1
|
Maurer D, Maurer C. The origins and development of aesthetics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230246. [PMID: 39005026 PMCID: PMC11444234 DOI: 10.1098/rstb.2023.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/12/2024] [Indexed: 07/16/2024] Open
Abstract
All people (and some other animals) have aesthetic responses to sensory stimulation, responses of emotional pleasure or displeasure. These emotions vary from one person and culture to another, yet they share a common mechanism. To survive, an adaptive animal (as opposed to a tropic animal) needs to become comfortable with normality and to have slight abnormalities draw attention to themselves. Walking through a jungle you need to notice a tiger from a single stripe: if you must wait to see the whole animal, you are unlikely to survive. In Homo sapiens, the brain's adaptive neurochemistry does this naturally, partly because the brain's neuronal networks are structured to react efficiently to fractal structures, structures that shape much of nature. In addition, previous associations may turn a slight variation from normal into feelings of either pleasure or danger. The details of these responses-what is normal and what variations feel like-will depend upon an individual's experience, but the mechanism is the same, no matter whether a person is tasting a wine, seeing a face or landscape, or hearing a song. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Collapse
Affiliation(s)
- Daphne Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Charles Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
2
|
Zeng G, Simpson EA, Paukner A. Maximizing valid eye-tracking data in human and macaque infants by optimizing calibration and adjusting areas of interest. Behav Res Methods 2024; 56:881-907. [PMID: 36890330 DOI: 10.3758/s13428-022-02056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2022] [Indexed: 03/10/2023]
Abstract
Remote eye tracking with automated corneal reflection provides insights into the emergence and development of cognitive, social, and emotional functions in human infants and non-human primates. However, because most eye-tracking systems were designed for use in human adults, the accuracy of eye-tracking data collected in other populations is unclear, as are potential approaches to minimize measurement error. For instance, data quality may differ across species or ages, which are necessary considerations for comparative and developmental studies. Here we examined how the calibration method and adjustments to areas of interest (AOIs) of the Tobii TX300 changed the mapping of fixations to AOIs in a cross-species longitudinal study. We tested humans (N = 119) at 2, 4, 6, 8, and 14 months of age and macaques (Macaca mulatta; N = 21) at 2 weeks, 3 weeks, and 6 months of age. In all groups, we found improvement in the proportion of AOI hits detected as the number of successful calibration points increased, suggesting calibration approaches with more points may be advantageous. Spatially enlarging and temporally prolonging AOIs increased the number of fixation-AOI mappings, suggesting improvements in capturing infants' gaze behaviors; however, these benefits varied across age groups and species, suggesting different parameters may be ideal, depending on the population studied. In sum, to maximize usable sessions and minimize measurement error, eye-tracking data collection and extraction approaches may need adjustments for the age groups and species studied. Doing so may make it easier to standardize and replicate eye-tracking research findings.
Collapse
Affiliation(s)
- Guangyu Zeng
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | | | - Annika Paukner
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
3
|
Tieo S, Dezeure J, Cryer A, Lepou P, Charpentier MJ, Renoult JP. Social and sexual consequences of facial femininity in a non-human primate. iScience 2023; 26:107901. [PMID: 37766996 PMCID: PMC10520438 DOI: 10.1016/j.isci.2023.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In humans, femininity shapes women's interactions with both genders, but its influence on animals remains unknown. Using 10 years of data on a wild primate, we developed an artificial intelligence-based method to estimate facial femininity from naturalistic portraits. Our method explains up to 30% of the variance in perceived femininity in humans, competing with classical methods using standardized pictures taken under laboratory conditions. We then showed that femininity estimated on 95 female mandrills significantly correlated with various socio-sexual behaviors. Unexpectedly, less feminine female mandrills were approached and aggressed more frequently by both sexes and received more male copulations, suggesting a positive valuation of masculinity attributes rather than a perception bias. This study contributes to understand the role of femininity on animal's sociality and offers a framework for non-invasive research on visual communication in behavioral ecology.
Collapse
Affiliation(s)
- Sonia Tieo
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jules Dezeure
- Projet Mandrillus, Fondation Lékédi pour la Biodiversité, Bakoumba BP 52, Gabon
| | - Anna Cryer
- Projet Mandrillus, Fondation Lékédi pour la Biodiversité, Bakoumba BP 52, Gabon
| | - Pascal Lepou
- Projet Mandrillus, Fondation Lékédi pour la Biodiversité, Bakoumba BP 52, Gabon
| | - Marie J.E. Charpentier
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR5554 - University of Montpellier/CNRS/IRD/EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | |
Collapse
|
4
|
Pelgrim MH, Espinosa J, Buchsbaum D. Head-mounted mobile eye-tracking in the domestic dog: A new method. Behav Res Methods 2023; 55:1924-1941. [PMID: 35788974 PMCID: PMC9255465 DOI: 10.3758/s13428-022-01907-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Humans rely on dogs for countless tasks, ranging from companionship to highly specialized detection work. In their daily lives, dogs must navigate a human-built visual world, yet comparatively little is known about what dogs visually attend to as they move through their environment. Real-world eye-tracking, or head-mounted eye-tracking, allows participants to freely move through their environment, providing more naturalistic results about visual attention while interacting with objects and agents. In dogs, real-world eye-tracking has the potential to inform our understanding of cross-species cognitive abilities as well as working dog training; however, a robust and easily deployed head-mounted eye-tracking method for dogs has not previously been developed and tested. We present a novel method for real-world eye-tracking in dogs, using a simple head-mounted mobile apparatus mounted onto goggles designed for dogs. This new method, adapted from systems that are widely used in humans, allows for eye-tracking during more naturalistic behaviors, namely walking around and interacting with real-world stimuli, as well as reduced training time as compared to traditional stationary eye-tracking methods. We found that while completing a simple forced-choice treat finding task, dogs look primarily to the treat, and we demonstrated the accuracy of this method using alternative gaze-tracking methods. Additionally, eye-tracking revealed more fine-grained time course information and individual differences in looking patterns.
Collapse
Affiliation(s)
- Madeline H Pelgrim
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, 190 Thayer St, Providence, RI, 02912, USA.
- Department of Psychology, University of Toronto, 100 St. George St, Toronto, ON, M5S 3G3, Canada.
| | - Julia Espinosa
- Department of Psychology, University of Toronto, 100 St. George St, Toronto, ON, M5S 3G3, Canada
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA
| | - Daphna Buchsbaum
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, 190 Thayer St, Providence, RI, 02912, USA
- Department of Psychology, University of Toronto, 100 St. George St, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
5
|
Pareidolic faces receive prioritized attention in the dot-probe task. Atten Percept Psychophys 2023; 85:1106-1126. [PMID: 36918509 DOI: 10.3758/s13414-023-02685-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Face pareidolia occurs when random or ambiguous inanimate objects are perceived as faces. While real faces automatically receive prioritized attention compared with nonface objects, it is unclear whether pareidolic faces similarly receive special attention. We hypothesized that, given the evolutionary importance of broadly detecting animacy, pareidolic faces may have enough faceness to activate a broad face template, triggering prioritized attention. To test this hypothesis, and to explore where along the faceness continuum pareidolic faces fall, we conducted a series of dot-probe experiments in which we paired pareidolic faces with other images directly competing for attention: objects, animal faces, and human faces. We found that pareidolic faces elicited more prioritized attention than objects, a process that was disrupted by inversion, suggesting this prioritized attention was unlikely to be driven by low-level features. However, unexpectedly, pareidolic faces received more privileged attention compared with animal faces and showed similar prioritized attention to human faces. This attentional efficiency may be due to pareidolic faces being perceived as not only face-like, but also as human-like, and having larger facial features-eyes and mouths-compared with real faces. Together, our findings suggest that pareidolic faces appear automatically attentionally privileged, similar to human faces. Our findings are consistent with the proposal of a highly sensitive broad face detection system that is activated by pareidolic faces, triggering false alarms (i.e., illusory faces), which, evolutionarily, are less detrimental relative to missing potentially relevant signals (e.g., conspecific or heterospecific threats). In sum, pareidolic faces appear "special" in attracting attention.
Collapse
|
6
|
Macaques recognize features in synthetic images derived from ventral stream neurons. Proc Natl Acad Sci U S A 2023; 120:e2213034120. [PMID: 36857345 PMCID: PMC10013870 DOI: 10.1073/pnas.2213034120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Primates can recognize features in virtually all types of images, an ability that still requires a comprehensive computational explanation. One hypothesis is that visual cortex neurons learn patterns from scenes, objects, and textures, and use these patterns to interpolate incoming visual information. We have used machine learning algorithms to instantiate visual patterns stored by neurons-we call these highly activating images prototypes. Prototypes from inferotemporal (IT) neurons often resemble parts of real-world objects, such as monkey faces and body parts, a similarity established via pretrained neural networks [C. R. Ponce et al., Cell 177, 999-1009.e10 (2019)] and naïve human participants [A. Bardon, W. Xiao, C. R. Ponce, M. S. Livingstone, G. Kreiman, Proc. Natl. Acad. Sci. U.S.A. 119, e2118705119 (2022)]. However, it is not known whether monkeys themselves perceive similarities between neuronal prototypes and real-world objects. Here, we investigated whether monkeys reported similarities between prototypes and real-world objects using a two-alternative forced choice task. We trained the animals to saccade to synthetic images of monkeys, and subsequently tested how they classified prototypes synthesized from IT and primary visual cortex (V1). We found monkeys classified IT prototypes as conspecifics more often than they did random generator images and V1 prototypes, and their choices were partially predicted by convolutional neural networks. Further, we confirmed that monkeys could abstract general shape information from images of real-world objects. Finally, we verified these results with human participants. Our results provide further evidence that prototypes from cortical neurons represent interpretable abstractions from the visual world.
Collapse
|
7
|
Lewis LS, Krupenye C. Eye-tracking as a window into primate social cognition. Am J Primatol 2022; 84:e23393. [PMID: 35635515 DOI: 10.1002/ajp.23393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Over the past decade, noninvasive, restraint-free eye-tracking research with primates has transformed our understanding of primate social cognition. The use of this technology with many primate species allows for the exploration and comparison of how these species attend to and understand social agents and interactions. The ability to compare and contrast the cognitive capacities of various primate species, including humans, provides insight into the evolutionary mechanisms and selective pressures that have likely shaped social cognition in similar and divergent ways across the primate order. In this review, we begin by discussing noninvasive behavioral methods used to measure primate gaze and attention before the introduction of noninvasive, restraint-free eye-tracking methodologies. Next, we focus on findings from recent eye-tracking research on primate social cognition, beginning with simple visual and search mechanisms. We then discuss the results that have built on this basic understanding of how primates view images and videos, exploring discrimination and knowledge of social agents, following social cues, tracking perspectives and predicting behavior, and the combination of eye-tracking and other behavioral and physiological methods. Finally, we discuss some future directions of noninvasive eye-tracking research on primate social cognition and current eye-tracking work-in-progress that builds on these previous studies, investigating underexplored socio-cognitive capacities and utilizing new methodologies.
Collapse
Affiliation(s)
- Laura S Lewis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Christopher Krupenye
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Psychology, Durham University, Durham, UK
| |
Collapse
|
8
|
The application of noninvasive, restraint-free eye-tracking methods for use with nonhuman primates. Behav Res Methods 2021; 53:1003-1030. [PMID: 32935327 DOI: 10.3758/s13428-020-01465-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Over the past 50 years there has been a strong interest in applying eye-tracking techniques to study a myriad of questions related to human and nonhuman primate psychological processes. Eye movements and fixations can provide qualitative and quantitative insights into cognitive processes of nonverbal populations such as nonhuman primates, clarifying the evolutionary, physiological, and representational underpinnings of human cognition. While early attempts at nonhuman primate eye tracking were relatively crude, later, more sophisticated and sensitive techniques required invasive protocols and the use of restraint. In the past decade, technology has advanced to a point where noninvasive eye-tracking techniques, developed for use with human participants, can be applied for use with nonhuman primates in a restraint-free manner. Here we review the corpus of recent studies (N=32) that take such an approach. Despite the growing interest in eye-tracking research, there is still little consensus on "best practices," both in terms of deploying test protocols or reporting methods and results. Therefore, we look to advances made in the field of developmental psychology, as well as our own collective experiences using eye trackers with nonhuman primates, to highlight key elements that researchers should consider when designing noninvasive restraint-free eye-tracking research protocols for use with nonhuman primates. Beyond promoting best practices for research protocols, we also outline an ideal approach for reporting such research and highlight future directions for the field.
Collapse
|
9
|
Chopik WJ, Johnson DJ. Modeling dating decisions in a mock swiping paradigm: An examination of participant and target characteristics. JOURNAL OF RESEARCH IN PERSONALITY 2021. [DOI: 10.1016/j.jrp.2021.104076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Kovacs Balint Z, Raper J, Michopoulos V, Howell LH, Gunter C, Bachevalier J, Sanchez MM. Validation of the Social Responsiveness Scale (SRS) to screen for atypical social behaviors in juvenile macaques. PLoS One 2021; 16:e0235946. [PMID: 34014933 PMCID: PMC8136728 DOI: 10.1371/journal.pone.0235946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
Primates form strong social bonds and depend on social relationships and networks that provide shared resources and protection critical for survival. Social deficits such as those present in autism spectrum disorder (ASD) and other psychiatric disorders hinder the individual’s functioning in communities. Given that early diagnosis and intervention can improve outcomes and trajectories of ASD, there is a great need for tools to identify early markers for screening/diagnosis, and for translational animal models to uncover biological mechanisms and develop treatments. One of the most widely used screening tools for ASD in children is the Social Responsiveness Scale (SRS), a quantitative measure used to identify individuals with atypical social behaviors. The SRS has been adapted for use in adult rhesus monkeys (Macaca mulatta)–a species very close to humans in terms of social behavior, brain anatomy/connectivity and development–but has not yet been validated or adapted for a necessary downward extension to younger ages matching those for ASD diagnosis in children. The goal of the present study was to adapt and validate the adult macaque SRS (mSRS) in juvenile macaques with age equivalent to mid-childhood in humans. Expert primate coders modified the mSRS to adapt it to rate atypical social behaviors in juvenile macaques living in complex social groups at the Yerkes National Primate Research Center. Construct and face validity of this juvenile mSRS (jmSRS) was determined based on well-established and operationalized measures of social and non-social behaviors in this species using traditional behavioral observations. We found that the jmSRS identifies variability in social responsiveness of juvenile rhesus monkeys and shows strong construct/predictive validity, as well as sensitivity to detect atypical social behaviors in young male and female macaques across social status. Thus, the jmSRS provides a promising tool for translational research on macaque models of children social disorders.
Collapse
Affiliation(s)
- Z. Kovacs Balint
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - J. Raper
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - V. Michopoulos
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - L. H. Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - C. Gunter
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- Department of Human Genetics, Emory University, Atlanta, Georgia, United States of America
| | - J. Bachevalier
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - M. M. Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Human brain activity reflecting facial attractiveness from skin reflection. Sci Rep 2021; 11:3412. [PMID: 33619295 PMCID: PMC7900112 DOI: 10.1038/s41598-021-82601-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/06/2020] [Indexed: 11/30/2022] Open
Abstract
Facial attraction has a great influence on our daily social interactions. Previous studies have mainly focused on the attraction from facial shape and expression. We recently found that faces with radiant skin appear to be more attractive than those with oily-shiny or matte skin. In the present study, we conducted functional magnetic resonance imaging (fMRI) and psychological experiments to determine the human brain activity that reflects facial attractiveness modulated by these skin reflection types. In the fMRI experiment, female subjects were shown successive images of unfamiliar female faces with matte, oily-shiny, or radiant skin. The subjects compared each face with the immediately preceding face in terms of attractiveness, age, and skin reflection, all based on the skin. The medial part of the orbitofrontal cortex (mOFC) was significantly more active when comparing attractiveness than when comparing skin reflection, suggesting that the mOFC is involved in processing facial attractiveness from skin reflection. In the psychological experiment, attractiveness rating was highest for radiant skin, followed by oily-shiny, and then matte skin. Comparison of the results of these experiments showed that mOFC activation level increased with attractiveness rating. These results suggest that the activation level of the mOFC reflects facial attractiveness from skin reflection.
Collapse
|
12
|
Colour matters more than shape for chimpanzees' recognition of developmental face changes. Sci Rep 2020; 10:18201. [PMID: 33097811 PMCID: PMC7584574 DOI: 10.1038/s41598-020-75284-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Social primates must recognise developmental stages of other conspecifics in order to behave appropriately. Infant faces have peculiar morphological characteristics-relatively large eyes, a small nose, and small mouth-known as baby schema. In addition, the infant faces of many primate species have unique skin coloration. However, it is unclear which features serve as critical cues for chimpanzees to recognise developmental changes in their faces. The present study aimed to investigate the relative contributions of facial shape and colour to age categorisation in chimpanzees. We used a symbolic matching-to-sample task in which chimpanzees were trained to discriminate between adult and infant faces. Then, we tested how their age category judgments transferred to a series of morphed faces which systematically differed in facial shape and colour. Statistical image quantification analysis revealed significant differences both in shape and colour between adult and infant faces. However, we found that facial coloration contributed to age categorisation in chimpanzees more than facial shape. Our results showed that chimpanzees use unique infantile facial coloration as a salient cue when discriminating between adult and infant faces. The display of their developmental stages through facial colour may help chimpanzees to induce appropriate behaviour from other individuals.
Collapse
|
13
|
Maylott SE, Paukner A, Ahn YA, Simpson EA. Human and monkey infant attention to dynamic social and nonsocial stimuli. Dev Psychobiol 2020; 62:841-857. [PMID: 32424813 PMCID: PMC7944642 DOI: 10.1002/dev.21979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The present study explored behavioral norms for infant social attention in typically developing human and nonhuman primate infants. We examined the normative development of attention to dynamic social and nonsocial stimuli longitudinally in macaques (Macaca mulatta) at 1, 3, and 5 months of age (N = 75) and humans at 2, 4, 6, 8, and 13 months of age (N = 69) using eye tracking. All infants viewed concurrently played silent videos-one social video and one nonsocial video. Both macaque and human infants were faster to look to the social than the nonsocial stimulus, and both species grew faster to orient to the social stimulus with age. Further, macaque infants' social attention increased linearly from 1 to 5 months. In contrast, human infants displayed a nonlinear pattern of social interest, with initially greater attention to the social stimulus, followed by a period of greater interest in the nonsocial stimulus, and then a rise in social interest from 6 to 13 months. Overall, human infants looked longer than macaque infants, suggesting humans have more sustained attention in the first year of life. These findings highlight potential species similarities and differences, and reflect a first step in establishing baseline patterns of early social attention development.
Collapse
Affiliation(s)
- Sarah E Maylott
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Annika Paukner
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| | - Yeojin A Ahn
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | | |
Collapse
|
14
|
Billington J, Webster RJ, Sherratt TN, Wilkie RM, Hassall C. The (Under)Use of Eye-Tracking in Evolutionary Ecology. Trends Ecol Evol 2020; 35:495-502. [PMID: 32396816 DOI: 10.1016/j.tree.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
To survive and pass on their genes, animals must perform many tasks that affect their fitness, such as mate-choice, foraging, and predator avoidance. The ability to make rapid decisions is dependent on the information that needs to be sampled from the environment and how it is processed. We highlight the need to consider visual attention within sensory ecology and advocate the use of eye-tracking methods to better understand how animals prioritise the sampling of information from their environments prior to making a goal-directed decision. We consider ways in which eye-tracking can be used to determine how animals work within attentional constraints and how environmental pressures may exploit these limitations.
Collapse
Affiliation(s)
- J Billington
- School of Psychology, University of Leeds, Leeds, UK.
| | - R J Webster
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - T N Sherratt
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - R M Wilkie
- School of Psychology, University of Leeds, Leeds, UK
| | - C Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Simpson EA, Maylott SE, Leonard K, Lazo RJ, Jakobsen KV. Face detection in infants and adults: Effects of orientation and color. J Exp Child Psychol 2019; 186:17-32. [DOI: 10.1016/j.jecp.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
|
16
|
Simpson EA, Maylott SE, Mitsven SG, Zeng G, Jakobsen KV. Face detection in 2- to 6-month-old infants is influenced by gaze direction and species. Dev Sci 2019; 23:e12902. [PMID: 31505079 DOI: 10.1111/desc.12902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/10/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022]
Abstract
Humans detect faces efficiently from a young age. Face detection is critical for infants to identify and learn from relevant social stimuli in their environments. Faces with eye contact are an especially salient stimulus, and attention to the eyes in infancy is linked to the emergence of later sociality. Despite the importance of both of these early social skills-attending to faces and attending to the eyes-surprisingly little is known about how they interact. We used eye tracking to explore whether eye contact influences infants' face detection. Longitudinally, we examined 2-, 4-, and 6-month-olds' (N = 65) visual scanning of complex image arrays with human and animal faces varying in eye contact and head orientation. Across all ages, infants displayed superior detection of faces with eye contact; however, this effect varied as a function of species and head orientation. Infants were more attentive to human than animal faces and were more sensitive to eye and head orientation for human faces compared to animal faces. Unexpectedly, human faces with both averted heads and eyes received the most attention. This pattern may reflect the early emergence of gaze following-the ability to look where another individual looks-which begins to develop around this age. Infants may be especially interested in averted gaze faces, providing early scaffolding for joint attention. This study represents the first investigation to document infants' attention patterns to faces systematically varying in their attentional states. Together, these findings suggest that infants develop early, specialized functional conspecific face detection.
Collapse
Affiliation(s)
| | - Sarah E Maylott
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | | | - Guangyu Zeng
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | | |
Collapse
|
17
|
Kovacs-Balint Z, Feczko E, Pincus M, Earl E, Miranda-Dominguez O, Howell B, Morin E, Maltbie E, LI L, Steele J, Styner M, Bachevalier J, Fair D, Sanchez M. Early Developmental Trajectories of Functional Connectivity Along the Visual Pathways in Rhesus Monkeys. Cereb Cortex 2019; 29:3514-3526. [PMID: 30272135 PMCID: PMC6644858 DOI: 10.1093/cercor/bhy222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/23/2018] [Accepted: 08/19/2018] [Indexed: 12/30/2022] Open
Abstract
Early social interactions shape the development of social behavior, although the critical periods or the underlying neurodevelopmental processes are not completely understood. Here, we studied the developmental changes in neural pathways underlying visual social engagement in the translational rhesus monkey model. Changes in functional connectivity (FC) along the ventral object and motion pathways and the dorsal attention/visuo-spatial pathways were studied longitudinally using resting-state functional MRI in infant rhesus monkeys, from birth through early weaning (3 months), given the socioemotional changes experienced during this period. Our results revealed that (1) maturation along the visual pathways proceeds in a caudo-rostral progression with primary visual areas (V1-V3) showing strong FC as early as 2 weeks of age, whereas higher-order visual and attentional areas (e.g., MT-AST, LIP-FEF) show weak FC; (2) functional changes were pathway-specific (e.g., robust FC increases detected in the most anterior aspect of the object pathway (TE-AMY), but FC remained weak in the other pathways (e.g., AST-AMY)); (3) FC matures similarly in both right and left hemispheres. Our findings suggest that visual pathways in infant macaques undergo selective remodeling during the first 3 months of life, likely regulated by early social interactions and supporting the transition to independence from the mother.
Collapse
Affiliation(s)
- Z Kovacs-Balint
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - E Feczko
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland OR, USA
| | - M Pincus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - E Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - O Miranda-Dominguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - B Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| | - E Morin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| | - E Maltbie
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - L LI
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - J Steele
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - M Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - J Bachevalier
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - D Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Powell LJ, Kosakowski HL, Saxe R. Social Origins of Cortical Face Areas. Trends Cogn Sci 2018; 22:752-763. [PMID: 30041864 PMCID: PMC6098735 DOI: 10.1016/j.tics.2018.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023]
Abstract
Recently acquired fMRI data from human and macaque infants provide novel insights into the origins of cortical networks specialized for perceiving faces. Data from both species converge: cortical regions responding preferentially to faces are present and spatially organized early in infancy, although fully selective face areas emerge much later. What explains the earliest cortical responses to faces? We review two proposed mechanisms: proto-organization for simple shapes in visual cortex, and an innate subcortical schematic face template. In addition, we propose a third mechanism: infants choose to look at faces to engage in positively valenced, contingent social interactions. Activity in medial prefrontal cortex during social interactions may, directly or indirectly, guide the organization of cortical face areas.
Collapse
Affiliation(s)
- Lindsey J Powell
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather L Kosakowski
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Damon F, Mottier H, Méary D, Pascalis O. A Review of Attractiveness Preferences in Infancy: From Faces to Objects. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2017. [DOI: 10.1007/s40750-017-0071-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|