1
|
Yashima N, Fujikawa K, Minamizono W, Matsunaga H, Lyu J, Suito H, Okunuki T, Nakai S, Ohsako M. Intake of eggshell membrane enhances bone mass and suppresses bone marrow adiposity in normal growing rats. Bone Rep 2025; 25:101840. [PMID: 40235645 PMCID: PMC11999470 DOI: 10.1016/j.bonr.2025.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/17/2025] Open
Abstract
Eggshell membrane intake is considered to have beneficial effects on bone health; however, relevant evidence remains scant. Therefore, we aimed to explore the direct effects of eggshell membrane intake on osteogenic function in normal growing rats. Six-week-old male Wistar rats were divided into control (CO) and eggshell membrane (EM) groups. The experiment was conducted over 8 weeks. Visual observation and micro-computed tomography analysis revealed a significant increase in bone mass in the EM group compared with that in the CO group. Histological analysis showed thick and long trabeculae in the EM group, accompanied by an increase in the number of osteoblasts and suppression of adipocyte accumulation. Furthermore, Col1a1 expression was significantly higher in the EM group than in the CO group, although no significant differences were found in the number of TRAP-positive osteoclasts or Ctsk expression. Immunohistochemical analysis demonstrated a notable increase in the number of Col1-positive osteoblasts but a significant decrease in the number of Dlk1-positive adipocytes in the EM group. Gene expression analysis revealed no difference in the expression of Runx2 (the master regulator of osteoblast differentiation) between the groups. However, the expression of Sp7, which functions downstream of Runx2, was significantly upregulated, whereas that of Pparg, the master regulator of adipocyte differentiation, was significantly downregulated in the EM group compared with those in the CO group. Overall, the intake of eggshell membranes may enhance osteogenic function and suppress bone marrow adiposity. These findings support the beneficial effects of eggshell membrane intake on bone health.
Collapse
Affiliation(s)
- Nao Yashima
- Graduate School of Health and Sports Science, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Kaoru Fujikawa
- Department of Oral Anatomy, Showa Medical University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-0064, Japan
| | - Wataru Minamizono
- Graduate School of Human Life Design, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Hiroya Matsunaga
- Graduate School of Health and Sports Science, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Jiazheng Lyu
- Graduate School of Health and Sports Science, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Hirai Suito
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takumi Okunuki
- Research Organization of Science and Technology, Ritsumeikan University/Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shingo Nakai
- Department of Judo Seifuku and Health Sciences, Tokoha University Faculty of Health Promotional Sciences, 1230 Miyakoda-cho, Hamana-ku, Hamamatsu-shi, Shizuoka 431-2102, Japan
| | - Masafumi Ohsako
- Department of Health and Sports Science, Toyo University School of Health and Sports Science, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| |
Collapse
|
2
|
Liu H, Liu L, Rosen CJ. Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity. Curr Obes Rep 2025; 14:9. [PMID: 39808256 DOI: 10.1007/s13679-024-00594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles. RECENT FINDINGS Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases. The advancement of imaging techniques, particularly cross-sectional imaging, has profoundly expanded our understanding of the complexities beyond the traditional view of bone marrow adipose tissue as an inert depot. Notably, marrow adipocytes are anatomically and functionally distinct from brown, beige, and classic white adipocytes. Emerging evidence suggests that bone marrow adipocytes, bone marrow adipose tissue originate from the differentiation of bone marrow mesenchymal stromal cells; however, they appear to be a heterogeneous population with varying metabolic profiles, lipid compositions, secretory properties, and functional responses depending on their specific location within the bone marrow. This review provides an up-to-date synthesis of current knowledge on bone marrow adipocytes, emphasizing the relationships between bone marrow adipogenesis and factors such as aging, osteoporosis, obesity, and bone marrow tumors or metastases, thereby elucidating the mechanisms underlying musculoskeletal pathophysiology.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Linyi Liu
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.
| |
Collapse
|
3
|
Rinotas V, Gkikopoulou E, Tzortzis E, Kritikos K, Siatra P, Papadopoulos A, Perivolidi VI, Douni E. Interplay between bone marrow adiposity and bone resorption in RANKL-mediated modelled osteoporosis. J Cell Physiol 2024; 239:e31434. [PMID: 39279218 DOI: 10.1002/jcp.31434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Evi Gkikopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Efthymiοs Tzortzis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Kritikos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Panagiota Siatra
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Apostolos Papadopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vasiliki-Iris Perivolidi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
Niu H, Zhou M, Xu X, Xu X. Bone Marrow Adipose Tissue as a Critical Regulator of Postmenopausal Osteoporosis - A Concise Review. Clin Interv Aging 2024; 19:1259-1272. [PMID: 39011312 PMCID: PMC11249116 DOI: 10.2147/cia.s466446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.
Collapse
Affiliation(s)
- Huifang Niu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaojuan Xu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
5
|
Keune JA, Wong CP, Branscum AJ, Menn SA, Iwaniec UT, Turner RT. Bone Marrow Adipose Tissue Is Not Required for Reconstitution of the Immune System Following Irradiation in Male Mice. Int J Mol Sci 2024; 25:1980. [PMID: 38396660 PMCID: PMC10889206 DOI: 10.3390/ijms25041980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Bone marrow adipose tissue (BMAT) is hypothesized to serve as an expandable/contractible fat depot which functions, in part, to minimize energy requirements for sustaining optimal hematopoiesis. We investigated whether BMAT is required for immune reconstitution following injury. Male wild type (WBB6F1, WT) and BMAT-deficient WBB6F1/J-KitW/KitW-v/J (KitW/W-v) mice were lethally irradiated. Irradiation was followed by adoptive transfer of 1000 purified WT hematopoietic stem cells (HSCs). The extent of immune reconstitution in blood, bone marrow, and lymph nodes in the irradiated mice was determined using HSCs from green fluorescent protein (GFP)-expressing mice. We also evaluated skeletal response to treatment. Detection of GFP-positive B and T cells in peripheral blood at 4 and 9 weeks following adoptive transfer and in bone marrow and lymph nodes following necropsy revealed excellent immune reconstitution in both WT and BMAT-deficient mice. Adipocytes were numerous in the distal femur of WT mice but absent or rare in KitW/W-v mice. Bone parameters, including length, mass, density, bone volume, microarchitecture, and turnover balance, exhibited few differences between WT and BMAT-deficient mice. The minimal differences suggest that BMAT is not required for reconstitution of the immune system following lethal radiation and is not a major contributor to the skeletal phenotypes of kit signaling-deficient mice.
Collapse
Affiliation(s)
- Jessica A. Keune
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
| | - Scott A. Menn
- Radiation Center, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Trudel G, Melkus G, Liu T. The ups and downs of bone-marrow adipose tissue in space. Trends Endocrinol Metab 2024; 35:85-87. [PMID: 38040579 DOI: 10.1016/j.tem.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Knowledge is rapidly accumulating on basic roles and modulation of bone-marrow adipose tissue (BMAT). Among key modulators are physical forces on bones as exerted by gravity and exercise. Studying humans returning from space has revealed that, in addition to physical forces, local energetics within the bone marrow can play modulatory roles.
Collapse
Affiliation(s)
- Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Medicine, Division of Physiatry, The Ottawa Hospital, Room 2505G, 505 Smyth Road, Ottawa, Ontario K1H 8M2, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 1321, Ottawa, Ontario K1H 8M5, Canada.
| | - Gerd Melkus
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario K1H 8M2, Canada
| | - Tammy Liu
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| |
Collapse
|
7
|
Wong CP, Iwaniec UT, Turner RT. Brown adipose tissue but not tibia exhibits a dramatic response to acute reduction in environmental temperature in growing male mice. Bone Rep 2023; 19:101706. [PMID: 37637756 PMCID: PMC10448410 DOI: 10.1016/j.bonr.2023.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Mice are typically housed at room temperature (∼22 °C), which is well below their thermoneutral zone and results in cold stress. Chronic cold stress leads to increased adaptive thermogenesis and reductions in cancellous bone volume and bone marrow adipose tissue mass in long bones of growing mice. There is strong evidence that increased neuronal activity initiates the metabolic response of intrascapular brown adipose tissue (BAT) to cold stress, but it is less clear whether bone is regulated through a similar mechanism. Therefore, we compared the short-term response of BAT and whole tibia to a reduction in environmental temperature. To accomplish this, we transferred a group of 6-week-old male mice from 32 °C to 22 °C housing and sacrificed the mice 24 h later. Age-matched controls were maintained at 32 °C. We then evaluated expression levels of a panel of genes related to adipocyte differentiation and fat metabolism in BAT and tibia, and a panel of genes related to bone metabolism in tibia. The decrease in housing temperature resulted in changes in expression levels for 47/86 genes related to adipocyte differentiation and fat metabolism in BAT, including 9-fold and 17-fold increases in Ucp1 and Dio2, respectively. In contrast, only 1/86 genes related to adipocyte differentiation and fat metabolism and 4/84 genes related to bone metabolism were differentially expressed in tibia. These findings suggest that bone, although innervated with sensory and sympathetic neurons, does not respond as rapidly as BAT to changes in environmental temperature.
Collapse
Affiliation(s)
- Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Wong CP, Branscum AJ, Fichter AR, Sargent J, Iwaniec UT, Turner RT. Cold stress during room temperature housing alters skeletal response to simulated microgravity (hindlimb unloading) in growing female C57BL6 mice. Biochimie 2022:S0300-9084(22)00333-9. [PMID: 36584865 DOI: 10.1016/j.biochi.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Laboratory mice are typically housed at temperatures below the thermoneutral zone for the species, resulting in cold stress and premature cancellous bone loss. Furthermore, mice are more dependent upon non-shivering thermogenesis to maintain body temperature during spaceflight, suggesting that microgravity-induced bone loss may be due, in part, to altered thermogenesis. Consequently, we assessed whether housing mice at room temperature modifies the skeletal response to simulated microgravity. This possibility was tested using the hindlimb unloading (HLU) model to mechanically unload femora. Humeri were also assessed as they remain weight bearing during HLU. Six-week-old female C57BL6 (B6) mice were housed at room temperature (22 °C) or near thermoneutral (32 °C) and HLU for 2 weeks. Compared to baseline, HLU resulted in cortical bone loss in femur, but the magnitude of reduction was greater in mice housed at 22 °C. Cancellous osteopenia in distal femur (metaphysis and epiphysis) was noted in HLU mice housed at both temperatures. However, bone loss occurred at 22 °C, whereas the bone deficit at 32 °C was due to failure to accrue bone. HLU resulted in cortical and cancellous bone deficits (compared to baseline) in humeri of mice housed at 22 °C. In contrast, fewer osteopenic changes were detected in mice housed at 32 °C. These findings support the hypothesis that environmental temperature alters the skeletal response to HLU in growing female mice in a bone compartment-specific manner. Taken together, species differences in thermoregulation should be taken into consideration when interpreting the skeletal response to simulated microgravity.
Collapse
Affiliation(s)
- Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Aidan R Fichter
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Jennifer Sargent
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331 USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
9
|
Turner RT, Nesser KL, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Iwaniec UT. Leptin and environmental temperature as determinants of bone marrow adiposity in female mice. Front Endocrinol (Lausanne) 2022; 13:959743. [PMID: 36277726 PMCID: PMC9582271 DOI: 10.3389/fendo.2022.959743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) levels are higher in distal femur metaphysis of female mice housed at thermoneutral (32°C) than in mice housed at 22°C, as are abdominal white adipose tissue (WAT) mass, and serum leptin levels. We performed two experiments to explore the role of increased leptin in temperature-enhanced accrual of BMAT. First, we supplemented 6-week-old female C57BL/6J (B6) mice with leptin for 2 weeks at 10 µg/d using a subcutaneously implanted osmotic pump. Controls consisted of ad libitum (ad lib) fed mice and mice pair fed to match food intake of leptin-supplemented mice. The mice were maintained at 32°C for the duration of treatment. At necropsy, serum leptin in leptin-supplemented mice did not differ from ad lib mice, suggesting suppression of endogenous leptin production. In support, Ucp1 expression in BAT, percent body fat, and abdominal WAT mass were lower in leptin-supplemented mice. Leptin-supplemented mice also had lower BMAT and higher bone formation in distal femur metaphysis compared to the ad lib group, changes not replicated by pair-feeding. In the second experiment, BMAT response was evaluated in 6-week-old female B6 wild type (WT), leptin-deficient ob/ob and leptin-treated (0.3 μg/d) ob/ob mice housed at 32°C for the 2-week duration of the treatment. Compared to mice sacrificed at baseline (22°C), BMAT increased in ob/ob mice as well as WT mice, indicating a leptin independent response to increased temperature. However, infusion of ob/ob mice with leptin, at a dose rate having negligible effects on either energy metabolism or serum leptin levels, attenuated the increase in BMAT. In summary, increased housing temperature and increased leptin have independent but opposing effects on BMAT in mice.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
| | - Kira L. Nesser
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Dawn A. Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
- *Correspondence: Urszula T. Iwaniec,
| |
Collapse
|
10
|
Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med (Berl) 2021; 100:167-183. [PMID: 34751809 DOI: 10.1007/s00109-021-02164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
Collapse
Affiliation(s)
- Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
11
|
Garg P, Strigini M, Peurière L, Vico L, Iandolo D. The Skeletal Cellular and Molecular Underpinning of the Murine Hindlimb Unloading Model. Front Physiol 2021; 12:749464. [PMID: 34737712 PMCID: PMC8562483 DOI: 10.3389/fphys.2021.749464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Bone adaptation to spaceflight results in bone loss at weight bearing sites following the absence of the stimulus represented by ground force. The rodent hindlimb unloading model was designed to mimic the loss of mechanical loading experienced by astronauts in spaceflight to better understand the mechanisms causing this disuse-induced bone loss. The model has also been largely adopted to study disuse osteopenia and therefore to test drugs for its treatment. Loss of trabecular and cortical bone is observed in long bones of hindlimbs in tail-suspended rodents. Over the years, osteocytes have been shown to play a key role in sensing mechanical stress/stimulus via the ECM-integrin-cytoskeletal axis and to respond to it by regulating different cytokines such as SOST and RANKL. Colder experimental environments (~20-22°C) below thermoneutral temperatures (~28-32°C) exacerbate bone loss. Hence, it is important to consider the role of environmental temperatures on the experimental outcomes. We provide insights into the cellular and molecular pathways that have been shown to play a role in the hindlimb unloading and recommendations to minimize the effects of conditions that we refer to as confounding factors.
Collapse
Affiliation(s)
- Priyanka Garg
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Maura Strigini
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laura Peurière
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laurence Vico
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| |
Collapse
|
12
|
Aljohani H, Stains JP, Majumdar S, Srinivasan D, Senbanjo L, Chellaiah MA. Peptidomimetic inhibitor of L-plastin reduces osteoclastic bone resorption in aging female mice. Bone Res 2021; 9:22. [PMID: 33837180 PMCID: PMC8035201 DOI: 10.1038/s41413-020-00135-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
L-plastin (LPL) was identified as a potential regulator of the actin-bundling process involved in forming nascent sealing zones (NSZs), which are precursor zones for mature sealing zones. TAT-fused cell-penetrating small molecular weight LPL peptide (TAT- MARGSVSDEE, denoted as an inhibitory LPL peptide) attenuated the formation of NSZs and impaired bone resorption in vitro in osteoclasts. Also, the genetic deletion of LPL in mice demonstrated decreased eroded perimeters and increased trabecular bone density. In the present study, we hypothesized that targeting LPL with the inhibitory LPL peptide in vivo could reduce osteoclast function and increase bone density in a mice model of low bone mass. We injected aging C57BL/6 female mice (36 weeks old) subcutaneously with the inhibitory and scrambled peptides of LPL for 14 weeks. Micro-CT and histomorphometry analyses demonstrated an increase in trabecular bone density of femoral and tibial bones with no change in cortical thickness in mice injected with the inhibitory LPL peptide. A reduction in the serum levels of CTX-1 peptide suggests that the increase in bone density is associated with a decrease in osteoclast function. No changes in bone formation rate and mineral apposition rate, and the serum levels of P1NP indicate that the inhibitory LPL peptide does not affect osteoblast function. Our study shows that the inhibitory LPL peptide can block osteoclast function without impairing the function of osteoblasts. LPL peptide could be developed as a prospective therapeutic agent to treat osteoporosis.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Oral Medicine and Diagnostics Sciences, King Saud University, School of Dentistry, Riyadh, Kingdom of Saudi Arabia
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Deepa Srinivasan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Linda Senbanjo
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
13
|
Reidy PT, Monnig JM, Pickering CE, Funai K, Drummond MJ. Preclinical rodent models of physical inactivity-induced muscle insulin resistance: challenges and solutions. J Appl Physiol (1985) 2020; 130:537-544. [PMID: 33356986 DOI: 10.1152/japplphysiol.00954.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Physical inactivity influences the development of muscle insulin resistance yet is far less understood than diet-induced muscle insulin resistance. Progress in understanding the mechanisms of physical inactivity-induced insulin resistance is limited by a lack of an appropriate preclinical model of muscle insulin resistance. Here, we discuss differences between diet and physical inactivity-induced insulin resistance, the advantages and disadvantages of the available rodent inactivity models to study insulin resistance, and our current understanding of the mechanisms of muscle insulin resistance derived from such preclinical inactivity designs. The burgeoning rise of health complications emanating from metabolic disease presents an alarming issue with mounting costs for health care and a reduced quality of life. There exists a pressing need for more complete understanding of mechanisms behind the development and progression of metabolic dysfunction. Since lifestyle modifications such as poor diet and lack of physical activity are primary catalysts of metabolic dysfunction, rodent models have been formed to explore mechanisms behind these issues. Particularly, the use of a high-fat diet has been pervasive and has been an instrumental model to gain insight into mechanisms underlying diet-induced insulin resistance (IR). However, physical inactivity (and to some extent muscle disuse) is an often overlooked and much less frequently studied lifestyle modification, which some have contended is the primary contributor in the initial development of muscle IR. In this mini-review we highlight some of the key differences between diet- and physical inactivity-induced development of muscle IR and propose reasons for the sparse volume of academic research into physical inactivity-induced IR including infrequent use of clearly translatable rodent physical inactivity models.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
| | - Jackie M Monnig
- Department of Kinesiology and Health, Miami University, Oxford, Ohio
| | | | - Katsuhiko Funai
- Departments of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Departments of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
Little-Letsinger SE, Pagnotti GM, McGrath C, Styner M. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep 2020; 18:774-789. [PMID: 33068251 PMCID: PMC7736569 DOI: 10.1007/s11914-020-00634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.
Collapse
Affiliation(s)
- Sarah E Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA.
| | - Gabriel M Pagnotti
- Department of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Zhou H, Trudel G, Alexeev K, Laneuville O. Reversibility of marrow adipose accumulation and reduction of trabecular bone in the epiphysis of the proximal tibia. Acta Histochem 2020; 122:151604. [PMID: 33066832 DOI: 10.1016/j.acthis.2020.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Mechanical stimuli play an important role in the homeostasis of trabecular bone and marrow adipose tissue, particularly for the weight-bearing skeleton. Prolonged immobilization and disuse have been shown to reduce trabecular bone content and increase marrow adipose tissue in the bones of lower limb joints such as the knee. However, details on the temporal response of this relationship to prolonged immobilization and its reversibility is limited. Forty rats had one knee immobilized at 45° of flexion for 2, 4, 8, or 16 weeks and subsequently remobilized for 0 or 8 weeks. The contralateral knees were used as controls. Histomorphometric measures of trabecular bone and marrow adipose tissue (MAT) areas were conducted in the epiphysis of the proximal tibia. Knee immobilization for 4, 8, and 16 weeks significantly reduced trabecular bone area by -0.125, -0.139, and -0.161 mm2/mm2, respectively, with corresponding 95 % CIs of [-0.012, -0.239], [-0.006, -0.273], and [-0.101, -0.221]. MAT area significantly increased at 2 and 16 weeks by +0.008 and +0.027 mm2/mm2, respectively, with 95 % CIs of [0.014, 0.002] and [0.039, 0.016]. Remobilization for 8 weeks restored trabecular bone area compared to the contralateral knee and the magnitude of change was significantly greater for 8 and 16 weeks of immobilization with effect sizes of 1.69 and 1.86, respectively. The difference in MAT area between immobilized and contralateral knees were eliminated with remobilization. These results characterize the temporal response of trabecular bone and MAT in the epiphysis of the proximal tibia to joint immobilization and remobilization.
Collapse
|
16
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
17
|
Tratwal J, Bekri D, Boussema C, Sarkis R, Kunz N, Koliqi T, Rojas-Sutterlin S, Schyrr F, Tavakol DN, Campos V, Scheller EL, Sarro R, Bárcena C, Bisig B, Nardi V, de Leval L, Burri O, Naveiras O. MarrowQuant Across Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections. Front Endocrinol (Lausanne) 2020; 11:480. [PMID: 33071956 PMCID: PMC7542184 DOI: 10.3389/fendo.2020.00480] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
The bone marrow (BM) exists heterogeneously as hematopoietic/red or adipocytic/yellow marrow depending on skeletal location, age, and physiological condition. Mouse models and patients undergoing radio/chemotherapy or suffering acute BM failure endure rapid adipocytic conversion of the marrow microenvironment, the so-called "red-to-yellow" transition. Following hematopoietic recovery, such as upon BM transplantation, a "yellow-to-red" transition occurs and functional hematopoiesis is restored. Gold Standards to estimate BM cellular composition are pathologists' assessment of hematopoietic cellularity in hematoxylin and eosin (H&E) stained histological sections as well as volumetric measurements of marrow adiposity with contrast-enhanced micro-computerized tomography (CE-μCT) upon osmium-tetroxide lipid staining. Due to user-dependent variables, reproducibility in longitudinal studies is a challenge for both methods. Here we report the development of a semi-automated image analysis plug-in, MarrowQuant, which employs the open-source software QuPath, to systematically quantify multiple bone components in H&E sections in an unbiased manner. MarrowQuant discerns and quantifies the areas occupied by bone, adipocyte ghosts, hematopoietic cells, and the interstitial/microvascular compartment. A separate feature, AdipoQuant, fragments adipocyte ghosts in H&E-stained sections of extramedullary adipose tissue to render adipocyte area and size distribution. Quantification of BM hematopoietic cellularity with MarrowQuant lies within the range of scoring by four independent pathologists, while quantification of the total adipocyte area in whole bone sections compares with volumetric measurements. Employing our tool, we were able to develop a standardized map of BM hematopoietic cellularity and adiposity in mid-sections of murine C57BL/6 bones in homeostatic conditions, including quantification of the highly predictable red-to-yellow transitions in the proximal section of the caudal tail and in the proximal-to-distal tibia. Additionally, we present a comparative skeletal map induced by lethal irradiation, with longitudinal quantification of the "red-to-yellow-to-red" transition over 2 months in C57BL/6 femurs and tibiae. We find that, following BM transplantation, BM adiposity inversely correlates with kinetics of hematopoietic recovery and that a proximal to distal gradient is conserved. Analysis of in vivo recovery through magnetic resonance imaging (MRI) reveals comparable kinetics. On human trephine biopsies MarrowQuant successfully recognizes the BM compartments, opening avenues for its application in experimental, or clinical contexts that require standardized human BM evaluation.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Bekri
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chiheb Boussema
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Kunz
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tereza Koliqi
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shanti Rojas-Sutterlin
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédérica Schyrr
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, United States
| | - Rossella Sarro
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne University (UNIL), Lausanne, Switzerland
| | - Carmen Bárcena
- Department of Pathology, University Hospital 12 de Octubre, Madrid, Spain
| | - Bettina Bisig
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne University (UNIL), Lausanne, Switzerland
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne University (UNIL), Lausanne, Switzerland
| | - Olivier Burri
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Oncology, Hematology Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- *Correspondence: Olaia Naveiras ;
| |
Collapse
|
18
|
Martin SA, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Jump DB, Marik CK, DenHerder JM, Sargent JL, Turner RT, Iwaniec UT. Thermoneutral housing attenuates premature cancellous bone loss in male C57BL/6J mice. Endocr Connect 2019; 8:1455-1467. [PMID: 31590144 PMCID: PMC6865368 DOI: 10.1530/ec-19-0359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Mice are a commonly used model to investigate aging-related bone loss but, in contrast to humans, mice exhibit cancellous bone loss prior to skeletal maturity. The mechanisms mediating premature bone loss are not well established. However, our previous work in female mice suggests housing temperature is a critical factor. Premature cancellous bone loss was prevented in female C57BL/6J mice by housing the animals at thermoneutral temperature (where basal rate of energy production is at equilibrium with heat loss). In the present study, we determined if the protective effects of thermoneutral housing extend to males. Male C57BL/6J mice were housed at standard room temperature (22°C) or thermoneutral (32°C) conditions from 5 (rapidly growing) to 16 (slowly growing) weeks of age. Mice housed at room temperature exhibited reductions in cancellous bone volume fraction in distal femur metaphysis and fifth lumbar vertebra; these effects were abolished at thermoneutral conditions. Mice housed at thermoneutral temperature had higher levels of bone formation in distal femur (based on histomorphometry) and globally (serum osteocalcin), and lower global levels of bone resorption (serum C-terminal telopeptide of type I collagen) compared to mice housed at room temperature. Thermoneutral housing had no impact on bone marrow adiposity but resulted in higher abdominal white adipose tissue and serum leptin. The overall magnitude of room temperature housing-induced cancellous bone loss did not differ between male (current study) and female (published data) mice. These findings highlight housing temperature as a critical experimental variable in studies using mice of either sex to investigate aging-related changes in bone metabolism.
Collapse
Affiliation(s)
- Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kenneth A Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Charles K Marik
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Jonathan M DenHerder
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Jennifer L Sargent
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
- Correspondence should be addressed to U T Iwaniec:
| |
Collapse
|
19
|
Kahler-Quesada AM, Grant KA, Walter NAR, Newman N, Allen MR, Burr DB, Branscum AJ, Maddalozzo GF, Turner RT, Iwaniec UT. Voluntary Chronic Heavy Alcohol Consumption in Male Rhesus Macaques Suppresses Cancellous Bone Formation and Increases Bone Marrow Adiposity. Alcohol Clin Exp Res 2019; 43:2494-2503. [PMID: 31557335 DOI: 10.1111/acer.14202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic heavy alcohol consumption is an established risk factor for bone fracture, but comorbidities associated with alcohol intake may contribute to increased fracture rates in alcohol abusers. To address the specific effects of alcohol on bone, we used a nonhuman primate model and evaluated voluntary alcohol consumption on: (i) global markers of bone turnover in blood and (ii) cancellous bone mass, density, microarchitecture, turnover, and microdamage in lumbar vertebra. METHODS Following a 4-month induction period, 6-year-old male rhesus macaques (Macaca mulatta, n = 13) voluntarily self-administered water or ethanol (EtOH; 4% w/v) for 22 h/d, 7 d/wk, for a total of 12 months. Control animals (n = 9) consumed an isocaloric maltose-dextrin solution. Tetracycline hydrochloride was administered orally 17 and 3 days prior to sacrifice to label mineralizing bone surfaces. Global skeletal response to EtOH was evaluated by measuring plasma osteocalcin and carboxyterminal collagen cross-links (CTX). Local response was evaluated in lumbar vertebra using dual-energy X-ray absorptiometry, microcomputed tomography, static and dynamic histomorphometry, and histological assessment of microdamage. RESULTS Monkeys in the EtOH group consumed an average of 2.8 ± 0.2 (mean ± SE) g/kg/d of EtOH (30 ± 2% of total calories), resulting in an average blood EtOH concentration of 88.3 ± 8.8 mg/dl 7 hours after the session onset. Plasma CTX and osteocalcin tended to be lower in EtOH-consuming monkeys compared to controls. Significant differences in bone mineral density in lumbar vertebrae 1 to 4 were not detected with treatment. However, cancellous bone volume fraction (in cores biopsied from the central region of the third vertebral body) was lower in EtOH-consuming monkeys compared to controls. Furthermore, EtOH-consuming monkeys had lower osteoblast perimeter and mineralizing perimeter, no significant difference in osteoclast perimeter, and higher bone marrow adiposity than controls. No significant differences between groups were detected in microcrack density (2nd lumbar vertebra). CONCLUSIONS Voluntary chronic heavy EtOH consumption reduces cancellous bone formation in lumbar vertebra by decreasing osteoblast-lined bone perimeter, a response associated with an increase in bone marrow adiposity.
Collapse
Affiliation(s)
- Arianna M Kahler-Quesada
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Nicole A R Walter
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, Indiana
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, Indiana
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Gianni F Maddalozzo
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon.,Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon.,Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon
| |
Collapse
|
20
|
Keune JA, Branscum AJ, Wong CP, Iwaniec UT, Turner RT. Effect of Leptin Deficiency on the Skeletal Response to Hindlimb Unloading in Adult Male Mice. Sci Rep 2019; 9:9336. [PMID: 31249331 PMCID: PMC6597714 DOI: 10.1038/s41598-019-45587-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/06/2019] [Indexed: 12/29/2022] Open
Abstract
Based on body weight, morbidly obese leptin-deficient ob/ob mice have less bone than expected, suggesting that leptin plays a role in the skeletal response to weight bearing. To evaluate this possibility, we compared the skeletal response of wild type (WT) and ob/ob mice to hindlimb unloading (HU). Mice were individually housed at 32 °C (thermoneutral) from 4 weeks of age (rapidly growing) to 16 weeks of age (approaching skeletal maturity). Mice were then randomized into one of 4 groups (n = 10/group): (1) WT control, (2) WT HU, (3) ob/ob control, and (4) ob/ob HU and the results analyzed by 2-way ANOVA. ob/ob mice pair-fed to WT mice had normal cancellous bone volume fraction (BV/TV) in distal femur, lower femur length and total bone area, mineral content (BMC) and density (BMD), and higher cancellous bone volume fraction in lumbar vertebra (LV). HU resulted in lower BMC and BMD in total femur, and lower BV/TV in distal femur and LV in both genotypes. Cancellous bone loss in femur in both genotypes was associated with increases in osteoclast-lined bone perimeter. In summary, leptin deficiency did not attenuate HU-induced osteopenia in male mice, suggesting that leptin is not required for bone loss induced by unweighting.
Collapse
Affiliation(s)
- Jessica A. Keune
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Adam J. Branscum
- 0000 0001 2112 1969grid.4391.fBiostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Carmen P. Wong
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Urszula T. Iwaniec
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA ,0000 0001 2112 1969grid.4391.fCenter for Healthy Aging Research, Oregon State University, Corvallis, OR 97331 USA
| | - Russell T. Turner
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA ,0000 0001 2112 1969grid.4391.fCenter for Healthy Aging Research, Oregon State University, Corvallis, OR 97331 USA
| |
Collapse
|
21
|
Deyhle RT, Wong CP, Martin SA, McDougall MQ, Olson DA, Branscum AJ, Menn SA, Iwaniec UT, Hamby DM, Turner RT. Maintenance of Near Normal Bone Mass and Architecture in Lethally Irradiated Female Mice following Adoptive Transfer with as few as 750 Purified Hematopoietic Stem Cells. Radiat Res 2019; 191:413-427. [PMID: 30870097 DOI: 10.1667/rr15164.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Total-body irradiation (TBI) followed by transfer of bone marrow cells from donors is routinely performed in immunology research and can be used to manipulate differentiation and/or function of bone cells. However, exposure to high-dose radiation can result in irreversible osteopenia, and transfer of heterogeneous cell populations can complicate interpretation of results. The goal of this research was to establish an approach for reconstituting bone marrow using small numbers of purified donor-derived hematopoietic stem cells (HSCs) without negatively affecting bone metabolism. Gamma-irradiated (9 Gy) WBB6F1 mice were engrafted with bone marrow cells (5 × 106 cells) or purified HSCs (3,000 cells) obtained from GFP transgenic mice. In vivo analysis and in vitro differentiation assays performed two months later established that both methods were effective in reconstituting the hematopoietic compartment with donor-derived cells. We confirmed these findings by engrafting C57Bl/6 (B6) mice with bone marrow cells or purified HSCs from CD45.1 B6 congenic mice. We next performed adoptive transfer of purified HSCs (750 cells) into WBB6F1 and radiosensitive KitW/W-v mice and evaluated the skeleton two months later. Minimal differences were observed between controls and WBB6F1-engrafted mice that received fractionated doses of 2 × 5 Gy. Kitw/wv mice lost weight and became osteopenic after 2 × 5 Gy irradiations but these abnormalities were negligible after 5 Gy irradiation. Importantly, adoptive transfer of wild-type cells into Kitw/wv mice restored normal Kit expression in bone marrow. Together, these findings provide strong evidence for efficient engraftment with purified HSCs after lethal TBI with minimal collateral damage to bone. This approach will be useful for investigating mechanisms by which hematopoietic lineage cells regulate bone metabolism.
Collapse
Affiliation(s)
- Richard T Deyhle
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,c Nuclear Science and Engineering, Oregon State University, Corvallis, Oregon 97331.,f Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, BE-2400 Mol, Belgium
| | - Carmen P Wong
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Stephen A Martin
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Melissa Q McDougall
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Dawn A Olson
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Adam J Branscum
- b Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Scott A Menn
- d Radiation Center, Oregon State University, Corvallis, Oregon 97331
| | - Urszula T Iwaniec
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,e Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon 97331
| | - David M Hamby
- c Nuclear Science and Engineering, Oregon State University, Corvallis, Oregon 97331
| | - Russell T Turner
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,e Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Mesenchymal stem cells (MSCs) located in the bone marrow have the capacity to differentiate into multiple cell lineages, including osteoblast and adipocyte. Adipocyte density within marrow is inversely associated with bone mass during aging and in some pathological conditions, contributing to the prevailing view that marrow adipocytes play a largely negative role in bone metabolism. However, a negative association between marrow adipocytes and bone balance is not universal. Although MAT levels appear tightly regulated, establishing the precise physiological significance of MAT has proven elusive. Here, we review recent literature aimed at delineating the function of MAT. RECENT FINDINGS An important physiological function of MAT may be to provide an expandable/contractible fat depot, which is critical for minimization of energy requirements for sustaining optimal hematopoiesis. Because the energy requirements for storing fat are negligible compared to those required to maintain hematopoiesis, even small reductions in hematopoietic tissue volume to match a reduced requirement for hematopoiesis could represent an important reduction in energy cost. Such a physiological function would require tight coupling between hematopoietic stem cells and MSCs to regulate the balance between MAT and hematopoiesis. Kit-ligand, an important regulator of proliferation, differentiation, and survival of hematopoietic cells, may function as a prototypic factor coupling MAT and hematopoiesis. Crosstalk between hematopoietic and mesenchymal cells in the bone marrow may contribute to establishing the balance between MAT levels and hematopoiesis.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
23
|
Patel VS, Ete Chan M, Rubin J, Rubin CT. Marrow Adiposity and Hematopoiesis in Aging and Obesity: Exercise as an Intervention. Curr Osteoporos Rep 2018; 16:105-115. [PMID: 29476393 PMCID: PMC5866776 DOI: 10.1007/s11914-018-0424-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Changes in the bone marrow microenvironment, which accompany aging and obesity, including increased marrow adiposity, can compromise hematopoiesis. Here, we review deleterious shifts in molecular, cellular, and tissue activity and consider the potential of exercise to slow degenerative changes associated with aging and obesity. RECENT FINDINGS While bone marrow hematopoietic stem cells (HSC) are increased in frequency and myeloid-biased with age, the effect of obesity on HSC proliferation and differentiation remains controversial. HSC from both aged and obese environment have reduced hematopoietic reconstitution capacity following bone marrow transplant. Increased marrow adiposity affects HSC function, causing upregulation of myelopoiesis and downregulation of lymphopoiesis. Exercise, in contrast, can reduce marrow adiposity and restore hematopoiesis. The impact of marrow adiposity on hematopoiesis is determined mainly through correlations. Mechanistic studies are needed to determine a causative relationship between marrow adiposity and declines in hematopoiesis, which could aid in developing treatments for conditions that arise from disruptions in the marrow microenvironment.
Collapse
Affiliation(s)
- Vihitaben S Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-2580, USA
| | - M Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-2580, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-2580, USA.
| |
Collapse
|
24
|
The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl) 2017; 95:1291-1301. [PMID: 29101431 DOI: 10.1007/s00109-017-1604-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/27/2023]
Abstract
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Collapse
|