1
|
Wang J, Xiao M, Hu Z, Lin Y, Li K, Chen P, Lu C, Dong Z, Pan M. Bombyx mori nucleopolyhedrovirus LEF-2 disrupts the cell cycle in the G2/M phase by triggering a host cell DNA damage response. INSECT MOLECULAR BIOLOGY 2025; 34:81-93. [PMID: 39150688 DOI: 10.1111/imb.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
It is a common strategy for viruses to block the host cell cycle to favour their DNA replication. Baculovirus, being a double-stranded DNA virus, can arrest the cell cycle in the G2/M phase to facilitate its replication. However, the key viral genes and mechanisms crucial for inducing cell cycle arrest remain poorly understood. Here, we initially examined the impacts of several Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication-associated genes: ie1, lef-1, lef-2, lef-3, lef-4, odv-ec27 and dbp. We assessed their effects on both the host cells' DNA replication and cell cycle. Our findings reveal that when the lef-2 gene was overexpressed, it led to a significant increase in the number of cells in the G2/M phase and a reduction in the number of cells in the S phase. Furthermore, we discovered that the LEF-2 protein is located in the virogenic stroma and confirmed its involvement in viral DNA replication. Additionally, by employing interference and overexpression experiments, we found that LEF-2 influences host cell DNA replication and blocks the cell cycle in the G2/M phase by regulating the expression of CyclinB and CDK1. Finally, we found that BmNPV lef-2 triggered a DNA damage response in the host cell, and inhibiting this response removed the cell cycle block caused by BmNPV LEF-2. Thus, our findings indicate that the BmNPV lef-2 gene plays a crucial role in viral DNA replication and can regulate host cell cycle processes. This study furthers our understanding of baculovirus-host cell interactions and provides new insight into the molecular mechanisms of antiviral research.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Miao Xiao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zhigang Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Lin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Kejie Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Dong Z, Liao N, Luo Y, Zhang Y, Huang L, Chen P, Lu C, Pan M. BmATAD3A mediates mitochondrial ribosomal protein expression to maintain the mitochondrial energy metabolism of the silkworm, Bombyx mori. INSECT SCIENCE 2025; 32:193-208. [PMID: 38616538 DOI: 10.1111/1744-7917.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
ATAD3A is a mitochondrial membrane protein belonging to the ATPase family that contains the AAA+ domain. It is widely involved in mitochondrial metabolism, protein transport, cell growth, development and other important life processes. It has previously been reported that the deletion of ATAD3A causes growth and development defects in humans, mice and Caenorhabditis elegans. To delve into the mechanism underlying ATAD3A defects and their impact on development, we constructed a Bombyx mori ATAD3A (BmATAD3A) defect model in silkworm larvae. We aim to offer a reference for understanding ATAD3A genetic defects and elucidating the molecular regulatory mechanisms. The results showed that knockout of the BmATAD3A gene significantly affected the weight, survival rate, ATPase production and mitochondrial metabolism of individuals after 24 h of incubation. Combined metabolomics and transcriptomics analysis further demonstrated that BmATAD3A knockout inhibits amino acid biosynthesis through the regulation of mitochondrial ribosomal protein expression. Simultaneously, our findings indicate that BmATAD3A knockout impeded mitochondrial activity and ATPase synthesis and suppressed the mitochondrial oxidative phosphorylation pathway through B. mori mitochondrial ribosomal protein L11 (BmmRpL11). These results provide novel insights into the molecular mechanisms involved in the inhibition of development caused by ATAD3A deficiency, offering a potential direction for targeted therapy in diseases associated with abnormal ATAD3A expression.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Nachuan Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yan Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ya Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Li Y, Wu J, You Y, Miao M, Yu W. Overexpression of Acetylation-Defective Heat Shock Protein 60 Inhibits the Proliferation of Nucleopolyhedrovirus in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70038. [PMID: 39948826 DOI: 10.1002/arch.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 05/09/2025]
Abstract
Heat shock protein 60 (Hsp60), abundantly presents in mitochondria, is a highly conserved chaperone that maintains the stability and functionality of mitochondrial proteins, while also participating in the regulation of various cellular processes. As a member of the heat shock family, Hsp60 significantly influences viral proliferation. However, limited research is available on its role in the proliferation of entomopathogenic baculoviruses, particularly Bombyx mori nucleopolyhedrovirus (BmNPV). Our previous proteomics results showed a significant decrease of Hsp60 acetylation levels after BmNPV infection. To investigate the impact of Hsp60 deacetylation on viral proliferation, site-direct mutagenesis was performed to generate a deacetylated (K/R) mimic of Hsp60. We found that the acetylation level of lysine 362 (K362) decreased after BmNPV challenge. Furthermore, overexpression of deacetylation-mimicking Hsp60 reduced the chaperone activity of Hsp60, leading to impaired mitochondrial function, including increased reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential, and reduced substrate protein Manganese-containing superoxide dismutase (Mn-SOD) activities, ultimately leading to inhibition of viral proliferation. This study establishes lysine 362 acetylation of Hsp60 as a model for Posttranslational modifications induced by host-virus interactions, providing new insights into potential antiviral strategies.
Collapse
Affiliation(s)
- Yao Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory, Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Jiannan Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory, Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Yi You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory, Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Meng Miao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory, Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Wei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory, Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Zhu L, Xie Y, Liu C, Cheng J, Shen Z, Liu X, Cai L, Ning X, Zhang S, Li Z, Huang Q, Liu X. Baculoviruses manipulate host lipid metabolism via adipokinetic hormone signaling to induce climbing behavior. PLoS Pathog 2025; 21:e1012932. [PMID: 39888969 PMCID: PMC11819524 DOI: 10.1371/journal.ppat.1012932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/12/2025] [Accepted: 01/23/2025] [Indexed: 02/02/2025] Open
Abstract
Baculoviruses can induce climbing behavior in caterpillar hosts, which provides an excellent model for studying parasite manipulation of host behavior. Herein, we found that Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) promoted lipid metabolism of infected H. armigera larvae, and changes in lipid metabolism can affect climbing behavior. Therefore, understanding the molecular mechanisms between lipid metabolism and climbing behavior is particularly important. In this study, we found adipokinetic hormone 1 (HaAKH1), adipokinetic hormone 2 (HaAKH2) and their receptor HaAKHR were essential for promoting lipid metabolism and climbing behavior in response to HearNPV infection. Both molecular docking result and Ca2+ imaging showed that both HaAKH1 and HaAKH2 could interact with HaAKHR. Knockdown of HaAKH1, HaAKH2 and HaAKHR resulted in not only the accumulation of triacylglycerol (TAG), but also the reduction of the replication of HearNPV and the crawling ability of infected H. armigera larvae, resulting in a decrease in the final death height of the infected larvae. We further validated this conclusion by injecting active peptides of HaAKH1 and HaAKH2 to infected larvae. In addition, we investigated the downstream of HaAKH signaling and found that hormone-sensitive lipase (HaHSL) changed with changes in HaAKH signaling and HaHSL played the same role as HaAKH signaling. These findings not only revealed the mechanism by which parasites manipulated host lipid metabolism, but more significantly, explored the relationship between lipid metabolism and behavioral changes of hosts manipulated by parasites, broadening our understanding of the phenomenon of parasites manipulating host behavioral changes.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuqing Xie
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chenxi Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Liu
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinyuan Ning
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Li J, Kang Z, Xu H, Li S, Li G, Sun X, Lei C, Chen Y. Functional regulation of microRNA-184 in the replication and infection of Autographa californica multiple nucleopolyhedrovirus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106062. [PMID: 39277376 DOI: 10.1016/j.pestbp.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 09/17/2024]
Abstract
MicroRNAs (miRNAs) represent a class of short, non-coding RNAs that are widely acknowledged as crucial participants in virus-host interactions. MiR-184, a highly conserved and abundant miRNA in insects, has yet to be extensively studied for its involvement in baculovirus infection. In this study, we investigated how miR-184 affects the infection and replication of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The results indicated that after AcMNPV infection, there was an initial increase in the expression of miR-184 within 24 h, followed by a subsequent decrease. MiR-184 can inhibit AcMNPV's DNA replication and budded virus production by directly targeting four viral genes, namely ie1, ac66, p49, and lef9. Moreover, suppressing miR-184 expression enhanced the insecticidal efficacy of AcMNPV against Spodoptera exigua larvae and markedly elevated the host ATPase gene expressions. These findings showed that miR-184 had a substantial impact on the interactions between baculoviruses and insects, presenting a prospective candidate for developing highly effective miRNA-based biopesticides.
Collapse
Affiliation(s)
- Jin Li
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Zhongcui Kang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Hongxia Xu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Shaobin Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Guopan Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
6
|
Fang W, Zhou L, Deng B, Guo B, Chen X, Chen P, Lu C, Dong Z, Pan M. Establishment of a Secretory Protein-Inducible CRISPR/Cas9 System for Nosema bombycis in Insect Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13175-13185. [PMID: 38817125 DOI: 10.1021/acs.jafc.3c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Gene editing techniques are widely and effectively used for the control of pathogens, but it is difficult to directly edit the genes of Microsporidia due to its unique spore wall structure. Innovative technologies and methods are urgently needed to break through this limitation of microsporidia therapies. Here, we establish a microsporidia-inducible gene editing system through core components of microsporidia secreted proteins, which could edit target genes after infection with microsporidia. We identified that Nosema bombycis NB29 is a secretory protein and found to interact with itself. The NB29-N3, which lacked the nuclear localization signal, was localized in the cytoplasm, and could be tracked into the nucleus after interacting with NB29-B. Furthermore, the gene editing system was constructed with the Cas9 protein expressed in fusion with the NB29-N3. The system could edit the exogenous gene EGFP and the endogenous gene BmRpn3 after overexpression of NB29 or infection with N. bombycis.
Collapse
Affiliation(s)
- Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Liang Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Binyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xue Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| |
Collapse
|
7
|
Li K, Dong Z, Pan M. Common strategies in silkworm disease resistance breeding research. PEST MANAGEMENT SCIENCE 2023; 79:2287-2298. [PMID: 36935349 DOI: 10.1002/ps.7454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
The silkworm, which is considered a model invertebrate organism, was the first insect used for silk production in human history and has been utilized extensively throughout its domestication. However, sericulture has been plagued by various pathogens that have caused significant economic losses. To enhance the resistance of a host to its pathogens,numerous strategies have been developed. For instance, gene-editing techniques have been applied to a wide range of organisms, effectively solving a variety of experimental problems. This review focuses on several common silkworm pests and their pathogenic mechanisms, with a particular emphasis on breeding for disease resistance to control multiple types of silkworm diseases. The review also compares the advantages and disadvantages of transgenic technology and gene-editing systems. Finally, the paper provides a brief summary of current strategies used in breeding silkworm disease resistance, along with a discussion of the establishment of existing technologies and their future application prospects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kejie Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- The First Affiliated Hospital of Chongqing Medical and pharmaceutical College, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Cerrudo CS, Motta LF, Cuccovia Warlet FU, Lassalle FM, Simonin JA, Belaich MN. Protein-Gene Orthology in Baculoviridae: An Exhaustive Analysis to Redefine the Ancestrally Common Coding Sequences. Viruses 2023; 15:v15051091. [PMID: 37243176 DOI: 10.3390/v15051091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Baculoviruses are entomopathogens that carry large, double-stranded circular DNA genomes and infect insect larvae of Lepidoptera, Hymenoptera and Diptera, with applications in the biological control of agricultural pests, in the production of recombinant proteins and as viral vectors for various purposes in mammals. These viruses have a variable genetic composition that differs between species, with some sequences shared by all known members, and others that are lineage-specific or unique to isolates. Based on the analysis of nearly 300 sequenced genomes, a thorough bioinformatic investigation was conducted on all the baculoviral protein coding sequences, characterizing their orthology and phylogeny. This analysis confirmed the 38 protein coding sequences currently considered as core genes, while also identifying novel coding sequences as candidates to join this set. Accordingly, homology was found among all the major occlusion body proteins, thus proposing that the polyhedrin, granulin and CUN085 genes be considered as the 39th core gene of Baculoviridae.
Collapse
Affiliation(s)
- Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Lucas Federico Motta
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Franco Uriel Cuccovia Warlet
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Fernando Maku Lassalle
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
9
|
Li K, Dong Z, Dong F, Hu Z, Huang L, Wang J, Chen P, Lu C, Pan M. Transcriptome analysis reveals that knocking out BmNPV iap2 induces apoptosis by inhibiting the oxidative phosphorylation pathway. Int J Biol Macromol 2023; 233:123482. [PMID: 36736521 DOI: 10.1016/j.ijbiomac.2023.123482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Apoptosis is essential for the normal growth, development, and immunity defense of living organisms, and its function and mechanisms have been intensively studied. When viral infection occurs, apoptosis is triggered, causing programmed death of the infected cells. Meanwhile, viruses have also evolved countermeasures to inhibit apoptosis in host cells. We previously constructed a transgenic silkworm line with significantly improved resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) by knocking out the BmNPV inhibitor of apoptosis 2 (iap2) gene. However, the mechanism of how IAP2 induces apoptosis still needs to be further investigated. Here, the transcriptomes of Cas9(-)/sgiap2 (-) and Cas9(+)/sgiap2(+) strains were analyzed at 48 h after BmNPV infection, and a total of 709 differential genes were obtained. A KEGG analysis revealed that the differentially expressed genes were enriched in the oxidative phosphorylation, proteasome, and ribosome pathways. In the oxidative phosphorylation pathway, 41 differentially expressed genes were downregulated, and 12 of these genes were verified by qRT-PCR. More importantly, the knockout of BmNPV iap2 led to the inhibition of the oxidative phosphorylation pathway, followed by activated oxidative stress triggered apoptosis, thereby inhibiting the replication of BmNPV in vitro and vivo. The results provide a basis for the analysis of the initiation of apoptosis that can inhibit virus proliferation, and the study presents new ideas for the subsequent creation of resistant material.
Collapse
Affiliation(s)
- Kejie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
10
|
Dong Z, Zhang X, Xiao M, Li K, Wang J, Chen P, Hu Z, Lu C, Pan M. Baculovirus LEF-11 interacts with BmIMPI to induce cell cycle arrest in the G2/M phase for viral replication. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105231. [PMID: 36464350 DOI: 10.1016/j.pestbp.2022.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Viruses arrest the host cell cycle and using multiple functions of host cells is an important approach for their replication. Baculovirus arrests infected insect cells at both the late S and G2/M phase, but the strategy employed by baculovirus is not clearly understood. Our research suggests that the Bombyx mori nucleopolyhedrovirus (BmNPV) could arrest the cell cycle in the G2/M phase to promote virus replication, and also that the viral protein LEF-11 could inhibit host cell proliferation and arrest the cell cycle by inhibiting the cell cycle checkpoint proteins BmCyclinB and BmCDK1. Furthermore, we found that LEF-11 interacts with BmIMPI to regulate cell proliferation, but not by direct interaction with BmCyclinB or BmCDK1. In addition, our findings showed that BmIMPI was important and necessary for LEF-11 induced cell cycle arrest in the G2/M phase. Moreover, BmIMPI was found to interact with BmCyclinB and BmCDK1, and down-regulate the expression of BmCyclinB and BmCDK1 to compromise the cell cycle and cell proliferation. Taken together, the data presented demonstrated that baculovirus LEF-11 regulates BmIMPI to inhibit host cell proliferation and provide a new insight into the molecular mechanisms employed by viruses to induce cell cycle arrest.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - KeJie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
A Review on Transcriptional Responses of Interactions between Insect Vectors and Plant Viruses. Cells 2022; 11:cells11040693. [PMID: 35203347 PMCID: PMC8870222 DOI: 10.3390/cells11040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
This review provides a synopsis of transcriptional responses pertaining to interactions between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it attempts to catalog differential gene expression pertinent to virus–vector interactions in vectors such as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed, along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector–virus interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-specific gene expression in vectors is limited. This review compares transcriptional responses in different insect groups following the acquisition of non-persistent, semi-persistent, and persistent (non-propagative and propagative) plant viruses and identifies parallels and divergences in gene expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect vectors for management approaches.
Collapse
|
12
|
Chen G, Zhao S, Chen N, Wu X. Molecular mechanism responsible for the hyperexpression of baculovirus polyhedrin. Gene 2021; 814:146129. [PMID: 34971751 DOI: 10.1016/j.gene.2021.146129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
One of the amazing phenomena in the baculovirus life cycle is the hyperexpression of the very late gene, polyhedrin (polh), causing the production of the occlusion bodies where progeny virions are embedded. However, to date, the molecular mechanism underlying its hyperexpression is not completely elucidated. Considering that, in this review, the mechanism responsible for its hyperexpression from the previous studies up to now was comprehensively summarized from three aspects, namely, the structure characteristics of the polh promoter and transcription regulation, the structure and translation regulation of the polh mRNA, and especially the regulators that influence the expression of polh gene. Moreover, this review will help us obtain a better understanding about the hyperexpression of polh, and also provide guidance for improving the expression efficiency of the foreign proteins by adopting the baculovirus expression vector system.
Collapse
Affiliation(s)
- Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
13
|
Hu ZG, Dong ZQ, Dong FF, Zhu Y, Chen P, Lu C, Pan MH. Identification of a PP2A gene in Bombyx mori with antiviral function against B. mori nucleopolyhedrovirus. INSECT SCIENCE 2020; 27:687-696. [PMID: 31070299 DOI: 10.1111/1744-7917.12678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/11/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Ser/Thr protein phosphatase 2A (PP2A) is one of the type 2 protein phosphatases, which is required for many intracellular physiological processes and pathogen infection. However, the function of PP2A is unclear in silkworm, Bombyx mori. Here, we cloned and identified BmPP2A, a PP2A gene from B. mori, which has two HEAT domains and a high similarity to PP2A from other organisms. Our results showed that BmPP2A is localized in the cytoplasm and highly expressed in silkworm epidermis and midgut, and that Bombyx mori nucleopolyhedrovirus (BmNPV) infection induces down-regulation of BmPP2A expression. Furthermore, up-regulation of BmPP2A via overexpression significantly inhibited BmNPV multiplication. In contrast, down-regulation of BmPP2A via RNA interference and okadaic acid (a PP2A inhibitor) treatment allowed robust BmNPV replication. This is the first report of PP2A having an antiviral effect in silkworm and provides insights into the function of BmPP2A, a potential anti-BmNPV mechanism, and a possible target for the breeding of silkworm-resistant strains.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Fei-Fan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Host AAA+ ATPase TER94 Plays Critical Roles in Building the Baculovirus Viral Replication Factory and Virion Morphogenesis. J Virol 2020; 94:JVI.01674-19. [PMID: 31896597 DOI: 10.1128/jvi.01674-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
TER94 is a multifunctional AAA+ ATPase crucial for diverse cellular processes, especially protein quality control and chromatin dynamics in eukaryotic organisms. Many viruses, including coronavirus, herpesvirus, and retrovirus, coopt host cellular TER94 for optimal viral invasion and replication. Previous proteomics analysis identified the association of TER94 with the budded virions (BVs) of baculovirus, an enveloped insect large DNA virus. Here, the role of TER94 in the prototypic baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) life cycle was investigated. In virus-infected cells, TER94 accumulated in virogenic stroma (VS) at the early stage of infection and subsequently partially rearranged in the ring zone region. In the virions, TER94 was associated with the nucleocapsids of both BV and occlusion-derived virus (ODV). Inhibition of TER94 ATPase activity significantly reduced viral DNA replication and BV production. Electron/immunoelectron microscopy revealed that inhibition of TER94 resulted in the trapping of nucleocapsids within cytoplasmic vacuoles at the nuclear periphery for BV formation and blockage of ODV envelopment at a premature stage within infected nuclei, which appeared highly consistent with its pivotal function in membrane biogenesis. Further analyses showed that TER94 was recruited to the VS or subnuclear structures through interaction with viral early proteins LEF3 and helicase, whereas inhibition of TER94 activity blocked the proper localization of replication-related viral proteins and morphogenesis of VS, providing an explanation for its role in viral DNA replication. Taken together, these data indicated the crucial functions of TER94 at multiple steps of the baculovirus life cycle, including genome replication, BV formation, and ODV morphogenesis.IMPORTANCE TER94 constitutes an important AAA+ ATPase that associates with diverse cellular processes, including protein quality control, membrane fusion of the Golgi apparatus and endoplasmic reticulum network, nuclear envelope reformation, and DNA replication. To date, little is known regarding the role(s) of TER94 in the baculovirus life cycle. In this study, TER94 was found to play a crucial role in multiple steps of baculovirus infection, including viral DNA replication and BV and ODV formation. Further evidence showed that the membrane fission/fusion function of TER94 is likely to be exploited by baculovirus for virion morphogenesis. Moreover, TER94 could interact with the viral early proteins LEF3 and helicase to transport and further recruit viral replication-related proteins to establish viral replication factories. This study highlights the critical roles of TER94 as an energy-supplying chaperon in the baculovirus life cycle and enriches our knowledge regarding the biological function of this important host factor.
Collapse
|
15
|
Dong Z, Long J, Huang L, Hu Z, Chen P, Hu N, Zheng N, Huang X, Lu C, Pan M. Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Appl Microbiol Biotechnol 2019; 103:9583-9592. [DOI: 10.1007/s00253-019-10135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
16
|
Kaur N, Chen W, Fei Z, Wintermantel WM. Differences in gene expression in whitefly associated with CYSDV-infected and virus-free melon, and comparison with expression in whiteflies fed on ToCV- and TYLCV-infected tomato. BMC Genomics 2019; 20:654. [PMID: 31416422 PMCID: PMC6694564 DOI: 10.1186/s12864-019-5999-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, Closteroviridae) is transmitted in a semipersistent manner by the whitefly, Bemisia tabaci, and is efficiently transmitted by the widely prevalent B. tabaci cryptic species, MEAM1. In this study, we compared transcriptome profiles of B. tabaci MEAM1, after 24 h, 72 h and 7 days of acquisition feeding on melon plants infected with CYSDV (CYSDV-whiteflies) with those fed on virus-free melon, using RNA-Seq technology. We also compared transcriptome profiles with whiteflies fed on tomato plants separately infected with Tomato chlorosis virus (ToCV), a crinivirus closely related to CYSDV, and Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, which has a distinctly different mode of transmission and their respective virus-free controls, to find common gene expression changes among viruliferous whiteflies feeding on different host plants infected with distinct (TYLCV) and related (CYSDV and ToCV) viruses. Results A total of 275 differentially expressed genes (DEGs) were identified in CYSDV-whiteflies, with 3 DEGs at 24 h, 221 DEGs at 72 h, and 51 DEGs at 7 days of virus acquisition. Changes in genes encoding orphan genes (54 genes), phosphatidylethanolamine-binding proteins (PEBP) (20 genes), and AAA-ATPase domain containing proteins (10 genes) were associated with the 72 h time point. Several more orphan genes (20 genes) were differentially expressed at 7 days. A total of 59 common DEGs were found between CYSDV-whiteflies and ToCV-whiteflies, which included 20 orphan genes and 6 lysosomal genes. A comparison of DEGs across the three different virus-host systems revealed 14 common DEGs, among which, eight showed similar and significant up-regulation in CYSDV-whiteflies at 72 h and TYLCV-whiteflies at 24 h, while down-regulation of the same genes was observed in ToCV-whiteflies at 72 h. Conclusions Dynamic gene expression changes occurred in CYSDV-whiteflies after 72 h feeding, with decreased gene expression changes associated with 7 days of CYSDV acquisition. Similarities in gene expression changes among CYSDV-whiteflies, ToCV-whiteflies and TYLCV-whiteflies suggest the possible involvement of common genes or pathways for virus acquisition and transmission by whiteflies, even for viruses with distinctly different modes of transmission. Electronic supplementary material The online version of this article (10.1186/s12864-019-5999-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Navneet Kaur
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA, 93905, USA.,Present Address: Driscoll's Inc., 151 Silliman Rd., Watsonville, CA, 95076, USA
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA.,USDA-ARS, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York, 14853-2901, USA
| | - William M Wintermantel
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA, 93905, USA.
| |
Collapse
|
17
|
Dong Z, Qin Q, Hu Z, Chen P, Huang L, Zhang X, Tian T, Lu C, Pan M. Construction of a One-Vector Multiplex CRISPR/Cas9 Editing System to Inhibit Nucleopolyhedrovirus Replication in Silkworms. Virol Sin 2019; 34:444-453. [PMID: 31218589 DOI: 10.1007/s12250-019-00121-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Recently the developed single guide (sg)RNA-guided clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology has opened a new avenue for antiviral therapy. The CRISPR/Cas9 system uniquely allows targeting of multiple genome sites simultaneously. However, there are relatively few applications of CRISPR/Cas9 multigene editing to target insect viruses. To address the need for sustained delivery of a multiplex CRISPR/Cas9-based genome-editing vehicle against insect viruses, we developed a one-vector (pSL1180-Cas9-U6-sgRNA) system that expresses multiple sgRNA and Cas9 protein to excise Bombyx mori nucleopolyhedrovirus (BmNPV) in insect cells. We screened the immediate-early-1 gene (ie-1), the major envelope glycoprotein gene (gp64), and the late expression factor gene (lef-11), and identified multiple sgRNA editing sites through flow cytometry and viral DNA replication analysis. In addition, we constructed a multiplex editing vector (PSL1180-Cas9-sgIE1-sgLEF11-sgGP64, sgMultiple) to efficiently regulate multiplex gene-editing and inhibit BmNPV replication after viral infection. This is the first report of the application of a multiplex CRISPR/Cas9 system to inhibit insect virus replication. This multiplex system can significantly enhance the potential of CRISPR/Cas9-based multiplex genome engineering in insect virus.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qi Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ting Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
18
|
Dong Z, Hu Z, Qin Q, Dong F, Huang L, Long J, Chen P, Lu C, Pan M. CRISPR/Cas9-mediated disruption of the immediate early-0 and 2 as a therapeutic approach to Bombyx mori nucleopolyhedrovirus in transgenic silkworm. INSECT MOLECULAR BIOLOGY 2019; 28:112-122. [PMID: 30120848 DOI: 10.1111/imb.12529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The CRISPR/Cas9 system is a powerful tool for the treatment of infectious diseases. In our previous study, we knocked out the Bombyx mori nucleopolyhedrovirus (BmNPV) key genes and BmNPV-dependent host factor to generate transgenic antiviral strains. To further expand the range of target genes for BmNPV and more effectively prevent and control pathogenic infections, we performed gene editing and antiviral analysis by constructing a target-directed baculovirus early transcriptional activator immediate early-0 (ie-0) and 2 (ie-2) transgenic silkworm line. We hybridized it with Cas9 transgenic line to produce a double-positive transgenic Cas9(+)/sgIE0-sgIE2(+) line that could activate the CRISPR gene editing system. We first demonstrated that the system is capable of efficiently editing target genes and resulting in fragment deletions in the BmNPV genome. Survival rate of the transgenic Cas9(+)/sgIE0-sgIE2(+) line reached 65% after inoculation with 1 × 106 occlusion bodies/larva. Molecular analysis showed that BmNPV DNA replication and viral gene expression level in the transgenic Cas9(+)/sgIE0-sgIE2(+) line were significantly inhibited compared with the control Cas9(-)/sgIE0-sgIE2(-) line. These results indicated that IE-0 and IE-2, as baculovirus early transcriptional activators, can be used as target sites for gene therapy and that multigene editing could expand the range of target sites for research to create silkworm resistance breeds.
Collapse
Affiliation(s)
- Z Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Z Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Q Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - F Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - L Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - J Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - P Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - M Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| |
Collapse
|
19
|
Establishment of a baculovirus-inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms. Appl Microbiol Biotechnol 2018; 102:9255-9265. [PMID: 30151606 DOI: 10.1007/s00253-018-9295-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
The CRISPR/Cas9 system is a powerful genetic engineering technique that has been widely used in gene therapy, as well as in the development of novel antimicrobials and transgenic insects. However, several challenges, including the lack of effective host target genes and the off-target effects, limit the application of CRISPR/Cas9 in insects. To mitigate these difficulties, we established a highly efficient virus-inducible CRISPR/Cas9 system in transgenic silkworms. This system includes the baculovirus-inducible promoter 39K, which directs transcription of the gene encoding, the Cas9 protein, and the U6 promoter which targets the sgATAD3A site of the ATPase family AAA domain-containing protein 3 (ATAD3A) gene. The double-positive transgenic line sgATAD3A×39K-Cas9 (ATAD3A-KO) was obtained by hybridization; antiviral activity in this hybrid transgenic line is induced only after Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The BmNPV-inducible system significantly reduced off-target effects and did not affect the economically important characteristics of the transgenic silkworms. Most importantly, this novel system efficiently and consistently edited target genes, inhibiting BmNPV replication after the transgenic silkworms were inoculated with occlusion bodies (OBs). The suppression of BmNPV by the virus-inducible system was comparable to that of the stably expressed CRISPR/Cas9 system. Therefore, we successfully established a highly efficient BmNPV-inducible ATAD3A-KO transgenic silkworm line, with improved gene targeting specificity and antiviral efficiency. Our study thereby provides insights into the treatment of infectious diseases and into the control of insect pests.
Collapse
|
20
|
Dong Z, Dong F, Yu X, Huang L, Jiang Y, Hu Z, Chen P, Lu C, Pan M. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System. Front Microbiol 2018; 9:209. [PMID: 29503634 PMCID: PMC5820291 DOI: 10.3389/fmicb.2018.00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 01/19/2023] Open
Abstract
The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 (ie-1) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xinbo Yu
- College of Biotechnology, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yaming Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|