1
|
Li Y, Fan W, Lo TH, Jiang JX, Fish SR, Tomilov A, Chronopoulos A, Bansal V, Mozes G, Vancza L, Kunimoto K, Ye J, Becker L, Das S, Park H, Wei Y, Ranjbarvaziri S, Bernstein D, Ramsey J, Cortopassi G, Török NJ. P46Shc Inhibits Mitochondrial ACAA2 Thiolase, Exacerbating Mitochondrial Injury and Inflammation in Aging Livers. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:528-541. [PMID: 39733992 PMCID: PMC11841488 DOI: 10.1016/j.ajpath.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 12/31/2024]
Abstract
Mitochondrial maladaptation and dysfunction contribute to the progression of metabolic dysfunction-associated steatohepatitis (MASH). Induction of Shc is implicated in progressive MASH during aging and the cytoplasmic p52Shc isoform in the activation of redox enzyme NOX2. The mitochondrial Shc isoform p46Shc represses acetyl-coenzyme A acyltransferase 2 (ACAA2) in vitro. ACAA2 is a key enzyme for lipid β-oxidation; however, the metabolic consequences of in vivo p46Shc induction are unknown. In the current study, p46Shc-inducible mice were generated; these and littermate controls were aged and fed chow or fast-food (high-fat and high-fructose) diet. p46Shc induction increased liver injury, inflammation, and lipid peroxidation. p46Shc overexpression did not significantly change liver triglycerides. On electron microscopy studies, mitochondria were swollen with aberrant cristae. p46Shc induction reduced mitochondrial oxygen consumption as measured by Oroboros, as well as suppressed the production of β-hydroxybutyrate, the central metabolite of therapeutic ketosis. Mitochondria exhibited increased production of reactive oxidative species. By contrast, the expression of dominant negative p46Shc reduced ACAA2 thiolase activity, improved β-oxidation, and reduced lipid peroxidation and production of reactive oxidative species. In summary, these studies support the concept that p46Shc induction in aging represses ACAA2, resulting in decreased mitochondrial β-oxidation and increased lipid peroxidation. Maintaining β-oxidation and ketogenesis could prevent liver injury, and targeting Shc-related maladaptive responses could be a successful therapeutic strategy in aging/MASH.
Collapse
Affiliation(s)
- Yuan Li
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Tzu-Han Lo
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Joy X Jiang
- Division of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, California
| | - Sarah R Fish
- Division of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, California
| | - Alexey Tomilov
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California
| | - Antonios Chronopoulos
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Vidushi Bansal
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Gergely Mozes
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Lorand Vancza
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Koshi Kunimoto
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Jiayu Ye
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Laren Becker
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Suvarthi Das
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Hyesuk Park
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Yi Wei
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California
| | - Sara Ranjbarvaziri
- Department of Pediatrics, Stanford University, Stanford, California; Cardiovascular Research Institute, Stanford University, Stanford, California
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University, Stanford, California; Cardiovascular Research Institute, Stanford University, Stanford, California
| | - Jon Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California
| | - Natalie J Török
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; Palo Alto VA Medical Center, Palo Alto, California.
| |
Collapse
|
2
|
Chiou JT, Chang LS. ONC212 enhances YM155 cytotoxicity by triggering SLC35F2 expression and NOXA-dependent MCL1 degradation in acute myeloid leukemia cells. Biochem Pharmacol 2024; 224:116242. [PMID: 38679209 DOI: 10.1016/j.bcp.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.
Collapse
MESH Headings
- Humans
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- U937 Cells
- Imidazoles/pharmacology
- Naphthoquinones/pharmacology
- HL-60 Cells
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Drug Synergism
- Benzyl Compounds
- Heterocyclic Compounds, 3-Ring
- Sulfonamides
- Bridged Bicyclo Compounds, Heterocyclic
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
Podszywalow-Bartnicka P, Neugebauer KM. Multiple roles for AU-rich RNA binding proteins in the development of haematologic malignancies and their resistance to chemotherapy. RNA Biol 2024; 21:1-17. [PMID: 38798162 PMCID: PMC11135835 DOI: 10.1080/15476286.2024.2346688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.
Collapse
Affiliation(s)
- Paulina Podszywalow-Bartnicka
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Akhtar F, Ruiz JH, Liu YG, Resendez RG, Feliers D, Morales LD, Diaz-Badillo A, Lehman DM, Arya R, Lopez-Alvarenga JC, Blangero J, Duggirala R, Mummidi S. Functional characterization of the disease-associated CCL2 rs1024611G-rs13900T haplotype: The role of the RNA-binding protein HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564937. [PMID: 37961304 PMCID: PMC10635030 DOI: 10.1101/2023.10.31.564937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
CC-chemokine ligand 2 (CCL2) is involved in the pathogenesis of several diseases associated with monocyte/macrophage recruitment, such as HIV-associated neurocognitive disorder (HAND), tuberculosis, and atherosclerosis. The rs1024611 (alleles:A>G; G is the risk allele) polymorphism in the CCL2 cis-regulatory region is associated with increased CCL2 expression in vitro and ex vivo, leukocyte mobilization in vivo, and deleterious disease outcomes. However, the molecular basis for the rs1024611-associated differential CCL2 expression remains poorly characterized. It is conceivable that genetic variant(s) in linkage disequilibrium (LD) with rs1024611 could mediate such effects. Previously, we used rs13900 (alleles:_C>T) in the CCL2 3' untranslated region (3' UTR) that is in perfect LD with rs1024611 to demonstrate allelic expression imbalance (AEI) of CCL2 in heterozygous individuals. Here we tested the hypothesis that the rs13900 could modulate CCL2 expression by altering mRNA turnover and/or translatability. The rs13900 T allele conferred greater stability to the CCL2 transcript when compared to the rs13900 C allele. The rs13900 T allele also had increased binding to Human Antigen R (HuR), an RNA-binding protein, in vitro and ex vivo. The rs13900 alleles imparted differential activity to reporter vectors and influenced the translatability of the reporter transcript. We further demonstrated a role for HuR in mediating allele-specific effects on CCL2 expression in overexpression and silencing studies. The presence of the rs1024611G-rs13900T conferred a distinct transcriptomic signature related to inflammation and immunity. Our studies suggest that the differential interactions of HuR with rs13900 could modulate CCL2 expression and explain the interindividual differences in CCL2-mediated disease susceptibility.
Collapse
Affiliation(s)
- Feroz Akhtar
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Joselin Hernandez Ruiz
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Ya-Guang Liu
- Department of Pathology, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Roy G. Resendez
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Denis Feliers
- Department of Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Liza D. Morales
- South Texas Diabetes and Obesity Institute, Department of Genetics, School of Medicine, University of Texas Rio Grane Valley, Brownsville, USA
| | - Alvaro Diaz-Badillo
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Donna M. Lehman
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Rector Arya
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Juan Carlos Lopez-Alvarenga
- Department of Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Harlingen, Texas, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Genetics, School of Medicine, University of Texas Rio Grane Valley, Brownsville, USA
| | - Ravindranath Duggirala
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| | - Srinivas Mummidi
- Department of Health and Behavioral Sciences, Texas A&M University- San Antonio, Texas, USA
| |
Collapse
|
5
|
Wang LJ, Lee YC, Chiou JT, Chen YJ, Chang LS. Effects of SIDT2 on the miR-25/NOX4/HuR axis and SIRT3 mRNA stability lead to ROS-mediated TNF-α expression in hydroquinone-treated leukemia cells. Cell Biol Toxicol 2023; 39:2207-2225. [PMID: 35302183 DOI: 10.1007/s10565-022-09705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
Abstract
Our previous studies indicated that the benzene metabolite hydroquinone (HQ) evokes the ROS/p38 MAPK/protein phosphatase 2A/tristetraprolin axis, leading to increased TNF-α expression in human acute myeloid leukemia cell lines U937 and HL-60. In this study, we aimed to identify the upstream pathway involved in ROS-mediated TNF-α expression. HQ treatment increased SIDT2 expression, which subsequently decreased miR-25 and SIRT3 expression in U937 cells. Notably, miR-25 downregulation promoted SIDT2 expression in HQ-treated U937 cells. SIDT2 induced lysosomal degradation of SIRT3 mRNA, but inhibited miR-25 expression through a lysosome-independent pathway. MiR-25 inhibition reduced NOX4 mRNA turnover, resulting in increased NOX4 protein levels. NOX4 induces mitochondrial ROS production and HuR downregulation. Restoration of HuR expression increased SIRT3 expression, suggesting that NOX4-mediated HuR downregulation promotes SIDT2-mediated degradation of SIRT3 mRNA. Inhibition of NOX4 or SIRT3 overexpression abolished HQ-induced ROS production, thereby abolishing TNF-α upregulation. Overall, these results indicate that SIDT2 regulates the miR-25/NOX4/HuR axis and SIRT3 mRNA destabilization, leading to ROS-mediated TNF-α upregulation in HQ-treated U937 cells. HQ-induced increase in TNF-α expression in HL-60 cells was also mediated through a similar pathway.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
6
|
Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20:662-678. [PMID: 37679454 DOI: 10.1038/s41575-023-00832-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
The burden of chronic liver disease is rising substantially worldwide. Fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the common pathway leading to cirrhosis, and limited treatment options are available. There is increasing evidence suggesting the role of cellular stress responses contributing to fibrogenesis. This Review provides an overview of studies that analyse the role of cellular stress in different cell types involved in fibrogenesis, including hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and macrophages.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dounia Le Guillou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Blas-García A, Apostolova N. Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants (Basel) 2023; 12:1567. [PMID: 37627562 PMCID: PMC10451738 DOI: 10.3390/antiox12081567] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic liver disease (CLD) constitutes a growing global health issue, with no effective treatments currently available. Oxidative stress closely interacts with other cellular and molecular processes to trigger stress pathways in different hepatic cells and fuel the development of liver fibrosis. Therefore, inhibition of reactive oxygen species (ROS)-mediated effects and modulation of major antioxidant responses to counteract oxidative stress-induced damage have emerged as interesting targets to prevent or ameliorate liver injury. Although many preclinical studies have shown that dietary supplements with antioxidant properties can significantly prevent CLD progression in animal models, this strategy has not proved effective to significantly reduce fibrosis when translated into clinical trials. Novel and more specific therapeutic approaches are thus required to alleviate oxidative stress and reduce liver fibrosis. We have reviewed the relevant literature concerning the crucial role of alterations in redox homeostasis in different hepatic cell types during the progression of CLD and discussed current pharmacological approaches to ameliorate fibrosis by reducing oxidative stress focusing on selective modulation of enzymatic oxidant sources, antioxidant systems and ROS-mediated pathogenic processes.
Collapse
Affiliation(s)
- Ana Blas-García
- Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Nadezda Apostolova
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Departamento de Farmacología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
8
|
Li Y, Jiang JX, Fan W, Fish SR, Das S, Gupta P, Mozes G, Vancza L, Sarkar S, Kunimoto K, Chen D, Park H, Clemens D, Tomilov A, Cortopassi G, Török NJ. Shc Is Implicated in Calreticulin-Mediated Sterile Inflammation in Alcoholic Hepatitis. Cell Mol Gastroenterol Hepatol 2022; 15:197-211. [PMID: 36122677 PMCID: PMC9676381 DOI: 10.1016/j.jcmgh.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Src homology and collagen (Shc) proteins are major adapters to extracellular signals, however, the regulatory role of Shc isoforms in sterile inflammatory responses in alcoholic hepatitis (AH) has not been fully investigated. We hypothesized that in an isoform-specific manner Shc modulates pre-apoptotic signals, calreticulin (CRT) membrane exposure, and recruitment of inflammatory cells. METHODS Liver biopsy samples from patients with AH vs healthy subjects were studied for Shc expression using DNA microarray data and immunohistochemistry. Shc knockdown (hypomorph) and age-matched wild-type mice were pair-fed according to the chronic-plus-binge alcohol diet. To analyze hepatocyte-specific effects, adeno-associated virus 8-thyroxine binding globulin-Cre (hepatocyte-specific Shc knockout)-mediated deletion was performed in flox/flox Shc mice. Lipid peroxidation, proinflammatory signals, redox radicals, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratio, as well as cleaved caspase 8, B-cell-receptor-associated protein 31 (BAP31), Bcl-2-associated X protein (Bax), and Bcl-2 homologous antagonist killer (Bak), were assessed in vivo. CRT translocation was studied in ethanol-exposed p46ShcẟSH2-transfected hepatocytes by membrane biotinylation in conjunction with phosphorylated-eukaryotic initiation factor 2 alpha, BAP31, caspase 8, and Bax/Bak. The effects of idebenone, a novel Shc inhibitor, was studied in alcohol/pair-fed mice. RESULTS Shc was significantly induced in patients with AH (P < .01). Alanine aminotransferase, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratios, production of redox radicals, and lipid peroxidation improved (P < .05), and interleukin 1β, monocyte chemoattractant protein 1, and C-X-C chemokine ligand 10 were reduced in Shc knockdown and hepatocyte-specific Shc knockout mice. In vivo, Shc-dependent induction, and, in hepatocytes, a p46Shc-dependent increase in pre-apoptotic proteins Bax/Bak, caspase 8, BAP31 cleavage, and membrane translocation of CRT/endoplasmic reticulum-resident protein 57 were seen. Idebenone protected against alcohol-mediated liver injury. CONCLUSIONS Alcohol induces p46Shc-dependent activation of pre-apoptotic pathways and translocation of CRT to the membrane, where it acts as a damage-associated molecular pattern, instigating immunogenicity. Shc inhibition could be a novel treatment strategy in AH.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Joy X Jiang
- Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Sarah R Fish
- Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California
| | - Suvarthi Das
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Parul Gupta
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Gergely Mozes
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Lorand Vancza
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Sutapa Sarkar
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Dongning Chen
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Hyesuk Park
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Dahn Clemens
- Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alexey Tomilov
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Gino Cortopassi
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Natalie J Török
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California.
| |
Collapse
|
9
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
10
|
Exercise Affects the Formation and Recovery of Alcoholic Liver Disease through the IL-6-p47 phox Oxidative-Stress Axis. Cells 2022; 11:cells11081305. [PMID: 35455983 PMCID: PMC9026480 DOI: 10.3390/cells11081305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: To explore the effect of exercise on the formation and recovery of alcoholic liver disease (ALD) and whether the IL-6−p47phox oxidative−stress axis is involved in that process. (2) Methods: Firstly, 23 six-week-old male C57BL/6J mice were randomly divided into the Con group, ALD group, ALD + NOXI group, ALD + Ex group, and ALD + Ex + NOXI group. The Liber−DeCarli alcoholic liquid diet was used for 6 weeks to establish the ALD mice model, and the Con group was given the TP4030C control diet. The remaining groups were fed with the TP4030B alcoholic diet, and exercise intervention was started after the ALD model establishment and lasted for another 6 weeks, with or without administration of the NOX inhibitor apocynin by intraperitoneal injection on every exercise training day. Secondly, 28 mice were randomly divided into the Sed group, Eth group, Eth + Ex group and Eth + Ex + NOXI group. The Sed group was given the TP4030C control diet. The remaining groups were fed with the TP4030B alcoholic diet and exercise intervention was started synchronously combined with or without administration of intraperitoneal apocynin injections on every exercise training day for 5 weeks. After each individual experiment was accomplished, physiological assessment and biochemical analysis of blood and tissue samples were examined. (3) Results: The levels of TG in serum and IL-6 protein content in liver tissue in the ALD group were significantly increased compared to the Con group (p < 0.05); compared with ALD, p47phox expression in muscle was increased significantly in the ALD + NOXI group (p < 0.05), and TG in serum decreased in the ALD + Ex group (p < 0.05). TG in serum, AST/ALT ratio, and IL-6 content in both liver and muscle decreased (p < 0.05) in the ALD + Ex + NOXI group with MDA in muscle significantly increased (p < 0.01). The AST/ALT ratio, TG in serum, SOD in liver, and p47phox in both liver and muscle in the ALD + Ex + NOXI group were significantly decreased compared with the ALD + NOXI group (p < 0.01). Compared with the ALD + Ex group, the liver index and HDL-C levels in serum were decreased (p < 0.05) in the ALD + Ex + NOXI group. The degree of hepatocyte steatosis and inflammatory infiltration were ameliorated after exercise intervention. In the Eth group, the relative epididymal fat content, HDL-C level, and AST/ALT ratio were significantly decreased, and TG and gp91phox in liver were significantly higher than in the Sed group (p < 0.05, p < 0.01). Compared with the Eth group, the AST/ALT ratio, MDA in the liver, and NOX4 and p47phox protein expression in the liver were significantly increased, and body weight decreased significantly in the Eth + Ex group (p < 0.05, p < 0.01), as did TG in the liver and MDA in muscle. In the th + Ex + NOXI group, gp91phox expression in the liver and body weight were significantly decreased (p < 0.05, p < 0.01). In the Eth + Ex + NOXI group, the ratio of AST/ALT and MDA in muscle were increased when compared with the Eth + Ex group, and the protein expression of gp91phox and p47phox were much lower (p < 0.01). (4) Conclusions: 6 weeks of exercise intervention during the recovery phase of ALD ameliorates hepatocyte damage and dyslipidemia through the IL-6−p47phox oxidative−stress axis, and applying a NOX inhibitor in combination could optimize this. However, drinking alcohol during exercise exacerbates dyslipidemia and oxidative stress, with hepatocyte IL-6−p47phox downregulated.
Collapse
|
11
|
Tamai Y, Chen Z, Wu Y, Okabe J, Kobayashi Y, Chiba H, Hui SP, Eguchi A, Iwasa M, Ito M, Takei Y. Branched-chain amino acids and l-carnitine attenuate lipotoxic hepatocellular damage in rat cirrhotic liver. Biomed Pharmacother 2021; 135:111181. [PMID: 33395607 DOI: 10.1016/j.biopha.2020.111181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2023] Open
Abstract
Branched-chain amino acids (BCAA) reverse malnutrition and l-carnitine leads to the reduction of hyperammonemia and muscle cramps in cirrhotic patients. BCAA and l-carnitine are involved in glucose and fatty acid metabolism, however their mechanistic activity in cirrhotic liver is not fully understood. We aim to define the molecular mechanism(s) and combined effects of BCAA and l-carnitine using a cirrhotic rat model. Rats were administered carbon tetrachloride for 10 weeks to induce cirrhosis. During the last 6 weeks of administration, cirrhotic rats received BCAA, l-carnitine or a combination of BCAA and l-carnitine daily via gavage. We found that BCAA and l-carnitine treatments significantly improved hepatocellular function associated with reduced triglyceride level, lipid deposition and adipophilin expression, in cirrhotic liver. Lipidomic analysis revealed dynamic changes in hepatic lipid composition by BCAA and l-carnitine administrations. BCAA and l-carnitine globally increased molecular species of phosphatidylcholine. Liver triacylglycerol and phosphatidylcholine hydroperoxides were significantly decreased by BCAA and l-carnitine. Furthermore, serum and liver ATP levels were significantly increased in all treatments, which were attributed to the elevation of mature cardiolipins and mitochondrial component gene expressions. Finally, BCAA and l-carnitine dramatically reduced hepatocellular death. In conclusion, BCAA and l-carnitine treatments attenuate hepatocellular damage through the reduction of lipid peroxides and the overall maintenance of mitochondrial integrity within the cirrhotic liver. These effectiveness of BCAA and l-carnitine support the therapeutic strategies in human chronic liver diseases.
Collapse
Affiliation(s)
- Yasuyuki Tamai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Jun Okabe
- Epigenetics in Human Health and Diseases, Department of Diabetes, Central Clinical School, Monash University, Australia
| | - Yoshinao Kobayashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan; Center for Physical and Mental Health, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan; PRETO, JST, Saitama, Japan.
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan.
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
12
|
Li M, Chen L, Gao Y, Li M, Wang X, Qiang L, Wang X. Recent advances targeting C-C chemokine receptor type 2 for liver diseases in monocyte/macrophage. Liver Int 2020; 40:2928-2936. [PMID: 33025657 DOI: 10.1111/liv.14687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Liver plays a critical role in metabolism, nutrient storage and detoxification. Emergency signals or appropriate immune response leads to pathological inflammation and breaks the steady state when liver dysfunction appears, which makes body more susceptible to chronic liver infection, autoimmune diseases and tumour. Compelling proof has illustrated the non-redundant importance of C-C chemokine receptor type 2 (CCR2), one of G-protein-coupled receptors, in different diseases. Selectively expressed on the surface of cells, CCR2 is involved in various signalling pathways and regulates the migration of cells. Especially, a peculiar role of CCR2 has been identified within decades in the onset and progression of hepatic diseases, which led to particular focusing on CCR2 as a new therapeutic and diagnostic target for non-alcoholic fatty liver disease and hepatocellular carcinoma. In this review, we discuss the effect of CCR2 in monocytes/macrophages on liver diseases. The application and translation of the decades of discoveries into therapies promise novel approaches in the treatment of liver disease.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Gao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin Sci (Lond) 2020; 134:1433-1448. [PMID: 32478392 PMCID: PMC8086301 DOI: 10.1042/cs20200193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Recent identification of an RNA-binding protein (HuR) that regulates mRNA turnover and translation of numerous transcripts via binding to an ARE in their 3′-UTR involved in inflammation and is abnormally elevated in varied kidney diseases offers a novel target for the treatment of renal inflammation and subsequent fibrosis. Thus, we hypothesized that treatment with a selective inhibition of HuR function with a small molecule, KH-3, would down-regulate HuR-targeted proinflammatory transcripts thereby improving glomerulosclerosis in experimental nephritis, where glomerular cellular HuR is elevated. Three experimental groups included normal and diseased rats treated with or without KH-3. Disease was induced by the monoclonal anti-Thy 1.1 antibody. KH-3 was given via daily intraperitoneal injection from day 1 after disease induction to day 5 at the dose of 50 mg/kg BW/day. At day 6, diseased animals treated with KH-3 showed significant reduction in glomerular HuR levels, proteinuria, podocyte injury determined by ameliorated podocyte loss and podocin expression, glomerular staining for periodic acid-Schiff positive extracellular matrix proteins, fibronectin and collagen IV and mRNA and protein levels of profibrotic markers, compared with untreated disease rats. KH-3 treatment also reduced disease-induced increases in renal TGFβ1 and PAI-1 transcripts. Additionally, a marked increase in renal NF-κB-p65, Nox4, and glomerular macrophage cell infiltration observed in disease control group was largely reversed by KH-3 treatment. These results strongly support our hypothesis that down-regulation of HuR function with KH-3 has therapeutic potential for reversing glomerulosclerosis by reducing abundance of pro-inflammatory transcripts and related inflammation.
Collapse
|
14
|
Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive Oxygen Species in Venous Thrombosis. Int J Mol Sci 2020; 21:E1918. [PMID: 32168908 PMCID: PMC7139897 DOI: 10.3390/ijms21061918] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS) have physiological roles as second messengers, but can also exert detrimental modifications on DNA, proteins and lipids if resulting from enhanced generation or reduced antioxidant defense (oxidative stress). Venous thrombus (DVT) formation and resolution are influenced by ROS through modulation of the coagulation, fibrinolysis, proteolysis and the complement system, as well as the regulation of effector cells such as platelets, endothelial cells, erythrocytes, neutrophils, mast cells, monocytes and fibroblasts. Many conditions that carry an elevated risk of venous thrombosis, such as the Antiphospholipid Syndrome, have alterations in their redox homeostasis. Dietary and pharmacological antioxidants can modulate several important processes involved in DVT formation, but their overall effect is unknown and there are no recommendations regarding their use. The development of novel antioxidant treatments that aim to abrogate the formation of DVT or promote its resolution will depend on the identification of targets that enable ROS modulation confined to their site of interest in order to prevent off-target effects on physiological redox mechanisms. Subgroups of patients with increased systemic oxidative stress might benefit from unspecific antioxidant treatment, but more clinical studies are needed to bring clarity to this issue.
Collapse
Affiliation(s)
- Clemens Gutmann
- King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK;
| | - Richard Siow
- Vascular Biology & Inflammation Section, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, SE1 9NH, UK;
| | - Adam M. Gwozdz
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Prakash Saha
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Alberto Smith
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| |
Collapse
|
15
|
Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res 2020; 155:104684. [PMID: 32045667 DOI: 10.1016/j.phrs.2020.104684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.
Collapse
|
16
|
Regan DP, Coy JW, Chahal KK, Chow L, Kurihara JN, Guth AM, Kufareva I, Dow SW. The Angiotensin Receptor Blocker Losartan Suppresses Growth of Pulmonary Metastases via AT1R-Independent Inhibition of CCR2 Signaling and Monocyte Recruitment. THE JOURNAL OF IMMUNOLOGY 2019; 202:3087-3102. [PMID: 30971441 DOI: 10.4049/jimmunol.1800619] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
Abstract
Inflammatory monocytes have been shown to play key roles in cancer metastasis through promotion of tumor cell extravasation, growth, and angiogenesis. Monocyte recruitment to metastases is mediated primarily via the CCL2-CCR2 chemotactic axis. Thus, disruption of this axis represents an attractive therapeutic target for the treatment of metastatic disease. Losartan, a type I angiotensin II receptor (AT1R) antagonist, has been previously shown to have immunomodulatory actions involving monocyte and macrophage activity. However, the exact mechanisms accounting for these effects have not been fully elucidated. Therefore, we investigated the effects of losartan and its primary metabolite on CCL2-mediated monocyte recruitment and CCR2 receptor function using mouse tumor models and in vitro human monocyte cultures. We show, in this study, that losartan and its metabolite potently inhibit monocyte recruitment through the noncompetitive inhibition of CCL2-induced ERK1/2 activation, independent of AT1R activity. Studies in experimental metastasis models demonstrated that losartan treatment significantly reduced the metastatic burden in mice, an effect associated with a significant decrease in CD11b+/Ly6C+-recruited monocytes in the lungs. Collectively, these results indicate that losartan can exert antimetastatic activity by inhibiting CCR2 signaling and suppressing monocyte recruitment and therefore suggest that losartan (and potentially other AT1R blocker drugs) could be repurposed for use in cancer immunotherapy.
Collapse
Affiliation(s)
- Daniel P Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Jonathan W Coy
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Kirti Kandhwal Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jade N Kurihara
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Amanda M Guth
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Steven W Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; .,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| |
Collapse
|