - Nashwa Hagagy
- Department of Biology, University of Jeddah, College of Science and Arts at Khulis, Jeddah, Saudi Arabia
- Faculty of Science, Department of Botany, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M Y Madany
- Faculty of Science, Department of Botany and Microbiology, Cairo University, Giza, Egypt
- Department of Biology, Taibah University, College of Science, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Walid Abuelsoud
- Faculty of Science, Department of Botany and Microbiology, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Ahmad H, Li J. Impact of water deficit on the development and senescence of tomato roots grown under various soil textures of Shaanxi, China. BMC PLANT BIOLOGY 2021; 21:241. [PMID: 34049491 PMCID: PMC8162013 DOI: 10.1186/s12870-021-03018-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 05/26/2023]
Abstract
PURPOSE Water scarcity is expected to extend to more regions of the world and represents an alarming threat to food security worldwide. Under such circumstances, water holding capacity is an important agronomic trait, which is primarily controlled by soil texture. METHODS Our work examined three different soil textures from three cities of Shaanxi Province in China, i.e., silt-sandy loam from Yulin (north of Shaanxi), loam-clay loam from Yangling (middle and western part of Shaanxi), and clay loam-clay from Hanzhong soil (south of Shaanxi), at two moisture levels, i.e., field capacity of 70-75% (well-watered) and 50-55% (water deficit). RESULTS The differences in soil particle sizes altered the soil physiochemical properties and soil enzymatic activities. Soil urease and ß-glucosidase activities were significantly higher in the Yangling soil under the well-watered treatment, while the differences were nonsignificant under the water deficit conditions. The leaf photosynthesis rate and total chlorophyll content were significantly higher in Hanzhong soil after 15 days of treatment; however, the overall highest plant length, root cortex diameter, and xylem element abundance were significantly higher in Yangling soil under the water deficit conditions. Furthermore, comparable differences were observed in antioxidant defence enzymes and endogenous hormones after every 15 days of treatments. The auxin, gibberellic acid and cytokinin concentrations in leaves and roots were comparably high in Yangling soil, while the abscisic acid concentrations were higher in Hanzhong soil under the water deficit conditions. CONCLUSIONS Our findings concluded that soil compaction has a significant role not only in root morphology, growth, and development but also in the soil physicochemical properties and nutrient cycle, which are useful for the growth and development of tomato plants.
Collapse
Affiliation(s)
- Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
14
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. The Protective Effect of Aspirin Eugenol Ester on Paraquat-Induced Acute Liver Injury Rats. Front Med (Lausanne) 2020; 7:589011. [PMID: 33392217 PMCID: PMC7773779 DOI: 10.3389/fmed.2020.589011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-inflammatory and anti-oxidative effects. The study was conducted to evaluate the protective effect of AEE on paraquat-induced acute liver injury (ALI) in rats. AEE was against ALI by decreasing alanine transaminase and aspartate transaminase levels in blood, increasing superoxide dismutase, catalase, and glutathione peroxidase levels, and decreasing malondialdehyde levels in blood and liver. A total of 32 metabolites were identified as biomarkers by using metabolite analysis of liver homogenate based on ultra-performance liquid chromatography-tandem mass spectrometry, which belonged to purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, histidine metabolism, pantothenate, and CoA biosynthesis, ether lipid metabolism, beta-Alanine metabolism, lysine degradation, cysteine, and methionine metabolism. Western blotting analyses showed that Bax, cytochrome C, caspase-3, caspase-9, and apoptosis-inducing factor expression levels were obviously decreased, whereas Bcl-2 expression levels obviously increased after AEE treatment. AEE exhibited protective effects on PQ-induced ALI, and the underlying mechanism is correlated with antioxidants that regulate amino acid, phospholipid and energy metabolism metabolic pathway disorders and alleviate liver mitochondria apoptosis.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
15
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
16
|
Zhang T, Li L, Xu F, Chen X, Du L, Wang X, Li Y. Assessing the remobilization and fraction of cadmium and lead in sediment of the Jialing River by sequential extraction and diffusive gradients in films (DGT) technique. CHEMOSPHERE 2020; 257:127181. [PMID: 32485515 DOI: 10.1016/j.chemosphere.2020.127181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) and lead (Pb) are two typical heavy metals of the Jialing River, and their threat to the river has been considered by the government in recent years. In this study, the diffusive gradient in thin films (DGT) technique and sequential extraction were employed together to analyse the remobilization and fraction of Cd and Pb in the sediments. The total concentration of Cd and Pb in four sampling sites both followed the order S3>S4>S2>S1. The sequential extraction results indicated that large amounts of Cd and Pb (over 50% of the total concentration) were bound to the exchangeable and reducible fraction. The DGT results showed that both Cd and Pb presented a significant increasing trend at the bottom of the DGT probe (-10 cm to -12 cm) and that the two metals had a significant positive correlation (r = 0.831, p < 0.01). The apparent diffusive flux result indicated that Cd and Pb had a potential risk of release from surface sediments. A significant correlation was observed between the DGT-labile fraction and sequential extraction at the surface sediments. A further correlation analysis found that the concentration of labile Cd/Pb measured by DGT (CDGT-Cd and CDGT-Pb) had a strong negative correlation with CDGT-Fe, and this process was mainly mitigated by the iron oxides in the sediments. In addition, the correspondence of a "dark area" of AgI gel with corresponding "hotspots" of Chelex gel also proved that the release of Cd and Pb may regulate the dissolved sulfide in the sediments.
Collapse
Affiliation(s)
- Tuo Zhang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China.
| | - Lijuan Li
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Fei Xu
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xiangyu Chen
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Li Du
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinjian Wang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yunxiang Li
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| |
Collapse
|
17
|
Jain D, Kour R, Bhojiya AA, Meena RH, Singh A, Mohanty SR, Rajpurohit D, Ameta KD. Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Sci Rep 2020; 10:13865. [PMID: 32807871 PMCID: PMC7431563 DOI: 10.1038/s41598-020-70846-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
The increasing heavy metal contamination in agricultural soils has become a serious concern across the globe. The present study envisages developing microbial inoculant approach for agriculture in Zn contaminated soils. Potential zinc tolerant bacteria (ZTB) were isolated from zinc (Zn) contaminated soils of southern Rajasthan, India. Isolates were further screened based on their efficiency towards Zn tolerance and plant growth promoting activities. Four strains viz. ZTB15, ZTB24, ZTB28 and ZTB29 exhibited high degree of tolerance to Zn up to 62.5 mM. The Zn accumulation by these bacterial strains was also evidenced by AAS and SEM-EDS studies. Assessment of various plant growth promotion traits viz., IAA, GA3, NH3, HCN, siderophores, ACC deaminase, phytase production and P, K, Si solubilization studies revealed that these ZTB strains may serve as an efficient plant growth promoter under in vitro conditions. Gluconic acid secreted by ZTB strains owing to mineral solubilization was therefore confirmed using high performance liquid chromatography. A pot experiment under Zn stress conditions was performed using maize (Zea mays) variety (FEM-2) as a test crop. Zn toxicity reduced various plant growth parameters; however, inoculation of ZTB strains alleviated the Zn toxicity and enhanced the plant growth parameters. The effects of Zn stress on antioxidant enzyme activities in maize under in vitro conditions were also investigated. An increase in superoxide dismutase, peroxidase, phenylalanine ammonia lyase, catalase and polyphenol oxidase activity was observed on inoculation of ZTB strains. Further, ZIP gene expression studies revealed high expression in the ZIP metal transporter genes which were declined in the ZTB treated maize plantlets. The findings from the present study revealed that ZTB could play an important role in bioremediation in Zn contaminated soils.
Collapse
Affiliation(s)
- Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India.
| | - Ramandeep Kour
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Ali Asger Bhojiya
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India.,Department of Agriculture and Veterinary Sciences, Mewar University, Chittaurgarh, Rajasthan, India
| | - Ram Hari Meena
- Department of Soil Science and Agricultural Chemistry, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India.
| | - Santosh Ranjan Mohanty
- AINP on Soil Biodiversity-Bio-Fertilizers, Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh, 462038, India
| | - Deepak Rajpurohit
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Kapil Dev Ameta
- Department of Horticulture, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
18
|
Sikdar A, Wang J, Hasanuzzaman M, Liu X, Feng S, Roy R, Sial TA, Lahori AH, Arockiam Jeyasundar PGS, Wang X. Phytostabilization of Pb-Zn Mine Tailings with Amorpha fruticosa Aided by Organic Amendments and Triple Superphosphate. Molecules 2020; 25:molecules25071617. [PMID: 32244753 PMCID: PMC7181007 DOI: 10.3390/molecules25071617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A greenhouse pot trial was conducted to investigate the effect of organic amendments combined with triple superphosphate on the bioavailability of heavy metals (HMs), Amorpha fruticosa growth and metal uptake from Pb-Zn mine tailings. Cattle manure compost (CMC), spent mushroom compost (SMC) and agricultural field soil (AFS) were applied to tailings at 5%, 10%, 20% and 30% w/w ratio, whereas sewage sludge (SS) and wood biochar (WB) were mixed at 2.5%, 5%, 10% and 20% w/w ratio. Triple superphosphate (TSP) was added to all the treatments at 4:1 (molar ratio). Amendments efficiently decreased DTPA-extracted Pb, Zn, Cd and Cu in treatments. Chlorophyll contents and shoot and root dry biomass significantly (p < 0.05) increased in the treatments of CMC (except T4 for chlorophyll b) and SMC, whereas treatments of SS (except T1 for chlorophyll a and b), WB and AFS (except T4 for chlorophyll a and b) did not show positive effects as compared to CK1. Bioconcentration factor (BCF) and translocation factor (TF) values in plant tissues were below 1 for most treatments. In amended treatments, soluble protein content increased, phenylalanine ammonialyase (PAL) and polyphenol oxidase (PPO) decreased, and catalase (CAT) activity showed varied results as compared to CK1 and CK2. Results suggested that A. fruticosa can be a potential metal phytostabilizer and use of CMC or SMC in combination with TSP are more effective than other combinations for the in situ stabilization of Pb-Zn mine tailings.
Collapse
Affiliation(s)
- Ashim Sikdar
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
- Correspondence: or ; Tel.: +86-029-8708-0055
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Xiaoyang Liu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| | - Shulin Feng
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| | - Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan;
| | | | - Xiuqing Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| |
Collapse
|
19
|
Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109779. [PMID: 31726280 DOI: 10.1016/j.jenvman.2019.109779] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 05/22/2023]
Abstract
Rapid industrialization, modern agricultural practices and other anthropogenic activities add a significant quantity of toxic heavy metals into the environment, which induces severe toxic effects on all form of living organisms, alter the soil properties and its biological activity. Remediation of heavy metal contaminated sites has become an urgent necessity. Among the existing strategies, phytoremediation is an eco-friendly and much convincing tool for the remediation of heavy metals. However, the applicability of phytoremediation in contaminated sites is restricted by two prime factors such as i) slow growth rate at higher metal contaminated sites and ii) metal bioavailability. This circumstance could be minimized and accelerate the phytoremediation efficiency by incorporating the potential plant growth promoting rhizobacterial (PGPR) as a combined approach. PGPR inoculation might improve the plant growth through the production of plant growth promoting substances and improve the heavy metal remediation efficiency by the secretion of chelating agents, acidification and redox changes. Moreover, rhizobacterial inoculation consolidates the metal tolerance and uptake by regulating the expression of various metal transporters, tolerant and metal chelator genes. However, the exact underlying molecular mechanism of PGPR mediated plant growth promotion and phytoremediation of heavy metals is poorly understood. Thus, the present review provides clear information about the molecular mechanisms excreted by PGPR strains in plant growth promotion and phytoremediation of heavy metals.
Collapse
Affiliation(s)
- Srinivas Ravi Manoj
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Chinnannan Karthik
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India.
| | - Krishna Kadirvelu
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India.
| | - Padikasan Indra Arulselvi
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Thangavel Shanmugasundaram
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India
| | - Benedict Bruno
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
20
|
Zeng P, Guo Z, Xiao X, Peng C. Effects of tree-herb co-planting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal(loid)-contaminated soil. CHEMOSPHERE 2019; 220:237-248. [PMID: 30584955 DOI: 10.1016/j.chemosphere.2018.12.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Tree-herb co-planting is regarded as an ecologically sustainable approach for the remediation of metal(loid)-contaminated soil. In this study, two herb species, Pteris vittata L. and Arundo donax L., and two woody species, Morus alba L. and Broussonetia papyrifera L., were selected for the tree-herb co-planting, and their impacts on the changing of microbial community structure in metal(loid)-contaminated soil were studied by high-throughput sequencing. The results showed that the microbial diversity was stably maintained by the tree-herb interactions, while the composition of the microbial community was clearly affected in metal(loid)-contaminated soil. According to the Venn and flower diagrams, heat map and principal coordinate analysis, both plant monocultures and co-planting had specific microbial community structures, which suggested that the composition and abundance of bacterial communities varied between plant monoculture and tree-herb co-planting treatments. In particular, A. donax L. played a vital role in increasing the abundances of Cyanobacteria (>1%) in metal(loid)-contaminated soil when co-planted with woody plants. Furthermore, some specific microorganisms combined with plants played a key role in improving enzyme activity in the contaminated soil. Correspondingly, sucrase and acid phosphatase activities in monoculture and co-planting treatments significantly (p < 0.05) increased by 1.05-3.37 and 7.24-20.3 times. These results indicated that the rhizospheric interactions in the tree-herb co-planting system positively affected the soil microbes and had stronger impacts on the composition of soil microorganisms, which was closely related to the improvement of the biological quality in the metal(loid)-contaminated soil.
Collapse
Affiliation(s)
- Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| |
Collapse
|
21
|
Li K, Tang X, Zhao J, Guo Y, Tang Y, Gao J. Streptomyces cadmiisoli sp. nov., a novel actinomycete isolated from cadmium-contaminated soil. Int J Syst Evol Microbiol 2019; 69:1024-1029. [PMID: 30714891 DOI: 10.1099/ijsem.0.003262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel
Streptomyces
strain, ZFG47T, isolated from a cadmium-contaminated soil sample, was taxonomically studied in detail. Strain ZFG47T formed long, flexuous spiral spore chains consisting of elliptoid spores with spiny surfaces. The cell-wall hydrolysates contained ll-diaminopimelic acid as the diagnostic diamino acid. The major menaquinones consisted of MK-9(H2), MK-9(H4) and MK-9(H8). The major polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol mannosides. The predominant cellular fatty acids were iso-C16 : 0, C16 : 0 and anteiso-C15 : 0. The 16S rRNA gene sequence-based phylogenetic analysis indicated that this strain belongs to the genus
Streptomyces
, showing the highest sequence similarity to
Streptomyces
koyangensis VK-A60T (98.7 %). However, the digital DNA–DNA hybridization value, the average nucleotide identity value and the MLSA evolutionary distance between this strain and S. koyangensis VK-A60T showed that it belonged to a distinct species. Furthermore, the novel isolate could be distinctly differentiated from S. koyangensis VK-A60T by morphological, physiological and biochemical characteristics. On the basis of the evidence from this polyphasic study, it is concluded that strain ZFG47T represents a novel species of the genus
Streptomyces
, for which the name Streptomyces cadmiisoli sp. nov. is proposed, with strain ZFG47T (CICC 11050T=JCM 32897T) as the type strain.
Collapse
Affiliation(s)
- Kaiqin Li
- School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Xinke Tang
- School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Jiarong Zhao
- School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Yihui Guo
- School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Yongjie Tang
- School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Jian Gao
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, PR China
| |
Collapse
|
22
|
Bilal S, Shahzad R, Khan AL, Kang SM, Imran QM, Al-Harrasi A, Yun BW, Lee IJ. Endophytic Microbial Consortia of Phytohormones-Producing Fungus Paecilomyces formosus LHL10 and Bacteria Sphingomonas sp. LK11 to Glycine max L. Regulates Physio-hormonal Changes to Attenuate Aluminum and Zinc Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:1273. [PMID: 30233618 PMCID: PMC6131895 DOI: 10.3389/fpls.2018.01273] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/14/2018] [Indexed: 05/24/2023]
Abstract
The compatible microbial consortia containing fungal and bacterial symbionts acting synergistically are applied to improve plant growth and eco-physiological responses in extreme crop growth conditions. However, the interactive effects of phytohormones-producing endophytic fungal and bacterial symbionts plant growth and stress tolerance under heavy metal stress have been least known. In the current study, the phytohormones-producing endophytic Paecilomyces formosus LHL10 and Sphingomonas sp. LK11 revealed potent growth and tolerance during their initial screening against combined Al and Zn (2.5 mM each) stress. This was followed with their co-inoculation in the Al- and Zn-stressed Glycine max L. plants, showing significantly higher plant growth attributes (shoot/root length, fresh/dry weight, and chlorophyll content) than the plants solely inoculated with LHL10 or LK11 and the non-inoculated (control) plants under metal stresses. Interestingly, under metal stress, the consortia exhibited lower metal uptake and inhibited metal transport in roots. Metal-induced oxidative stresses were modulated in co-inoculated plants through reduced hydrogen peroxide, lipid peroxidation, and antioxidant enzymes (catalase and superoxide dismutase) in comparison to the non-inoculated plants. In addition, endophytic co-inoculation enhanced plant macronutrient uptake (P, K, S, and N) and modulated soil enzymatic activities under stress conditions. It significantly downregulated the expression of heavy metal ATPase genes GmHMA13, GmHMA18, GmHMA19, and GmPHA1 and upregulated the expression of an ariadne-like ubiquitin ligase gene GmARI1 under heavy metals stress. Furthermore, the endogenous phytohormonal contents of co-inoculated plants revealed significantly enhanced gibberellins and reduced abscisic acid and jasmonic acid contents, suggesting that this endophytic interaction mitigated the adverse effect of metal stresses in host plants. In conclusion, the co-inoculation of the endophytic fungus LHL10 and bacteria LK11 actively contributed to the tripartite mutualistic symbiosis in G. max under heavy metal stresses; this could be used an excellent strategy for sustainable agriculture in the heavy metal-contaminated fields.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdul L. Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Qari M. Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Lahori AH, Zhang Z, Guo Z, Li R, Mahar A, Awasthi MK, Wang P, Shen F, Kumbhar F, Sial TA, Zhao J, Guo D. Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:528-538. [PMID: 28787614 DOI: 10.1016/j.ecoenv.2017.07.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
The efficacy of tobacco biochar (TB) alone and in combined with mineral additives: Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ), on immobilization of Pb, Cd, Cu and Zn, via reduce its (bio) availability to plants were investigated. The soils were collected from Tongguan contaminated (TG-C), Fengxian heavily contaminated (FX-HC) and Fengxian lightly contaminated (FX-LC) fields, Shaanxi province, China. The contaminated top soils were treated with low-cost amendments with an application rate of 1% and cultivated by Chinese cabbage (Brassica campestris L.) under greenhouse condition. Results showed that the all amendments (p < 0.05) potentially maximum reduced the DTPA-extractable Pb 82.53, Cd 31.52 and Cu 75.0% with TB + NZ in FX-LC soil, while in case of Zn 62.21% with TB + CH in FX-HC soil than control. The addition of amendments clearly increased dry biomass of Brassica campestris L. as compared with un-amended treatment (except TB + CH). Furthermore, these amendments markedly increased the uptake by plant shoot viz, Cd 10.51% with TB alone and 11.51% with TB + CB in FX-HC soil, similarly in FX-LC Cd increased 5.15% with TB + CH and 22.19% with TB + NZ, respectively. In same trend the Cu uptake in plant shoot was 19.30% with TB + CH in TG-C, whereas 43.90 TB + CH and 19.24% with TB + NZ in FX-LC soil. On the other hand as compared to control Cu accumulation in plant root was observed by TB, TB + CH and TB + CB treatments, while maximum uptake was 62.41% with TB + CH in TG-C soil. Consequently, except TB + CH treatment the chlorophyll content potentially increased in all amendment than control treatment, because of changes in soil EC, pH but increased CEC values after application of amendments. The results of this pot experiment are promising but they will further need to be confirmed with long-term field experiments.
Collapse
Affiliation(s)
- Altaf Hussain Lahori
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Zhanyu Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Amanullah Mahar
- Centre for Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Feng Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Farhana Kumbhar
- College of Agronomy, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| |
Collapse
|
24
|
Hussain Lahori A, Zhang Z, Guo Z, Mahar A, Li R, Kumar Awasthi M, Ali Sial T, Kumbhar F, Wang P, Shen F, Zhao J, Huang H. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:313-323. [PMID: 28756252 DOI: 10.1016/j.ecoenv.2017.07.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (p< 0.05) significantly reduced the DTPA-extractable Pb 97.33, Cd 68.06 and Cu 91.11% with L+TB, L+CB, L+Z in FX-LC soil and Zn 87.12% respectively, with L+CB into TG-C soil. Consequently, the application of lime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop.
Collapse
Affiliation(s)
- Altaf Hussain Lahori
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Zhanyu Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Amanullah Mahar
- Centre for Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Farhana Kumbhar
- College of Agronomy, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Feng Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Hui Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China
| |
Collapse
|