1
|
Saha S, Cheloha RW. Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation. JACS AU 2024; 4:4780-4789. [PMID: 39735930 PMCID: PMC11673187 DOI: 10.1021/jacsau.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges. This methodology relies on the high affinity and specificity recognition exhibited by antibody fragments (nanobodies, Nbs). By using Nbs that recognize short peptide epitopes to create semisynthetic conjugates, we develop a bioengineering platform termed peptide epitope dimerization (PED) in which the addition of heterodimeric peptide composed of two Nb epitopes stimulates the proximity-induced synthesis of a functional ligand for the parathyroid hormone receptor-1, a G protein-coupled receptor. We further demonstrate that high efficiency assembly can be achieved on the cell surface via Nb-based delivery of template. This approach opens the door for the on-demand generation of bioactive receptor ligands preferentially at a desired biological niche.
Collapse
Affiliation(s)
- Shubhra
Jyoti Saha
- Laboratory
of Bioorganic Chemistry, National Institutes of Diabetes, Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Ross W. Cheloha
- Laboratory
of Bioorganic Chemistry, National Institutes of Diabetes, Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Prokaeva T, Joshi T, Klimtchuk ES, Gibson VM, Spencer B, Siddiqi O, Nedelkov D, Hu Y, Berk JL, Cuddy SAM, Dasari S, Chiu A, Choate LA, McPhail ED, Cui H, Chen H, Burks EJ, Sanchorawala V, Connors LH. A novel substitution of proline (P32L) destabilises β2-microglobulin inducing hereditary systemic amyloidosis. Amyloid 2022; 29:255-262. [PMID: 35575118 DOI: 10.1080/13506129.2022.2072199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND β2-microglobulin amyloidosis was first described in the 1980s as a protein deposition disease associated with long-term haemodialysis. More recently, two inherited forms resulting from separate point mutations in the β2-microglobulin gene have been identified. In this report, we detail a novel β2M variant, P32L, caused by a unique dinucleotide mutation that is linked to systemic hereditary β2-microglobulin amyloidosis. METHODS Three family members from a Portuguese kinship featured cardiomyopathy, requiring organ transplantation in one case, along with soft tissue involvement; other involvements included gastrointestinal, neuropathic and sicca syndrome. In vitro studies with recombinant P32L, P32G, D76N and wild-type β2-microglobulin were undertaken to compare the biophysical properties of the proteins. RESULTS The P32L variant was caused by the unique heterozygous dinucleotide mutation c.154_155delinsTT. Amyloid disease featured lowered serum β2-microglobulin levels with near equal amounts of circulating P32L and wild-type proteins; amyloid deposits were composed exclusively of P32L variant protein. In vitro studies of P32L demonstrated thermodynamic and chemical instability and enhanced susceptibility to proteolysis with rapid formation of pre-fibrillar oligomeric structures by N- and C-terminally truncated species under physiological conditions. CONCLUSIONS This work provides both clinical and experimental evidence supporting the critical role of P32 residue replacement in β2M amyloid fibrillogenesis.
Collapse
Affiliation(s)
- Tatiana Prokaeva
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Tracy Joshi
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Elena S Klimtchuk
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Victoria M Gibson
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Brian Spencer
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Omar Siddiqi
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | | | | | - John L Berk
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Sarah A M Cuddy
- Amyloidosis Program, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - April Chiu
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lauren A Choate
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ellen D McPhail
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Haili Cui
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Lawreen H Connors
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Maya-Martinez R, Xu Y, Guthertz N, Walko M, Karamanos TK, Sobott F, Breeze AL, Radford SE. Dimers of D76N-β 2-microglobulin display potent antiamyloid aggregation activity. J Biol Chem 2022; 298:102659. [PMID: 36328246 PMCID: PMC9712992 DOI: 10.1016/j.jbc.2022.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Self-association of WT β2-microglobulin (WT-β2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-β2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-β2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-β2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-β2m. We show that the crosslinked D76N-β2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-β2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-β2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-β2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.
Collapse
Affiliation(s)
- Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
4
|
The current state of amyloidosis therapeutics and the potential role of fluorine in their treatment. Biochimie 2022; 202:123-135. [PMID: 35963462 DOI: 10.1016/j.biochi.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Amyloidosis, commonly known as amyloid-associated diseases, is characterized by improperly folded proteins accumulating in tissues and eventually causing organ damage, which is linked to several disorders ranging from neurodegenerative to peripheral diseases. It has an enormous societal and financial impact on the global health sector. Due to the complexity of protein misfolding and intertwined aggregation, there are no effective disease-modifying medications at present, and the condition is likely mis/non-diagnosed half of the time. Nonetheless, over the last two decades, substantial research into aggregation processes has revealed the possibilities of new intervention approaches. On the other hand, fluorine has been a rising star in therapeutic development for numerous neurodegenerative illnesses and other peripheral diseases. In this study, we revised and emphasized the possible significance of fluorine-modified therapeutic molecules and fluorine-modified nanoparticles (NPs) in the modulation of amyloidogenic proteins, including insulin, amyloid beta peptide (Aβ), prion protein (PrP), transthyretin (TTR) and Huntingtin (htt).
Collapse
|
5
|
Small molecule protein binding to correct cellular folding or stabilize the native state against misfolding and aggregation. Curr Opin Struct Biol 2022; 72:267-278. [PMID: 34999558 DOI: 10.1016/j.sbi.2021.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Protein misfolding diseases are caused by the difficulty of a protein to attain or stably maintain its native three-dimensional structure. In 2011, the first small molecule that specifically binds to the folded state of a protein was approved by a regulatory agency to treat a protein misfolding disease (tafamidis, transthyretin amyloidosis). Subsequently, folded state binders for three additional pathologies were approved. All of these molecules bind specifically to and stabilize the native state of a misfolding-prone protein and either correct cellular folding or stabilize the native state against misfolding and aggregation. We will use these four case studies to explain how protein folding coupled to small molecule binding is a promising approach to treat a variety of human maladies.
Collapse
|
6
|
Šterclová M. Pulmonary storage. VNITRNI LEKARSTVI 2022; 68:525-531. [PMID: 36575071 DOI: 10.36290/vnl.2022.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interstitial lung diseases (ILDs) are not just a matter of scarring or inflammation in the lung tissue. The lungs can also serve as a repository for products that can be produced in excessive amounts in the human body as a result of disease. Geneticaly based dysfunctions of lysosomal enzymes, which leads to an unefficient degradation and transport of various macromolecules from lysosomes, are considered to be storage diseases sensu stricto. ILDs were described in patients with Gaucher disease, Niemann-Pick disease and Fabry disease. In a broader context, however, the accumulation of various substances in the lung tissue is also encountered in cases of pediatric pulmonary interstitial glycogenosis (PIG), alveolar lipoproteinosis or pulmonary amyloidosis. The cause of PIG is not clear. The disease was first described in 2002 and a lung tissue sample is required to establish this diagnosis. Even though PIG usually goes well in childhood and the patients difficulties spontaneously subside over time, the long-term prognosis of the patients is unknown. Alveolar lipoproteinoses can be acquired (e.g. after massive exposure to silica dust), autoimmune, but also genetically determined. Unlike lysosomal storage diseases, in the case of pulmonary alveolar lipoproteinosis, accumulation of abnormal macromolecules occurs only in the lungs of affected individuals. Similarly, amyloidosis is not a single disease, but a group of diseases with different etiopathogenesis, as a result of which amyloid - a group of different proteins with a distinctvive conformation, which can be deposited in various organs, including the lungs - is formed. The diagnosis of pulmonary alveolar lipoproteinosis is based on the typical appearance and biochemical composition of the fluid obtained by bronchoalveolar lavage, the diagnosis of amyloidosis is histological.
Collapse
|
7
|
Esposito G, Hunashal Y, Percipalle M, Venit T, Dieng MM, Fogolari F, Hassanzadeh G, Piano F, Gunsalus KC, Idaghdour Y, Percipalle P. NMR-Based Analysis of Nanobodies to SARS-CoV-2 Nsp9 Reveals a Possible Antiviral Strategy Against COVID-19. Adv Biol (Weinh) 2021; 5:e2101113. [PMID: 34705339 PMCID: PMC8646926 DOI: 10.1002/adbi.202101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Following the entry into the host cell, SARS-CoV-2 replication is mediated by the replication transcription complex (RTC) assembled through a number of nonstructural proteins (Nsps). A monomeric form of Nsp9 is particularly important for RTC assembly and function. In the present study, 136 unique nanobodies targeting Nsp9 are generated. Several nanobodies belonging to different B-cell lineages are expressed, purified, and characterized. Results from immunoassays applied to purified Nsp9 and neat saliva from coronavirus disease (COVID-19) patients show that these nanobodies effectively and specifically recognize both recombinant and endogenous Nsp9. Nuclear magnetic resonance analyses supported by molecular dynamics reveal a composite Nsp9 oligomerization pattern and demonstrate that both nanobodies stabilize the tetrameric form of wild-type Nsp9 also identifying the epitopes on the tetrameric assembly. These results can have important implications in the potential use of these nanobodies to combat viral replication.
Collapse
Affiliation(s)
- Gennaro Esposito
- Chemistry Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
- Istituto Nazionale Biostrutture e BiosistemiRoma00136Italy
| | - Yamanappa Hunashal
- Chemistry Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
| | - Mathias Percipalle
- Chemistry Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
- Department of Chemistry and Magnetic Resonance CenterUniversity of FlorenceFlorence50019Italy
| | - Tomas Venit
- Biology Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
| | - Mame Massar Dieng
- Biology Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
| | - Federico Fogolari
- Istituto Nazionale Biostrutture e BiosistemiRoma00136Italy
- Dipartimento di Scienze Matematiche, Informatiche, e FisicheUdine UniversityUdine33100Italy
| | | | - Fabio Piano
- Biology Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
- Public Health Research CenterNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
| | - Kristin C. Gunsalus
- Center for Genomics and Systems BiologyNew York University Abu Dhabi (NYUAD)P.O. Box 129188Abu DhabiUnited Arab Emirates
- Department of BiologyCenter for Genomics and Systems Biology New York UniversityNew YorkNY10003USA
| | - Youssef Idaghdour
- Biology Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
- Public Health Research CenterNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
| | - Piergiorgio Percipalle
- Biology Program, Science DivisionNew York University Abu DhabiAbu Dhabi129188United Arab Emirates
- Department of Molecular BioscienceThe Wenner Gren InstituteStockholm UniversityStockholmS‐106 91Sweden
| |
Collapse
|
8
|
Bulyáki É, Kun J, Molnár T, Papp A, Micsonai A, Vadászi H, Márialigeti B, Kovács AI, Gellén G, Yamaguchi K, Lin Y, So M, Józsi M, Schlosser G, Lee YH, Liliom K, Goto Y, Kardos J. Pathogenic D76N Variant of β 2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. BIOLOGY 2021; 10:biology10111197. [PMID: 34827190 PMCID: PMC8614874 DOI: 10.3390/biology10111197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Elevated β2-microglobulin (β2m) serum levels cause serious complications in patients on long-term kidney dialysis by depositing in the form of amyloid fibrils in the osteoarticular system. Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m mutant exhibiting normal serum levels and a distinct, visceral deposition pattern. D76N β2m showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Despite the extensive research, the molecular bases of the aberrant aggregation of β2m in vivo remains elusive. Here, using a variety of biophysical techniques, we investigated the role of the pathogenic D76N mutation in the amyloid formation of β2m by point mutations affecting the stabilizing ion-pairs of β2m. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular matrix proteins. Understanding the underlying molecular mechanisms might help to find target points for effective treatments against diseases associated with the deleterious aggregation of proteins. Abstract β2-microglobulin (β2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of β2m by point mutations affecting the Asp76-Lys41 ion-pair of WT β2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.
Collapse
Affiliation(s)
- Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Tamás Molnár
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Alexandra Papp
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Borbála Márialigeti
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Attila István Kovács
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Gabriella Gellén
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Korea
- Research Headquarters, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
- Correspondence:
| |
Collapse
|
9
|
Morgan GJ. Barriers to Small Molecule Drug Discovery for Systemic Amyloidosis. Molecules 2021; 26:3571. [PMID: 34208058 PMCID: PMC8230685 DOI: 10.3390/molecules26123571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.
Collapse
Affiliation(s)
- Gareth J Morgan
- Section of Hematology and Medical Oncology, Amyloidosis Center, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
10
|
Structure of Nanobody Nb23. Molecules 2021; 26:molecules26123567. [PMID: 34207949 PMCID: PMC8230604 DOI: 10.3390/molecules26123567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Nanobodies, or VHHs, are derived from heavy chain-only antibodies (hcAbs) found in camelids. They overcome some of the inherent limitations of monoclonal antibodies (mAbs) and derivatives thereof, due to their smaller molecular size and higher stability, and thus present an alternative to mAbs for therapeutic use. Two nanobodies, Nb23 and Nb24, have been shown to similarly inhibit the self-aggregation of very amyloidogenic variants of β2-microglobulin. Here, the structure of Nb23 was modeled with the Chemical-Shift (CS)-Rosetta server using chemical shift assignments from nuclear magnetic resonance (NMR) spectroscopy experiments, and used as prior knowledge in PONDEROSA restrained modeling based on experimentally assessed internuclear distances. Further validation was comparatively obtained with the results of molecular dynamics trajectories calculated from the resulting best energy-minimized Nb23 conformers. Methods: 2D and 3D NMR spectroscopy experiments were carried out to determine the assignment of the backbone and side chain hydrogen, nitrogen and carbon resonances to extract chemical shifts and interproton separations for restrained modeling. Results: The solution structure of isolated Nb23 nanobody was determined. Conclusions: The structural analysis indicated that isolated Nb23 has a dynamic CDR3 loop distributed over different orientations with respect to Nb24, which could determine differences in target antigen affinity or complex lability.
Collapse
|
11
|
Dominguez-Meijide A, Parrales V, Vasili E, González-Lizárraga F, König A, Lázaro DF, Lannuzel A, Haik S, Del Bel E, Chehín R, Raisman-Vozari R, Michel PP, Bizat N, Outeiro TF. Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiol Dis 2021; 151:105256. [PMID: 33429042 DOI: 10.1016/j.nbd.2021.105256] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn). Doxycycline, a tetracyclic antibiotic shows neuroprotective effects, initially proposed to be due to its anti-inflammatory properties. More recently, an additional mechanism by which doxycycline may exert its neuroprotective effects has been proposed as it has been shown that it inhibits amyloid aggregation. Here, we studied the effects of doxycycline on aSyn aggregation in vivo, in vitro and in a cell free system using real-time quaking induced conversion (RT-QuiC). Using H4, SH-SY5Y and HEK293 cells, we found that doxycycline decreases the number and size of aSyn aggregates in cells. In addition, doxycycline inhibits the aggregation and seeding of recombinant aSyn, and attenuates the production of mitochondrial-derived reactive oxygen species. Finally, we found that doxycycline induces a cellular redistribution of aggregates in a C.elegans animal model of PD, an effect that is associated with a recovery of dopaminergic function. In summary, we provide strong evidence that doxycycline treatment may be an effective strategy against synucleinopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany; Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Valeria Parrales
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | | | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Annie Lannuzel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; University Hospital of Pointe-à-Pitre, Neurology Department, route de Chauvel, 97139 Abymes, Guadeloupe
| | - Stéphane Haik
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo (USP), Av do Café s/n, São Paulo, Brazil
| | - Rosana Chehín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Argentina
| | - Rita Raisman-Vozari
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - Patrick P Michel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - Nicolas Bizat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; Faculté de Pharmacie de Paris, Paris University, 4 avenue de l'Observatoire, Paris F-75006, France.
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
12
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Visconte C, Canino J, Vismara M, Guidetti GF, Raimondi S, Pula G, Torti M, Canobbio I. Fibrillar amyloid peptides promote platelet aggregation through the coordinated action of ITAM- and ROS-dependent pathways. J Thromb Haemost 2020; 18:3029-3042. [PMID: 32790050 DOI: 10.1111/jth.15055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Amyloid peptides Aβ40 and Aβ42, whose deposition in brain correlates with Alzheimer disease, are also present in platelets and have prothrombotic activities. OBJECTIVE In this study, we analyze the ability of Aβ peptides to form fibrils and to induce platelet activation and aggregation. METHODS Aβ40, Aβ42, and their scrambled peptides were diluted in phosphate buffered saline and fibrillogenesis was investigated by ThioflavinT and Congo Red. Aggregation, protein phosphorylation, and reactive oxygen species (ROS) production were analyzed. RESULTS Aβ40 and Aβ42, but not scrambled peptides, were able to form fibrils when diluted in phosphate buffered saline. Fibrillogenesis of Aβ42 was very rapid, whereas fibril formation by Aβ40 was completed only after 48 hours of incubation. Fibrillar Aβ40 and Aβ42 promoted dose-dependent aggregation of washed platelets in the presence of extracellular CaCl2 . Cleavage of GPIbα by mocarhagin or blockade of the ITAM-containing FcγRIIA prevented platelet aggregation induced by fibrillary Aβ40 and Aβ42. Fibrillar Aβ peptides stimulated the phosphorylation of FcγRIIA, resulting in the downstream stimulation of PLC, protein kinase C, and phosphoinositide 3-kinases, whose activity was necessary for full aggregation of platelets. Fibrillar Aβ peptides also induced ROS generation, and NOX inhibitors, as well as ROS scavengers, prevented platelet aggregation. However, Aβ peptide-induced ROS production did not require binding to GPIbα or activation of FcγRIIA, but was initiated by CD36, which provided an important contribution to full platelet aggregation. CONCLUSION These results suggest that fibrillar amyloid Aβ40 and Aβ42 induce platelet aggregation through the recruitment of GPIb-IX-V and CD36, which requires the convergence of ITAM- and ROS-dependent pathways.
Collapse
Affiliation(s)
- Caterina Visconte
- Neurodegenerative Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Sara Raimondi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf (UKE), Hamburg, Germany
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Faravelli G, Raimondi S, Marchese L, Partridge FA, Soria C, Mangione PP, Canetti D, Perni M, Aprile FA, Zorzoli I, Di Schiavi E, Lomas DA, Bellotti V, Sattelle DB, Giorgetti S. C. elegans expressing D76N β 2-microglobulin: a model for in vivo screening of drug candidates targeting amyloidosis. Sci Rep 2019; 9:19960. [PMID: 31882874 PMCID: PMC6934621 DOI: 10.1038/s41598-019-56498-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023] Open
Abstract
The availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β2-microglobulin (D76N β2-m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein. We have established a transgenic C. elegans line, expressing the human D76N β2-m variant. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and the algorithm Paragon, we were able to detect growth and motility impairment in D76N β2-m expressing worms. We also demonstrated the specificity of the β2-m variant in determining the pathological phenotype by rescuing the wild type phenotype when β2-m expression was inhibited by RNA interference (RNAi). Using this model, we have confirmed the efficacy of doxycycline, an inhibitor of the aggregation of amyloidogenic proteins, in rescuing the phenotype. In future, this C. elegans model, in conjunction with the INVAPP/Paragon system, offers the prospect of high-throughput chemical screening in the search for new drug candidates.
Collapse
Affiliation(s)
- Giulia Faravelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy.
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6JF, United Kingdom
| | - Cristina Soria
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Francesco A Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Irene Zorzoli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources (IBBR), CNR, 80131, Naples, Italy
| | - David A Lomas
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6JF, United Kingdom
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6JF, United Kingdom
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
15
|
Giorgetti S, Greco C, Tortora P, Aprile FA. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. Int J Mol Sci 2018; 19:E2677. [PMID: 30205618 PMCID: PMC6164555 DOI: 10.3390/ijms19092677] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Amyloids result from the aggregation of a set of diverse proteins, due to either specific mutations or promoting intra- or extra-cellular conditions. Structurally, they are rich in intermolecular β-sheets and are the causative agents of several diseases, both neurodegenerative and systemic. It is believed that the most toxic species are small aggregates, referred to as oligomers, rather than the final fibrillar assemblies. Their mechanisms of toxicity are mostly mediated by aberrant interactions with the cell membranes, with resulting derangement of membrane-related functions. Much effort is being exerted in the search for natural antiamyloid agents, and/or in the development of synthetic molecules. Actually, it is well documented that the prevention of amyloid aggregation results in several cytoprotective effects. Here, we portray the state of the art in the field. Several natural compounds are effective antiamyloid agents, notably tetracyclines and polyphenols. They are generally non-specific, as documented by their partially overlapping mechanisms and the capability to interfere with the aggregation of several unrelated proteins. Among rationally designed molecules, we mention the prominent examples of β-breakers peptides, whole antibodies and fragments thereof, and the special case of drugs with contrasting transthyretin aggregation. In this framework, we stress the pivotal role of the computational approaches. When combined with biophysical methods, in several cases they have helped clarify in detail the protein/drug modes of interaction, which makes it plausible that more effective drugs will be developed in the future.
Collapse
Affiliation(s)
- Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy.
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Paolo Tortora
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
- Milan Center for Neuroscience (Neuro-MI), 20126 Milano, Italy.
| | - Francesco Antonio Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| |
Collapse
|
16
|
Chatterjee D, Bhatt M, Butler D, De Genst E, Dobson CM, Messer A, Kordower JH. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model. NPJ PARKINSONS DISEASE 2018; 4:25. [PMID: 30155513 PMCID: PMC6105584 DOI: 10.1038/s41531-018-0062-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Abstract
Therapeutics designed to target α-synuclein (α-syn) aggregation may be critical in halting the progression of pathology in Parkinson's disease (PD) patients. Nanobodies are single-domain antibody fragments that bind with antibody specificity, but allow readier genetic engineering and delivery. When expressed intracellularly as intrabodies, anti-α-syn nanobodies fused to a proteasome-targeting proline, aspartate or glutamate, serine, and threonine (PEST) motif can modulate monomeric concentrations of target proteins. Here we aimed to validate and compare the in vivo therapeutic potential of gene therapy delivery of two proteasome-directed nanobodies selectively targeting α-syn in a synuclein overexpression-based PD model: VH14*PEST (non-amyloid component region) and NbSyn87*PEST (C-terminal region). Stereotaxic injections of adeno-associated viral 5-α-syn (AAV5-α-syn) into the substantia nigra (SN) were performed in Sprague-Dawley rats that were sorted into three cohorts based on pre-operative behavioral testing. Rats were treated with unilateral SN injections of vectors for VH14*PEST, NbSyn87*PEST, or injected with saline 3 weeks post lesion. Post-mortem assessments of the SN showed that both nanobodies markedly reduced the level of phosphorylated Serine-129 α-syn labeling relative to saline-treated animals. VH14*PEST showed considerable maintenance of striatal dopaminergic tone in comparison to saline-treated and NbSyn87*PEST-treated animals as measured by tyrosine hydroxylase immunoreactivity (optical density), DAT immunoreactivity (optical density), and dopamine concentration (high-performance liquid chromatography). Microglial accumulation and inflammatory response, assessed by stereological counts of Iba-1-labeled cells, was modestly increased in NbSyn87*PEST-injected rats but not in VH14*PEST-treated or saline-treated animals. Modest behavioral rescue was also observed, although there was pronounced variability among individual animals. These data validate in vivo therapeutic efficacy of vector-delivered intracellular nanobodies targeting α-syn misfolding and aggregation in synucleinopathies such as PD.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA
| | - Mansi Bhatt
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA
| | - David Butler
- 2Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144 USA.,3Department of Biomedical Sciences, University at Albany, Albany, NY 12208 USA
| | - Erwin De Genst
- 4Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Christopher M Dobson
- 4Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Anne Messer
- 2Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144 USA.,3Department of Biomedical Sciences, University at Albany, Albany, NY 12208 USA
| | - Jeffrey H Kordower
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA.,5Van Andel Research Institute, Grand Rapids, MI 49503 USA
| |
Collapse
|
17
|
Dongmo Foumthuim CJ, Corazza A, Esposito G, Fogolari F. Molecular dynamics simulations of β2-microglobulin interaction with hydrophobic surfaces. MOLECULAR BIOSYSTEMS 2018; 13:2625-2637. [PMID: 29051937 DOI: 10.1039/c7mb00464h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrophobic surfaces are known to adsorb and unfold proteins, a process that has been studied only for a few proteins. Here we address the interaction of β2-microglobulin, a paradigmatic protein for the study of amyloidogenesis, with hydrophobic surfaces. A system with 27 copies of the protein surrounded by a model cubic hydrophobic box is studied by implicit solvent molecular dynamics simulations. Most proteins adsorb on the walls of the box without major distortions in local geometry, whereas free molecules maintain proper structures and fluctuations as observed in explicit solvent molecular dynamics simulations. The major conclusions from the simulations are as follows: (i) the adopted implicit solvent model is adequate to describe protein dynamics and thermodynamics; (ii) adsorption occurs readily and is irreversible on the simulated timescale; (iii) the regions most involved in molecular encounters and stable interactions with the walls are the same as those that are important in protein-protein and protein-nanoparticle interactions; (iv) unfolding following adsorption occurs at regions found to be flexible by both experiments and simulations; (v) thermodynamic analysis suggests a very large contribution from van der Waals interactions, whereas unfavorable electrostatic interactions are not found to contribute much to adsorption energy. Surfaces with different degrees of hydrophobicity may occur in vivo. Our simulations show that adsorption is a fast and irreversible process which is accompanied by partial unfolding. The results and the thermodynamic analysis presented here are consistent with and rationalize previous experimental work.
Collapse
|