1
|
Wang C, Cao J, Zhang J, Wang J, Yang Q, Men S. The improved extrapolated center of mass enhances the safety of exoskeleton system. Sci Rep 2025; 15:12452. [PMID: 40216892 PMCID: PMC11992108 DOI: 10.1038/s41598-025-93299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/05/2025] [Indexed: 04/14/2025] Open
Abstract
Maintaining the balance and safety of the exoskeleton human-robot coupling system is a prerequisite for realizing the rehabilitation training function. Therefore, research on the balance of lower limb exoskeleton robots has attracted much attention. When the exoskeleton human-robot coupling system reaches the critical state of falling, there is an issue with inaccurate detection in the extrapolated center of mass (XCoM) balance index. This paper firstly establishes an inverted pendulum model after the system is disturbed, fully considering that the external environment may exert a disturbance force on the system at any time, and proposes an improved extrapolated center of mass(PXCoM) balance index based on XCoM. Secondly, we aim to the problem of balance recovery in the critical state of the human-exoskeleton system falling. Using an ankle joint under-actuated exoskeleton robot as a research object, we study the balance recovery method of the exoskeleton based on active stepping strategies under large disturbance states. Finally, a lower limb exoskeleton robot experimental platform was built, on which the balance sensing method and balance recovery mechanism studied in this article were transplanted, and its feasibility was verified. The experiment results show that the PXCoM balance evaluation index proposed in this paper has a better perceptual effect than the XCoM balance evaluation index in the critical state of the human-exoskeleton system falling. The proposed gait recovery strategy can effectively restore the balance of the human-exoskeleton system under significant disturbances, thereby ensuring safety under disturbances while wearing the exoskeleton.
Collapse
Affiliation(s)
- Chang Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jian Cao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jianhua Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Junhui Wang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, 300211, China
| | - Song Men
- Inspur Yunzhou Industrial Internet Co., Ltd., Jinan, 250101, China
| |
Collapse
|
2
|
Archangeli D, Ortolano B, Murray R, Gabert L, Lenzi T. A Lightweight Powered Hip Exoskeleton With Parallel Actuation for Frontal and Sagittal Plane Assistance. IEEE T ROBOT 2025; 41:1-17. [PMID: 40123650 PMCID: PMC11926883 DOI: 10.1109/tro.2025.3539172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Wearable robots and powered exoskeletons may improve ambulation for millions of individuals with poor mobility. Powered exoskeletons primarily assist in the sagittal plane to improve walking efficiency and speed. However, individuals with poor mobility often have limited mediolateral balance, which requires torque generation in the frontal plane. Existing hip exoskeletons that assist in both the sagittal and frontal planes are too heavy and bulky for use in the real world. Here we present the kinematic model, mechatronic design, and benchtop and human testing of a powered hip exoskeleton with a unique parallel kinematic actuator. The exoskeleton is lightweight (5.3 kg), has a slim profile, and can generate 30 N·m and 20 N·m of torque during gait in the sagittal and frontal planes. The exoskeleton torque density is 5.7 N·m/kg-53% higher than previously possible with series kinematic design. Testing with five healthy subjects indicate that frontal plane torques applied during stance or swing can alter step width, while sagittal plane torque can assist with hip flexion and extension. A device with these characteristics may improve both gait economy and balance in the real world.
Collapse
Affiliation(s)
- Dante Archangeli
- Department of Mechanical Engineering and the Robotics Center, University of Utah, Salt Lake City, UT 84112 USA
| | - Brendon Ortolano
- Department of Mechanical Engineering and the Robotics Center, University of Utah, Salt Lake City, UT 84112 USA
| | - Rosemarie Murray
- Department of Mechanical Engineering and the Robotics Center, University of Utah, Salt Lake City, UT 84112 USA
| | - Lukas Gabert
- Department of Mechanical Engineering and the Robotics Center, University of Utah, Salt Lake City, UT 84112 USA, and also with the Rocky Mountain Center for Occupational and Environmental Health, Salt Lake City, UT 84111 USA
| | - Tommaso Lenzi
- Department of Mechanical Engineering and the Robotics Center, University of Utah, Salt Lake City, UT 84112 USA, also with the Rocky Mountain Center for Occupational and Environmental Health, Salt Lake City, UT 84111 USA, and also with the Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
3
|
Turner C, Mailly R, Dal Maso F, Verdugo F. Impact of expressive intentions on upper-body kinematics in two expert pianists. Front Psychol 2025; 15:1504456. [PMID: 39872727 PMCID: PMC11770054 DOI: 10.3389/fpsyg.2024.1504456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Expression is a key aspect of music performance. Studies on pianists' gestures and expression have mainly documented the impact of their expressive intentions on proximal segments and head linear kinematics. It remains unclear how pianists' expressive intentions influence joint angular kinematics as well as exposure to risk factors of injury, such as poor overall posture and distal jerky movements, two kinematic factors linked to injury. The first objective of this exploratory case study was to analyze the influence of pianists' expressive intentions on proximal and distal joint range of motion (ROM) across different musical contexts. The second objective was to evaluate the impact of expressive intentions on the posture of joints that are commonly injured in pianists, as well as distal joint angular jerk. Methods: Two expert pianists (P1 and P2) performed six musical excerpts (E1-E6) in two experimental conditions: normal condition (including expressive intentions) and the control condition (strictly playing the composer's notations written in the score with no subjective interpretation). An inertial measurement unit system recorded upper body kinematics. Methods Two expert pianists (P1 and P2) performed six musical excerpts (E1-E6) in two experimental conditions: normal condition (including expressive intentions) and the control condition (strictly playing the composer's notations written in the score with no subjective interpretation). An inertial measurement unit system recorded upper body kinematics. Results and discussion Both proximal and distal joint ROM increased when pianists incorporated expressive intentions. Participants exhibited more static, non-neutral wrist postures when incorporating expressive intentions (right and left wrist for P1 and P2, respectively), suggesting an increased risk of distal injury. On the contrary, the thorax exhibited more dynamic, neutral flexion postures, suggesting a reduced risk of proximal injury. These results suggest that expressive intentions may impact proximal and distal postures differently. Incorporating expressive intentions also led to jerkier, less smooth wrist movements in lyrical, non-virtuosic musical excerpts (E1-E4). However, in more virtuosic excerpts (E5-E6), there were generally no differences between conditions. Spatiotemporal constraints might explain these discrepancies between non-virtuosic and virtuosic musical excerpts. These results provide evidence of the impact of expressive intentions on the entire kinematic chain, while highlighting the implications of the subjective dimension of music expression in relation to exposure to risk factors of injury.
Collapse
Affiliation(s)
- Craig Turner
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l'Activité Physique, Université de Montréal, Montréal, QC, Canada
| | | | | | | |
Collapse
|
4
|
Claeys R, Embrechts E, Firouzi M, De Vlieger D, Verstraten T, Beckwée D, Swinnen E. The potential of lower limb exoskeletons to enhance life-space mobility and to leverage green exercise in the rehabilitation of older adults: an expert perspective. Disabil Rehabil 2024:1-8. [PMID: 39641353 DOI: 10.1080/09638288.2024.2436981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE As the global population aged 60+ grows, ensuring mobility and independence for older adults is a critical public health goal. This paper examines barriers to life-space mobility in older adults and explores wearable lower limb exoskeletons (LLEs) and green exercise as innovative solutions. METHODS Literature search and interdisciplinary expert input were utilized. RESULTS Life-space mobility, the physical space individuals move through daily, is often restricted by physical and environmental barriers, leading to increased dependency, depression, and reduced quality of life. LLEs offer promising support by compensating for decreased intrinsic capacities, thus facilitating outdoor mobility. Green exercise (i.e., physical activity in nature) provides mental and physical health benefits, further promoting mobility and well-being. CONCLUSION Combining LLEs with green exercise may create powerful rehabilitation modalities, addressing both physical and mental aspects of aging. Integrating life-space mobility research into exoskeleton development and rehabilitation programs ensures these solutions meet real-world needs, supporting Healthy Aging by maintaining functional ability. Future research should focus on user-centered development of optimized exoskeleton designs for outdoor use, developing tailored rehabilitation programs, and educating healthcare professionals and caregivers to maximize benefits. This integrated approach holds potential to significantly improve life-space mobility and quality of life for the aging population.
Collapse
Affiliation(s)
- Reinhard Claeys
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Elissa Embrechts
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Brussels, Belgium
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Universiteit Antwerpen, Wilrijk, Belgium
- Revalidatieziekenhuis Inkendaal, Vlezenbeek, Belgium
- Helmholtz Institute, Department of Experimental Psychology, Universiteit Utrecht, Utrecht, The Netherlands
| | - Mahyar Firouzi
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
| | - Daan De Vlieger
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Tom Verstraten
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Brussels, Belgium
- Robotics & Multibody Mechanics Group, Vrije Universiteit Brussel, Brussels, Belgium
- Flanders Make, Brussels, Belgium
| | - David Beckwée
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Brussels, Belgium
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Universiteit Antwerpen, Wilrijk, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Ribeiro NF, Armada M, Nunes J, Carvalho Ó, Santos CP. Unveiling human biomechanics: insights into lower limb responses to disturbances that can trigger a fall. Front Robot AI 2024; 11:1367474. [PMID: 39319197 PMCID: PMC11420519 DOI: 10.3389/frobt.2024.1367474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Slip-related falls are a significant concern, particularly for vulnerable populations such as the elderly and individuals with gait disorders, necessitating effective preventive measures. This manuscript presents a biomechanical study of how the lower limbs react to perturbations that can trigger a slip-like fall, with the ultimate goal of identifying target specifications for developing a wearable robotic system for slip-like fall prevention. Methods Our analysis provides a comprehensive understanding of the natural human biomechanical response to slip perturbations in both slipping and trailing legs, by innovatively collecting parameters from both the sagittal and frontal plane since both play pivotal roles in maintaining stability and preventing falls and thus provide new insights to fall prevention. We investigated various external factors, including gait speed, surface inclination, slipping foot, and perturbation intensity, while collecting diverse data sets encompassing kinematic, spatiotemporal parameters, electromyographic data, as well as torque, range of motion, rotations per minute, detection, and actuation times. Results The biomechanical response to slip-like perturbations by the hips, knees, and ankles of the slipping leg was characterized by extension, flexion, and plantarflexion moments, respectively. In the trailing leg, responses included hip flexion, knee extension, and ankle plantarflexion. Additionally, these responses were influenced by gait speed, surface inclination, and perturbation intensity. Our study identified target range of motion parameters of 85.19°, 106.34°, and 95.23° for the hips, knees, and ankles, respectively. Furthermore, rotations per minute values ranged from 17.85 to 51.10 for the hip, 21.73 to 63.80 for the knee, and 17.52 to 57.14 for the ankle joints. Finally, flexion/extension torque values were estimated as -3.05 to 3.22 Nm/kg for the hip, -1.70 to 2.34 Nm/kg for the knee, and -2.21 to 0.90 Nm/kg for the ankle joints. Discussion This study contributes valuable insights into the biomechanical aspects of slip-like fall prevention and informs the development of wearable robotic systems to enhance safety in vulnerable populations.
Collapse
Affiliation(s)
- Nuno Ferrete Ribeiro
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
| | - Miguel Armada
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
| | - João Nunes
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
- LABBELS—Associate Laboratory, University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, University of Minho, Guimarães, Portugal
| | - Cristina P. Santos
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
- LABBELS—Associate Laboratory, University of Minho, Braga, Portugal
- LABBELS—Associate Laboratory, University of Minho, Guimarães, Portugal
| |
Collapse
|
6
|
Nunes J, Armada M, Pereira JL, Ribeiro NF, Carvalho Ó, Santos CP. Biomechanical strategies for mitigating unexpected slips: A review. J Biomech 2024; 173:112235. [PMID: 39059333 DOI: 10.1016/j.jbiomech.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/31/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Slips are the leading cause of falls, and understanding slip biomechanics is crucial for preventing falls and mitigating their negative consequences. This study analyses human biomechanical responses to slips, including kinetic, kinematic, spatiotemporal, and EMG variables. We reviewed 41 studies investigating slip-induced falls in lab settings, computational models, and training approaches. Our analysis focused on reactions and effects of factors like age, fatigue, strength, perturbation intensity, and gait speed. Trailing limbs' hip extension and knee flexion interrupt the swing phase earlier, increasing the support base. The slipping leg responds with two phases: hip extension and knee flexion, then hip flexion and knee extension. Furthermore, our analysis revealed that the medial hamstring muscles play an active role in slip recoveries. Their activation in the slipping limb allows for hip extension and knee flexion, while in the trailing limb, their activation results in the foot touching down. Additionally, successful slip recoveries were associated with co-contraction of the Tibialis Anterior (TA) and Medial Gastrocnemius (MG), which increases ankle joint stability and facilitates foot contact with the ground. Our review identifies various factors that influence biomechanical and muscular responses to slips, including age, perturbation intensity, gait speed, muscular fatigue, and muscular strength. These findings have important implications for designing interventions to prevent slip-related falls, including cutting-edge technology devices based on a deeper understanding of slip recoveries. Future research should explore the complex interplay between biomechanics, muscle activation patterns, and environmental factors to improve slip-fall prevention strategies.
Collapse
Affiliation(s)
- João Nunes
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, 4800-058, Portugal
| | - Miguel Armada
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, 4800-058, Portugal
| | - José Luís Pereira
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, 4800-058, Portugal
| | - Nuno Ferrete Ribeiro
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, 4800-058, Portugal.
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, 4800-058, Portugal; LABBELS-Associate Laboratory, University of Minho, Guimarães/Braga, 4710-057/4800-058, Portugal
| | - Cristina P Santos
- Center for MicroElectroMechanical Systems, University of Minho, Guimarães, 4800-058, Portugal; LABBELS-Associate Laboratory, University of Minho, Guimarães/Braga, 4710-057/4800-058, Portugal
| |
Collapse
|
7
|
Sterke B, Jabeen S, Baines P, Vallery H, Ribbers G, Heijenbrok-Kal M. Direct biomechanical manipulation of human gait stability: A systematic review. PLoS One 2024; 19:e0305564. [PMID: 38990959 PMCID: PMC11239080 DOI: 10.1371/journal.pone.0305564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
People fall more often when their gait stability is reduced. Gait stability can be directly manipulated by exerting forces or moments onto a person, ranging from simple walking sticks to complex wearable robotics. A systematic review of the literature was performed to determine: What is the level of evidence for different types of mechanical manipulations on improving gait stability? The study was registered at PROSPERO (CRD42020180631). Databases Embase, Medline All, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar were searched. The final search was conducted on the 1st of December, 2022. The included studies contained mechanical devices that influence gait stability for both impaired and non-impaired subjects. Studies performed with prosthetic devices, passive orthoses, and analysing post-training effects were excluded. An adapted NIH quality assessment tool was used to assess the study quality and risk of bias. Studies were grouped based on the type of device, point of application, and direction of forces and moments. For each device type, a best-evidence synthesis was performed to quantify the level of evidence based on the type of validity of the reported outcome measures and the study quality assessment score. Impaired and non-impaired study participants were considered separately. From a total of 4701 papers, 53 were included in our analysis. For impaired subjects, indicative evidence was found for medio-lateral pelvis stabilisation for improving gait stability, while limited evidence was found for hip joint assistance and canes. For non-impaired subjects, moderate evidence was found for medio-lateral pelvis stabilisation and limited evidence for body weight support. For all other device types, either indicative or insufficient evidence was found for improving gait stability. Our findings also highlight the lack of consensus on outcome measures amongst studies of devices focused on manipulating gait.
Collapse
Affiliation(s)
- Bram Sterke
- Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saher Jabeen
- Department of Biomechanical Engineering, Technical University of Delft, Delft, The Netherlands
| | - Patricia Baines
- Department of Biomechanical Engineering, Technical University of Delft, Delft, The Netherlands
| | - Heike Vallery
- Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Technical University of Delft, Delft, The Netherlands
| | - Gerard Ribbers
- Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Rijndam Rehabilitation Center, Rotterdam, The Netherlands
| | - Majanka Heijenbrok-Kal
- Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Rijndam Rehabilitation Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Manero A, Rivera V, Fu Q, Schwartzman JD, Prock-Gibbs H, Shah N, Gandhi D, White E, Crawford KE, Coathup MJ. Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation. Bioengineering (Basel) 2024; 11:695. [PMID: 39061777 PMCID: PMC11274085 DOI: 10.3390/bioengineering11070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
As both the proportion of older people and the length of life increases globally, a rise in age-related degenerative diseases, disability, and prolonged dependency is projected. However, more sophisticated biomedical materials, as well as an improved understanding of human disease, is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease as well as impact disease prevention. Another, albeit quieter, revolution is also taking place within society: human augmentation. In this context, humans seek to improve themselves, metamorphosing through self-discipline or more recently, through use of emerging medical technologies, with the goal of transcending aging and mortality. In this review, and in the pursuit of improved medical care following aging, disease, disability, or injury, we first highlight cutting-edge and emerging materials-based neuroprosthetic technologies designed to restore limb or organ function. We highlight the potential for these technologies to be utilized to augment human performance beyond the range of natural performance. We discuss and explore the growing social movement of human augmentation and the idea that it is possible and desirable to use emerging technologies to push the boundaries of what it means to be a healthy human into the realm of superhuman performance and intelligence. This potential future capability is contrasted with limitations in the right-to-repair legislation, which may create challenges for patients. Now is the time for continued discussion of the ethical strategies for research, implementation, and long-term device sustainability or repair.
Collapse
Affiliation(s)
- Albert Manero
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
| | - Viviana Rivera
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
| | - Qiushi Fu
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jonathan D. Schwartzman
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Hannah Prock-Gibbs
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Neel Shah
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Deep Gandhi
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Evan White
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Kaitlyn E. Crawford
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| |
Collapse
|
9
|
Wan G, Wang P, Han Y, Liang J. Torque modulation mechanism of the knee joint during balance recovery. Comput Biol Med 2024; 175:108492. [PMID: 38678940 DOI: 10.1016/j.compbiomed.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Exploring the torque modulation mechanisms of human joints is critical for analyzing the human balance control system and developing natural human-machine interactions for balance support. However, the knee joint is often overlooked in biomechanical models because of its limited range of motion during balance recovery. This poses a challenge in establishing mathematical models for the knee joint's torque modulation mechanisms using computer simulations based on the inverted pendulum model. This study aims to provide a simplified linear feedback model inspired by sensorimotor transformation theory to reveal the torque modulation mechanism of the knee joint. The model was validated using data from experiments involving support-surface translation perturbations. The goodness-of-fit metrics of the model, including R2 values and root mean square errors (RMSE), demonstrated strong explanatory power (R2 ranged from 0.77 to 0.90) and low error (RMSE ranging from 0.035 to 0.072) across different perturbation magnitudes and directions. Through pooling samples across various perturbation conditions and conducting multiple fits, this model revealed that knee torque is modulated using a direction-specific strategy with adaptable feedback gains. These results suggest that the proposed simplified linear model can be used to develop assistive systems and retrieve insights on balance recovery mechanisms.
Collapse
Affiliation(s)
- Guangfu Wan
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peilin Wang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiejunyi Liang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Leestma JK, Mathur S, Anderton MD, Sawicki GS, Young AJ. Dynamic Duo: Design and Validation of an Autonomous Frontal and Sagittal Actuating Hip Exoskeleton for Balance Modulation During Perturbed Locomotion. IEEE Robot Autom Lett 2024; 9:3995-4002. [PMID: 40012859 PMCID: PMC11864807 DOI: 10.1109/lra.2024.3371290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Humans are required to maintain balance during locomotion in challenging environments, which present an even bigger challenge for individuals with balance impairments. Exoskeleton-driven balance augmentation is a promising avenue to assist users in these environments, but there has been little work in developing exoskeleton devices for these applications. In this work, we present the design, realization, and validation of an autonomous robotic hip exoskeleton with frontal and sagittal actuation. This device contains four quasi-direct drive-actuated degrees of freedom, enabling both frontal and sagittal assistance at the hip joints. The device is relatively light-weight, weighing 7.76 kg, and low-profile in the frontal plane, enabling unimpeded arm swing of the user. We found that wearing the device did not change walking kinematics, validating that the design does not inhibit the user's natural motion. We validated the exoskeleton using a bilateral bang-bang controller that successfully modulated step width and length in all cardinal and ordinal directions (all p<0.001) during steady state and perturbed walking. We also found that step modulation capability is influenced by swing leg kinematics and perturbation context. Broadly, this work presents a lightweight, autonomous, powered exoskeleton that can be used to study control approaches for balance augmentation.
Collapse
Affiliation(s)
- Jennifer K Leestma
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA, and also with the Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Snehil Mathur
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Maximilian D Anderton
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Gregory S Sawicki
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA, also with the Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA, and also with the School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Aaron J Young
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA, and also with the Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
11
|
Gavrila Laic RA, Firouzi M, Claeys R, Bautmans I, Swinnen E, Beckwée D. A State-of-the-Art of Exoskeletons in Line with the WHO's Vision on Healthy Aging: From Rehabilitation of Intrinsic Capacities to Augmentation of Functional Abilities. SENSORS (BASEL, SWITZERLAND) 2024; 24:2230. [PMID: 38610440 PMCID: PMC11014060 DOI: 10.3390/s24072230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
The global aging population faces significant health challenges, including an increasing vulnerability to disability due to natural aging processes. Wearable lower limb exoskeletons (LLEs) have emerged as a promising solution to enhance physical function in older individuals. This systematic review synthesizes the use of LLEs in alignment with the WHO's healthy aging vision, examining their impact on intrinsic capacities and functional abilities. We conducted a comprehensive literature search in six databases, yielding 36 relevant articles covering older adults (65+) with various health conditions, including sarcopenia, stroke, Parkinson's Disease, osteoarthritis, and more. The interventions, spanning one to forty sessions, utilized a range of LLE technologies such as Ekso®, HAL®, Stride Management Assist®, Honda Walking Assist®, Lokomat®, Walkbot®, Healbot®, Keeogo Rehab®, EX1®, overground wearable exoskeletons, Eksoband®, powered ankle-foot orthoses, HAL® lumbar type, Human Body Posturizer®, Gait Enhancing and Motivation System®, soft robotic suits, and active pelvis orthoses. The findings revealed substantial positive outcomes across diverse health conditions. LLE training led to improvements in key performance indicators, such as the 10 Meter Walk Test, Five Times Sit-to-Stand test, Timed Up and Go test, and more. Additionally, enhancements were observed in gait quality, joint mobility, muscle strength, and balance. These improvements were accompanied by reductions in sedentary behavior, pain perception, muscle exertion, and metabolic cost while walking. While longer intervention durations can aid in the rehabilitation of intrinsic capacities, even the instantaneous augmentation of functional abilities can be observed in a single session. In summary, this review demonstrates consistent and significant enhancements in critical parameters across a broad spectrum of health conditions following LLE interventions in older adults. These findings underscore the potential of LLE in promoting healthy aging and enhancing the well-being of older adults.
Collapse
Affiliation(s)
- Rebeca Alejandra Gavrila Laic
- Rehabilitation Research, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (R.A.G.L.); (M.F.); (R.C.); (D.B.)
| | - Mahyar Firouzi
- Rehabilitation Research, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (R.A.G.L.); (M.F.); (R.C.); (D.B.)
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Reinhard Claeys
- Rehabilitation Research, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (R.A.G.L.); (M.F.); (R.C.); (D.B.)
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Ivan Bautmans
- FRIA, Frailty in Ageing, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Eva Swinnen
- Rehabilitation Research, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (R.A.G.L.); (M.F.); (R.C.); (D.B.)
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - David Beckwée
- Rehabilitation Research, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (R.A.G.L.); (M.F.); (R.C.); (D.B.)
- Brubotics (Human Robotics Research Center), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
- FRIA, Frailty in Ageing, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
12
|
Park JH, Madigan ML, Kim S, Nussbaum MA, Srinivasan D. Wearing a back-support exoskeleton alters lower-limb joint kinetics during single-step recovery following a forward loss of balance. J Biomech 2024; 166:112069. [PMID: 38579560 DOI: 10.1016/j.jbiomech.2024.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
We assessed the effects of a passive, back-support exoskeleton (BSE) on lower-limb joint kinetics during the initiation and swing phases of recovery from a forward loss of balance. Sixteen (8M, 8F) young, healthy participants were released from static forward-leaning postures and attempted to recover their balance with a single-step while wearing a BSE (backXTM) with different levels of support torque and in a control condition. The BSE provided ∼ 15-20 Nm of external hip extension torque on the stepping leg at the end of initiation and beginning of swing phases. Participants were unable to generate sufficient hip flexion torque, power, and work to counteract this external torque, although they sustained hip flexion torque for a more prolonged period, resulting in slightly increased hip contribution to positive leg work (compared to control). However, net positive leg work, and the net contribution of hip joint (human + BSE) to total leg work decreased with BSE use. While all participants had changes in hip joint kinetics, a significant compensatory increase in ankle contribution to positive leg work was observed only among females. Our results suggest that BSE use adversely affects reactive stepping by decreasing the stepping leg kinetic energy for forward propulsion, and that the relative contributions of lower-limb joints to total mechanical work done during balance recovery are altered by BSE use. BSEs may thus need to be implemented with caution for dynamic tasks in occupational settings, as they may impair balance recovery following a forward loss of balance.
Collapse
Affiliation(s)
- Jang-Ho Park
- Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA
| | - Michael L Madigan
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
13
|
Miyake T, Minakuchi T, Sato S, Okubo C, Yanagihara D, Tamaki E. Optical Myography-Based Sensing Methodology of Application of Random Loads to Muscles during Hand-Gripping Training. SENSORS (BASEL, SWITZERLAND) 2024; 24:1108. [PMID: 38400266 PMCID: PMC10893447 DOI: 10.3390/s24041108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Hand-gripping training is important for improving the fundamental functions of human physical activity. Bernstein's idea of "repetition without repetition" suggests that motor control function should be trained under changing states. The randomness level of load should be visualized for self-administered screening when repeating various training tasks under changing states. This study aims to develop a sensing methodology of random loads applied to both the agonist and antagonist skeletal muscles when performing physical tasks. We assumed that the time-variability and periodicity of the applied load appear in the time-series feature of muscle deformation data. In the experiment, 14 participants conducted the gripping tasks with a gripper, ball, balloon, Palm clenching, and paper. Crumpling pieces of paper (paper exercise) involves randomness because the resistance force of the paper changes depending on the shape and layers of the paper. Optical myography during gripping tasks was measured, and time-series features were analyzed. As a result, our system could detect the random movement of muscles during training.
Collapse
Affiliation(s)
- Tamon Miyake
- H2L Inc., Tokyo 106-0032, Japan (E.T.)
- Future Robotics Organization, Waseda University, Tokyo 169-8050, Japan
| | | | - Suguru Sato
- H2L Inc., Tokyo 106-0032, Japan (E.T.)
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa 903-0129, Japan
| | | | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902,
Japan;
| | - Emi Tamaki
- H2L Inc., Tokyo 106-0032, Japan (E.T.)
- Faculty of Engineering, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
14
|
Alili A, Fleming A, Nalam V, Liu M, Dean J, Huang H. Abduction/Adduction Assistance From Powered Hip Exoskeleton Enables Modulation of User Step Width During Walking. IEEE Trans Biomed Eng 2024; 71:334-342. [PMID: 37540615 DOI: 10.1109/tbme.2023.3301444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Using wearable robotics to modulate step width in normal walking for enhanced mediolateral balance has not been demonstrated in the field. We designed a bilateral hip exoskeleton with admittance control to power hip abduction and adduction to modulate step width. OBJECTIVE As the first step to show its potential, the objective of this study was to investigate how human's step width reacted to hip exoskeleton's admittance control parameter changes during walking. METHODS Ten non-disabled individuals walked on a treadmill at a self-selected speed, while wearing our bilateral robotic hip exoskeleton. We used two equilibrium positions to define the direction of assistance. We studied the influence of multiple stiffness values in the admittance control on the participants' step width, step length, and electromyographic (EMG) activity of the gluteus medius. RESULTS Step width were significantly modulated by the change of stiffness in exoskeleton control, while step length did not show significant changes. When the stiffness changed from zero to our studied stiffness values, the participants' step width started to modulate immediately. Within 4 consecutive heel strikes right after a stiffness change, the step width showed a significant change. Interestingly, EMG activity of the gluteus medius did not change significantly regardless the applied stiffness and powered direction. CONCLUSION Tuning of stiffness in admittance control of a hip exoskeleton, acting in mediolateral direction, can be a viable way for controlling step width in normal walking. Unvaried gluteus medius activity indicates that the increase in step width were mainly caused by the assistive torque applied by the exoskeleton. SIGNIFICANCE Our study results pave a new way for future design and control of wearable robotics in enhancing mediolateral walking balance for various rehabilitation applications.
Collapse
|
15
|
Naseri A, Lee IC, Huang H, Liu M. Investigating the Association of Quantitative Gait Stability Metrics With User Perception of Gait Interruption Due to Control Faults During Human-Prosthesis Interaction. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4693-4702. [PMID: 37906490 DOI: 10.1109/tnsre.2023.3328877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This study aims to compare the association of different gait stability metrics with the prosthesis users' perception of their own gait stability. Lack of perceived confidence on the device functionality can influence the gait pattern, level of daily activities, and overall quality of life for individuals with lower limb motor deficits. However, the perception of gait stability is subjective and difficult to acquire online. The quantitative gait stability metrics can be objectively measured and monitored using wearable sensors; however, objective measurements of gait stability associated with human's perception of their own gait stability has rarely been reported. By identifying quantitative measurements that associate with users' perceptions, we can gain a more accurate and comprehensive understanding of an individual's perceived functional outcomes of assistive devices such as prostheses. To achieve our research goal, experiments were conducted to artificially apply internal disturbances in the powered prosthesis while the prosthetic users performed level ground walking. We monitored and compared multiple gait stability metrics and a local measurement to the users' reported perception of their own gait stability. The results showed that the center of pressure progression in the sagittal plane and knee momentum (i.e., residual thigh and prosthesis shank angular momentum about prosthetic knee joint) can potentially estimate the users' perceptions of gait stability when experiencing disturbances. The findings of this study can help improve the development and evaluation of gait stability control algorithms in robotic prosthetic devices.
Collapse
|
16
|
Sam RY, Lau YFP, Lau Y, Lau ST. Types, functions and mechanisms of robot-assisted intervention for fall prevention: A systematic scoping review. Arch Gerontol Geriatr 2023; 115:105117. [PMID: 37422967 DOI: 10.1016/j.archger.2023.105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Any individual may experience accidental falls, particularly older adults. Although robots can prevent falls, knowledge of their fall-preventive use is limited. OBJECTIVE To explore the types, functions, and mechanisms of robot-assisted intervention for fall prevention. METHODS A systematic scoping review of global literature published from inception to January 2022 was conducted according to Arksey and O'Malley's five-step framework. Nine electronic databases, namely, PubMed, Embase, CINAHL, IEEE Xplore, the Cochrane Library, Scopus, Web of Science, PsycINFO, and ProQuest, were searched. RESULTS Seventy-one articles were found with developmental (n = 63), pilot (n = 4), survey (n = 3), and proof-of-concept (n = 1) designs across 14 countries. Six types of robot-assisted intervention were found, namely cane robots, walkers, wearables, prosthetics, exoskeletons, rollators, and other miscellaneous. Five main functions were observed including (i) detection of user fall, (ii) estimation of user state, (iii) estimation of user motion, (iv) estimation of user intentional direction, and (v) detection of user balance loss. Two categories of mechanisms of robots were found. The first category was executing initiation of incipient fall prevention such as modeling, measurement of user-robot distance, estimation of center of gravity, estimation and detection of user state, estimation of user intentional direction, and measurement of angle. The second category was achieving actualization of incipient fall prevention such as adjust optimal posture, automated braking, physical support, provision of assistive force, reposition, and control of bending angle. CONCLUSIONS Existing literature regarding robot-assisted intervention for fall prevention is in its infancy. Therefore, future research is required to assess its feasibility and effectiveness.
Collapse
Affiliation(s)
- Rui Ying Sam
- Alice Lee Centre of Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yue Fang Patricia Lau
- Alice Lee Centre of Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Lau
- The Nethersole School of Nursing, The Chinese University of Hong Kong, 6-8/F, Esther Lee Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Siew Tiang Lau
- Alice Lee Centre of Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
17
|
Eveld ME, King ST, Zelik KE, Goldfarb M. Efficacy of stumble recovery assistance in a knee exoskeleton for individuals with simulated mobility impairment: A pilot study. WEARABLE TECHNOLOGIES 2023; 4:e22. [PMID: 38510587 PMCID: PMC10952054 DOI: 10.1017/wtc.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 03/22/2024]
Abstract
Falls due to stumbles are a major cause of injury for many populations, and as such interventions to reduce fall risk have been a key focus of rehabilitation research. However, dedicated stumble recovery assistance in a powered lower-limb exoskeleton has yet to be explored as a fall mitigation intervention. Thus young, healthy adults () were recruited for a stumble recovery experiment to test the efficacy of knee exoskeleton stumble recovery assistance in improving an impaired stumble recovery response (i.e., the elevating strategy response). Leg weights were attached unilaterally to each participant's shank to simulate walking and stumble recovery impairment, and a unilateral powered knee exoskeleton was worn on the same leg for walking and stumble recovery assistance. Ultimately, knee exoskeleton stumble recovery assistance served to improve participants' elevating limb kinematics (i.e., increase thigh and knee motion) and reduce overall fall risk (i.e., reduce trunk motion and improve foot placement) during responses relative to their impaired response (i.e., with the leg weights and no assistance), and relative to their response while receiving only walking assistance. This initial exploration provides a first indication that knee exoskeleton stumble recovery assistance is a viable approach to improving an impaired stumble recovery response, which could serve two important use cases: (1) a safety mechanism for existing exoskeleton wearers, who may be less capable of recovering from stumbles due to the added weight or joint impedance of the device; (2) an external stumble recovery aid for fall-prone populations, such as the elderly or stroke survivors.
Collapse
Affiliation(s)
- Maura E. Eveld
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
| | - Shane T. King
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
| | - Karl E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, TN, USA
| | - Michael Goldfarb
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, TN, USA
- Department of Electrical Engineering, Vanderbilt University, TN, USA
| |
Collapse
|
18
|
Vouga T, Baud R, Fasola J, Bouri M. INSPIIRE - A Modular and Passive Exoskeleton to Investigate Human Walking and Balance. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941274 DOI: 10.1109/icorr58425.2023.10304706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Powered exoskeletons for SCI patients are mainly limited by their inability to balance dynamically during walking. To investigate and understand the control strategies of human bipedal locomotion, we developed INSPIIRE, a passive exoskeleton. This device constrains the movements of able-bodied subjects to only hip and knee flexions and extensions, similar to most current active exoskeletons. In this paper, we detail the modular design and the mechanical implementation of the device. In preliminary experiments, we tested whether humans are able to handle dynamic walking without crutches, despite the limitation of lateral foot placement and locked ankles. Five healthy subjects showed the ability to stand and ambulate at an average speed of 1 m/s after 5 minutes of self-paced training. We found that while the hip abduction/adduction is constrained, the foot placement was made possible thanks to the pelvis yaw and residual flexibility of the exoskeleton segments in the lateral plan. This result points out that INSPIIRE is a reliable instrument to learn sagitally-constrained human locomotion, and the potential of investigating more dynamic walking, which is shown as possible in this implementation, even if only flexion/extension of the hip and knee are allowed.
Collapse
|
19
|
Afschrift M, van Asseldonk E, van Mierlo M, Bayon C, Keemink A, D'Hondt L, van der Kooij H, De Groote F. Assisting walking balance using a bio-inspired exoskeleton controller. J Neuroeng Rehabil 2023; 20:82. [PMID: 37370175 DOI: 10.1186/s12984-023-01205-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. METHODS Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in proportion to deviations from steady-state center of mass kinematics. We designed a controller that mimics the neural control of steady-state walking and the balance recovery responses to perturbations. This controller uses both feedback from ankle kinematics in accordance with an existing model and feedback from the center of mass velocity. Control parameters were estimated by fitting the experimental relation between kinematics and ankle moments observed in humans that were walking while being perturbed by push and pull perturbations. This identified model was implemented on a bilateral ankle exoskeleton. RESULTS Across twelve subjects, exoskeleton support reduced calf muscle activity in steady-state walking by 19% with respect to a minimal impedance controller (p < 0.001). Proportional feedback of the center of mass velocity improved balance support after perturbation. Muscle activity is reduced in response to push and pull perturbations by 10% (p = 0.006) and 16% (p < 0.001) and center of mass deviations by 9% (p = 0.026) and 18% (p = 0.002) with respect to the same controller without center of mass feedback. CONCLUSION Our control approach implemented on bilateral ankle exoskeletons can thus effectively support steady-state walking and balance control and therefore has the potential to improve mobility in balance-impaired individuals.
Collapse
Affiliation(s)
- M Afschrift
- Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Leuven, Belgium.
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - E van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - C Bayon
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - A Keemink
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - L D'Hondt
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - F De Groote
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Beck ON, Shepherd MK, Rastogi R, Martino G, Ting LH, Sawicki GS. Exoskeletons need to react faster than physiological responses to improve standing balance. Sci Robot 2023; 8:eadf1080. [PMID: 36791215 PMCID: PMC10169237 DOI: 10.1126/scirobotics.adf1080] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Maintaining balance throughout daily activities is challenging because of the unstable nature of the human body. For instance, a person's delayed reaction times limit their ability to restore balance after disturbances. Wearable exoskeletons have the potential to enhance user balance after a disturbance by reacting faster than physiologically possible. However, "artificially fast" balance-correcting exoskeleton torque may interfere with the user's ensuing physiological responses, consequently hindering the overall reactive balance response. Here, we show that exoskeletons need to react faster than physiological responses to improve standing balance after postural perturbations. Delivering ankle exoskeleton torque before the onset of physiological reactive joint moments improved standing balance by 9%, whereas delaying torque onset to coincide with that of physiological reactive ankle moments did not. In addition, artificially fast exoskeleton torque disrupted the ankle mechanics that generate initial local sensory feedback, but the initial reactive soleus muscle activity was only reduced by 18% versus baseline. More variance of the initial reactive soleus muscle activity was accounted for using delayed and scaled whole-body mechanics [specifically center of mass (CoM) velocity] versus local ankle-or soleus fascicle-mechanics, supporting the notion that reactive muscle activity is commanded to achieve task-level goals, such as maintaining balance. Together, to elicit symbiotic human-exoskeleton balance control, device torque may need to be informed by mechanical estimates of global sensory feedback, such as CoM kinematics, that precede physiological responses.
Collapse
Affiliation(s)
- Owen N Beck
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA.,Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Max K Shepherd
- Department of Physical Therapy and Rehabilitation Science, Northeastern University, Boston, MA, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Rish Rastogi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Giovanni Martino
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.,Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
21
|
Gionfrida L, Nuckols RW, Walsh CJ, Howe RD. Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance. SENSORS (BASEL, SWITZERLAND) 2023; 23:1670. [PMID: 36772710 PMCID: PMC9921922 DOI: 10.3390/s23031670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In the field of wearable robotics, assistance needs to be individualized for the user to maximize benefit. Information from muscle fascicles automatically recorded from brightness mode (B-mode) ultrasound has been used to design assistance profiles that are proportional to the estimated muscle force of young individuals. There is also a desire to develop similar strategies for older adults who may have age-altered physiology. This study introduces and validates a ResNet + 2x-LSTM model for extracting fascicle lengths in young and older adults. The labeling was generated in a semimanual manner for young (40,696 frames) and older adults (34,262 frames) depicting B-mode imaging of the medial gastrocnemius. First, the model was trained on young and tested on both young (R2 = 0.85, RMSE = 2.36 ± 1.51 mm, MAPE = 3.6%, aaDF = 0.48 ± 1.1 mm) and older adults (R2 = 0.53, RMSE = 4.7 ± 2.51 mm, MAPE = 5.19%, aaDF = 1.9 ± 1.39 mm). Then, the performances were trained across all ages (R2 = 0.79, RMSE = 3.95 ± 2.51 mm, MAPE = 4.5%, aaDF = 0.67 ± 1.8 mm). Although age-related muscle loss affects the error of the tracking methodology compared to the young population, the absolute percentage error for individual fascicles leads to a small variation of 3-5%, suggesting that the error may be acceptable in the generation of assistive force profiles.
Collapse
Affiliation(s)
- Letizia Gionfrida
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Science and Engineering Complex, 150 Western Ave, Boston, MA 02134, USA
| | - Richard W. Nuckols
- Department of Systems Design Engineering, University of Waterloo, University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Conor J. Walsh
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Science and Engineering Complex, 150 Western Ave, Boston, MA 02134, USA
| | - Robert D. Howe
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Science and Engineering Complex, 150 Western Ave, Boston, MA 02134, USA
| |
Collapse
|
22
|
Immediate effects of the honda walking assist on spatiotemporal gait characteristics in individuals after stroke. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Layne CS, Malaya CA, Ravindran AS, John I, Francisco GE, Contreras-Vidal JL. Distinct Kinematic and Neuromuscular Activation Strategies During Quiet Stance and in Response to Postural Perturbations in Healthy Individuals Fitted With and Without a Lower-Limb Exoskeleton. Front Hum Neurosci 2022; 16:942551. [PMID: 35911598 PMCID: PMC9334701 DOI: 10.3389/fnhum.2022.942551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Many individuals with disabling conditions have difficulty with gait and balance control that may result in a fall. Exoskeletons are becoming an increasingly popular technology to aid in walking. Despite being a significant aid in increasing mobility, little attention has been paid to exoskeleton features to mitigate falls. To develop improved exoskeleton stability, quantitative information regarding how a user reacts to postural challenges while wearing the exoskeleton is needed. Assessing the unique responses of individuals to postural perturbations while wearing an exoskeleton provides critical information necessary to effectively accommodate a variety of individual response patterns. This report provides kinematic and neuromuscular data obtained from seven healthy, college-aged individuals during posterior support surface translations with and without wearing a lower limb exoskeleton. A 2-min, static baseline standing trial was also obtained. Outcome measures included a variety of 0 dimensional (OD) measures such as center of pressure (COP) RMS, peak amplitude, velocities, pathlength, and electromyographic (EMG) RMS, and peak amplitudes. These measures were obtained during epochs associated with the response to the perturbations: baseline, response, and recovery. T-tests were used to explore potential statistical differences between the exoskeleton and no exoskeleton conditions. Time series waveforms (1D) of the COP and EMG data were also analyzed. Statistical parametric mapping (SPM) was used to evaluate the 1D COP and EMG waveforms obtained during the epochs with and without wearing the exoskeleton. The results indicated that during quiet stance, COP velocity was increased while wearing the exoskeleton, but the magnitude of sway was unchanged. The OD COP measures revealed that wearing the exoskeleton significantly reduced the sway magnitude and velocity in response to the perturbations. There were no systematic effects of wearing the exoskeleton on EMG. SPM analysis revealed that there was a range of individual responses; both behaviorally (COP) and among neuromuscular activation patterns (EMG). Using both the OD and 1D measures provided a more comprehensive representation of how wearing the exoskeleton impacts the responses to posterior perturbations. This study supports a growing body of evidence that exoskeletons must be personalized to meet the specific capabilities and needs of each individual end-user.
Collapse
Affiliation(s)
- Charles S. Layne
- University of Houston, Houston, TX, United States
- Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
- *Correspondence: Charles S. Layne
| | - Christopher A. Malaya
- Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - Akshay S. Ravindran
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| | - Isaac John
- Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - Gerard E. Francisco
- TIRR Memorial Hermann and Department of PMR, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jose Luis Contreras-Vidal
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
24
|
Abeywardena S, Anwar E, Miller S, Farkhatdinov I. Human balance augmentation via a supernumerary robotic tail. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2878-2881. [PMID: 36086349 DOI: 10.1109/embc48229.2022.9871317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance thanks to neuro-muscular sensory properties whilst still exhibiting postural sway characteristics. This work intro-duces a one-degree-of-freedom supernumerary tail for balance augmentation in the sagittal plane to negate anterior-posterior postural sway. Simulations showed that the tail could success-fully balance a human with impaired ankle stiffness and neural control. Insights into tail design and control were made; namely, to minimise muscular load the tail must have a significant component in the direction of the muscle, mounting location of the tail is significant in maximising inertial properties for balance augmentation and that adaptive control of the tail will be best suited for different loads held by a wearer.
Collapse
|
25
|
Sujatha Ravindran A, Malaya C, John I, Francisco GE, Layne C, Contreras-Vidal JL. Decoding Neural Activity Preceding Balance Loss During Standing with a Lower-limb Exoskeleton using an Interpretable Deep Learning Model. J Neural Eng 2022; 19. [PMID: 35508113 DOI: 10.1088/1741-2552/ac6ca9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Falls are a leading cause of death in adults 65 and older. Recent efforts to restore lower-limb function in these populations have seen an increase in the use of wearable robotic systems; however, fall prevention measures in these systems require early detection of balance loss to be effective. Prior studies have investigated whether kinematic variables contain information about an impending fall, but few have examined the potential of using electroencephalography (EEG) as a fall-predicting signal and how the brain responds to avoid a fall. To address this, we decoded neural activity in a balance perturbation task while wearing an exoskeleton. We acquired EEG, electromyography (EMG), and center of pressure (COP) data from 7 healthy participants during mechanical perturbations while standing. The timing of the perturbations was randomized in all trials. We found perturbation evoked potentials (PEP) components as early as 75-134 ms after the onset of the external perturbation, which preceded both the peak in EMG (∼ 180 ms) and the COP (∼ 350 ms). A convolutional neural network trained to predict balance perturbations from single-trial EEG had a mean F-score of 75.0 ± 4.3 %. Clustering GradCAM-based model explanations demonstrated that the model utilized components in the PEP and was not driven by artifacts. Additionally, dynamic functional connectivity results agreed with model explanations; the nodal connectivity measured using phase difference derivative was higher in the occipital-parietal region in the early stage of perturbations, before shifting to the parietal, motor, and back to the frontal-parietal channels. Continuous-time decoding of COP trajectories from EEG, using a gated recurrent unit model, achieved a mean Pearson's correlation coefficient of 0.7 ± 0.06. Overall, our findings suggest that EEG signals contain short-latency neural information related to an impending fall, which may be useful for developing brain-machine interface systems for fall prevention in robotic exoskeletons.
Collapse
Affiliation(s)
- Akshay Sujatha Ravindran
- Department of Electrical and Computer Engineering, University of Houston, 4800 calhoun road, E413, Cullen Engineering Building 1, University of Houston, Houston, Texas, 77204, UNITED STATES
| | - Christopher Malaya
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Isaac John
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, Texas, 77030, UNITED STATES
| | - Charles Layne
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Jose Luis Contreras-Vidal
- Electrical and Computer Engineering, University of Houston, N308 Engineering Building I, Houston, Texas, 77204-4005, UNITED STATES
| |
Collapse
|
26
|
Kim JY, Cho JS, Kim JH, Kim JT, Han SC, Park SS, Yoon HU. Spine-like Joint Link Mechanism to Design Wearable Assistive Devices. SENSORS 2022; 22:s22062314. [PMID: 35336489 PMCID: PMC8951149 DOI: 10.3390/s22062314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
When we develop wearable assistive devices, comfort and support are two main issues that need to be considered. In conventional design approaches, the degree of freedom of the wearer’s joint movements tends to be oversimplified. Accordingly, the wearer’s motion becomes restrained and bone/ligament injuries might occur in case of an unexpected fall. To mitigate these issues, this paper proposes a novel joint link mechanism inspired by a human spine structure as well as functionalities. The key feature of the proposed spine-like joint link mechanism is that hemispherical blocks are concatenated via flexible synthetic fiber lines so that their concatenation stiffness can be adjusted according to a tensile force. This feature has a great potentiality for designing a wearable assistive device that can support aged people’s sit-to-stand action or augment spinal motion by regulating the concatenation stiffness. In addition, the concatenated hemispherical blocks enable the wearer to move his/her joint with full freedom, which in turn increases the wearer’s mobility and prevents joint misalignment. The experimental results with a testbed and a pilot wearer substantiated that the spine-like joint link mechanism can serve as a key component in the design of wearable assistive devices for better mobility.
Collapse
Affiliation(s)
- Jung-Yeong Kim
- Robotics, University of Science and Technology (UST), Daejon 34113, Korea; (J.-Y.K.); (J.-S.C.)
- Robotics R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (J.-H.K.); (J.-T.K.); (S.-C.H.); (S.-S.P.)
| | - Jung-San Cho
- Robotics, University of Science and Technology (UST), Daejon 34113, Korea; (J.-Y.K.); (J.-S.C.)
- Robotics R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (J.-H.K.); (J.-T.K.); (S.-C.H.); (S.-S.P.)
| | - Jin-Hyeon Kim
- Robotics R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (J.-H.K.); (J.-T.K.); (S.-C.H.); (S.-S.P.)
| | - Jin-Tak Kim
- Robotics R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (J.-H.K.); (J.-T.K.); (S.-C.H.); (S.-S.P.)
| | - Sang-Chul Han
- Robotics R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (J.-H.K.); (J.-T.K.); (S.-C.H.); (S.-S.P.)
| | - Sang-Shin Park
- Robotics R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (J.-H.K.); (J.-T.K.); (S.-C.H.); (S.-S.P.)
| | - Han-Ul Yoon
- Division of Software, Yonsei University, Wonju 26493, Korea
- Correspondence: ; Tel.: +82-33-760-2235
| |
Collapse
|
27
|
Bayón C, Keemink AQL, van Mierlo M, Rampeltshammer W, van der Kooij H, van Asseldonk EHF. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking. J Neuroeng Rehabil 2022; 19:21. [PMID: 35172846 PMCID: PMC8851842 DOI: 10.1186/s12984-022-01000-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the last two decades, lower-limb exoskeletons have been developed to assist human standing and locomotion. One of the ongoing challenges is the cooperation between the exoskeleton balance support and the wearer control. Here we present a cooperative ankle-exoskeleton control strategy to assist in balance recovery after unexpected disturbances during walking, which is inspired on human balance responses. METHODS We evaluated the novel controller in ten able-bodied participants wearing the ankle modules of the Symbitron exoskeleton. During walking, participants received unexpected forward pushes with different timing and magnitude at the pelvis level, while being supported (Exo-Assistance) or not (Exo-NoAssistance) by the robotic assistance provided by the controller. The effectiveness of the assistive strategy was assessed in terms of (1) controller performance (Detection Delay, Joint Angles, and Exerted Ankle Torques), (2) analysis of effort (integral of normalized Muscle Activity after perturbation onset); and (3) Analysis of center of mass COM kinematics (relative maximum COM Motion, Recovery Time and Margin of Stability) and spatio-temporal parameters (Step Length and Swing Time). RESULTS In general, the results show that when the controller was active, it was able to reduce participants' effort while keeping similar ability to counteract and withstand the balance disturbances. Significant reductions were found for soleus and gastrocnemius medialis activity of the stance leg when comparing Exo-Assistance and Exo-NoAssistance walking conditions. CONCLUSIONS The proposed controller was able to cooperate with the able-bodied participants in counteracting perturbations, contributing to the state-of-the-art of bio-inspired cooperative ankle exoskeleton controllers for supporting dynamic balance. In the future, this control strategy may be used in exoskeletons to support and improve balance control in users with motor disabilities.
Collapse
Affiliation(s)
- Cristina Bayón
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Arvid Q. L. Keemink
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Michelle van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | | | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
28
|
Ferreira RN, Ribeiro NF, Santos CP. Fall Risk Assessment Using Wearable Sensors: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:984. [PMID: 35161731 PMCID: PMC8838304 DOI: 10.3390/s22030984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Recently, fall risk assessment has been a main focus in fall-related research. Wearable sensors have been used to increase the objectivity of this assessment, building on the traditional use of oversimplified questionnaires. However, it is necessary to define standard procedures that will us enable to acknowledge the multifactorial causes behind fall events while tackling the heterogeneity of the currently developed systems. Thus, it is necessary to identify the different specifications and demands of each fall risk assessment method. Hence, this manuscript provides a narrative review on the fall risk assessment methods performed in the scientific literature using wearable sensors. For each identified method, a comprehensive analysis has been carried out in order to find trends regarding the most used sensors and its characteristics, activities performed in the experimental protocol, and algorithms used to classify the fall risk. We also verified how studies performed the validation process of the developed fall risk assessment systems. The identification of trends for each fall risk assessment method would help researchers in the design of standard innovative solutions and enhance the reliability of this assessment towards a homogeneous benchmark solution.
Collapse
Affiliation(s)
- Rafael N. Ferreira
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimaraes, Portugal; (R.N.F.); (N.F.R.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Nuno Ferrete Ribeiro
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimaraes, Portugal; (R.N.F.); (N.F.R.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Cristina P. Santos
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimaraes, Portugal; (R.N.F.); (N.F.R.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4800-058 Guimaraes, Portugal
| |
Collapse
|
29
|
Bayón C, Delgado-Oleas G, Avellar L, Bentivoglio F, Di Tommaso F, Tagliamonte NL, Rocon E, van Asseldonk EHF. Development and Evaluation of BenchBalance: A System for Benchmarking Balance Capabilities of Wearable Robots and Their Users. SENSORS (BASEL, SWITZERLAND) 2021; 22:119. [PMID: 35009661 PMCID: PMC8747156 DOI: 10.3390/s22010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Recent advances in the control of overground exoskeletons are being centered on improving balance support and decreasing the reliance on crutches. However, appropriate methods to quantify the stability of these exoskeletons (and their users) are still under development. A reliable and reproducible balance assessment is critical to enrich exoskeletons' performance and their interaction with humans. In this work, we present the BenchBalance system, which is a benchmarking solution to conduct reproducible balance assessments of exoskeletons and their users. Integrating two key elements, i.e., a hand-held perturbator and a smart garment, BenchBalance is a portable and low-cost system that provides a quantitative assessment related to the reaction and capacity of wearable exoskeletons and their users to respond to controlled external perturbations. A software interface is used to guide the experimenter throughout a predefined protocol of measurable perturbations, taking into account antero-posterior and mediolateral responses. In total, the protocol is composed of sixteen perturbation conditions, which vary in magnitude and location while still controlling their orientation. The data acquired by the interface are classified and saved for a subsequent analysis based on synthetic metrics. In this paper, we present a proof of principle of the BenchBalance system with a healthy user in two scenarios: subject not wearing and subject wearing the H2 lower-limb exoskeleton. After a brief training period, the experimenter was able to provide the manual perturbations of the protocol in a consistent and reproducible way. The balance metrics defined within the BenchBalance framework were able to detect differences in performance depending on the perturbation magnitude, location, and the presence or not of the exoskeleton. The BenchBalance system will be integrated at EUROBENCH facilities to benchmark the balance capabilities of wearable exoskeletons and their users.
Collapse
Affiliation(s)
- Cristina Bayón
- Department of Biomechanical Engineering, University of Twente, 7522 NB Enschede, The Netherlands;
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | - Gabriel Delgado-Oleas
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | - Leticia Avellar
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | | | - Francesco Di Tommaso
- Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (F.D.T.); (N.L.T.)
| | - Nevio L. Tagliamonte
- Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (F.D.T.); (N.L.T.)
- Fondazione Santa Lucia, 00179 Rome, Italy
| | - Eduardo Rocon
- Centro de Automática y Robótica, Universidad Politécnica de Madrid, 28500 Madrid, Spain; (G.D.-O.); (L.A.); (E.R.)
| | | |
Collapse
|
30
|
Shishov N, Elabd K, Komisar V, Chong H, Robinovitch SN. Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique. PLoS One 2021; 16:e0258923. [PMID: 34695159 PMCID: PMC8544843 DOI: 10.1371/journal.pone.0258923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Falls are a major cause of unintentional injuries. Understanding the movements of the body during falls is important to the design of fall prevention and management strategies, including exercise programs, mobility aids, fall detectors, protective gear, and safer environments. Video footage of real-life falls is increasingly available, and may be used with digitization software to extract kinematic features of falls. We examined the validity of this approach by conducting laboratory falling experiments, and comparing linear and angular positions and velocities measured from 3D motion capture to estimates from Kinovea 2D digitization software based on standard surveillance video (30 Hz, 640x480 pixels). We also examined how Kinovea accuracy depended on fall direction, camera angle, filtering cut-off frequency, and calibration technique. For a camera oriented perpendicular to the plane of the fall (90 degrees), Kinovea position data filtered at 10 Hz, and video calibration using a 2D grid, mean root mean square errors were 0.050 m or 9% of the signal amplitude and 0.22 m/s (7%) for vertical position and velocity, and 0.035 m (6%) and 0.16 m/s (7%) for horizontal position and velocity. Errors in angular measures averaged over 2-fold higher in sideways than forward or backward falls, due to out-of-plane movement of the knees and elbows. Errors in horizontal velocity were 2.5-fold higher for a 30 than 90 degree camera angle, and 1.6-fold higher for calibration using participants’ height (1D) instead of a 2D grid. When compared to 10 Hz, filtering at 3 Hz caused velocity errors to increase 1.4-fold. Our results demonstrate that Kinovea can be applied to 30 Hz video to measure linear positions and velocities to within 9% accuracy. Lower accuracy was observed for angular kinematics of the upper and lower limb in sideways falls, and for horizontal measures from 30 degree cameras or 1D height-based calibration.
Collapse
Affiliation(s)
- Nataliya Shishov
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| | - Karam Elabd
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Vicki Komisar
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Helen Chong
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephen N. Robinovitch
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
31
|
Nalam V, Huang HH. Empowering prosthesis users with a hip exoskeleton. Nat Med 2021; 27:1677-1678. [PMID: 34635853 DOI: 10.1038/s41591-021-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Varun Nalam
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - He Helen Huang
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA. .,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Pinto-Fernandez D, Torricelli D, Sanchez-Villamanan MDC, Aller F, Mombaur K, Conti R, Vitiello N, Moreno JC, Pons JL. Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng 2021; 28:1573-1583. [PMID: 32634096 DOI: 10.1109/tnsre.2020.2989481] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benchmarks have long been used to verify and compare the readiness level of different technologies in many application domains. In the field of wearable robots, the lack of a recognized benchmarking methodology is one important impediment that may hamper the efficient translation of research prototypes into actual products. At the same time, an exponentially growing number of research studies are addressing the problem of quantifying the performance of robotic exoskeletons, resulting in a rich and highly heterogeneous picture of methods, variables and protocols. This review aims to organize this information, and identify the most promising performance indicators that can be converted into practical benchmarks. We focus our analysis on lower limb functions, including a wide spectrum of motor skills and performance indicators. We found that, in general, the evaluation of lower limb exoskeletons is still largely focused on straight walking, with poor coverage of most of the basic motor skills that make up the activities of daily life. Our analysis also reveals a clear bias towards generic kinematics and kinetic indicators, in spite of the metrics of human-robot interaction. Based on these results, we identify and discuss a number of promising research directions that may help the community to attain a comprehensive benchmarking methodology for robot-assisted locomotion more efficiently.
Collapse
|
33
|
Er JK, Donnelly CJW, Wee SK, Ang WT. Fall inducing movable platform (FIMP) for overground trips and slips. J Neuroeng Rehabil 2020; 17:161. [PMID: 33272286 PMCID: PMC7713354 DOI: 10.1186/s12984-020-00785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background The study of falls and fall prevention/intervention devices requires the recording of true falls incidence. However, true falls are rare, random, and difficult to collect in real world settings. A system capable of producing falls in an ecologically valid manner will be very helpful in collecting the data necessary to advance our understanding of the neuro and musculoskeletal mechanisms underpinning real-world falls events. Methods A fall inducing movable platform (FIMP) was designed to arrest or accelerate a subject’s ankle to induce a trip or slip. The ankle was arrested posteriorly with an electromagnetic brake and accelerated anteriorly with a motor. A power spring was connected in series between the ankle and the brake/motor to allow freedom of movement (system transparency) when a fall is not being induced. A gait phase detection algorithm was also created to enable precise activation of the fall inducing mechanisms. Statistical Parametric Mapping (SPM1D) and one-way repeated measure ANOVA were used to evaluate the ability of the FIMP to induce a trip or slip. Results During FIMP induced trips, the brake activates at the terminal swing or mid swing gait phase to induce the lowering or skipping strategies, respectively. For the lowering strategy, the characteristic leg lowering and subsequent contralateral leg swing was seen in all subjects. Likewise, for the skipping strategy, all subjects skipped forward on the perturbed leg. Slip was induced by FIMP by using a motor to impart unwanted forward acceleration to the ankle with the help of friction-reducing ground sliding sheets. Joint stiffening was observed during the slips, and subjects universally adopted the surfing strategy after the initial slip. Conclusion The results indicate that FIMP can induce ecologically valid falls under controlled laboratory conditions. The use of SPM1D in conjunction with FIMP allows for the time varying statistical quantification of trip and slip reactive kinematics events. With future research, fall recovery anomalies in subjects can now also be systematically evaluated through the assessment of other neuromuscular variables such as joint forces, muscle activation and muscle forces.
Collapse
Affiliation(s)
- Jie Kai Er
- Nanyang Technological University, Rehabilitation Research Institute of Singapore, 11 Mandalay Road, #14-03, 308232, Singapore, Singapore.
| | - Cyril John William Donnelly
- Nanyang Technological University, Rehabilitation Research Institute of Singapore, 11 Mandalay Road, #14-03, 308232, Singapore, Singapore
| | - Seng Kwee Wee
- Tan Tock Seng Hospital, Centre for Advanced Rehabilitation Therapeutics, 11 Jalan Tan Tock Seng, 308433, Singapore, Singapore
| | - Wei Tech Ang
- Nanyang Technological University, Rehabilitation Research Institute of Singapore, 11 Mandalay Road, #14-03, 308232, Singapore, Singapore
| |
Collapse
|
34
|
Manetti S, Turchetti G, Fusco F. Determining the cost-effectiveness requirements of an exoskeleton preventing second hip fractures using value of information. BMC Health Serv Res 2020; 20:955. [PMID: 33059683 PMCID: PMC7565816 DOI: 10.1186/s12913-020-05768-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background Falls may lead to hip fractures, which have a detrimental effect on the prognosis of patients as well as a considerable impact on healthcare expenditures. Since a secondary hip fracture (SHF) may lead to even higher costs than primary fractures, the development of innovative services is crucial to limit falls and curb costs in high-risk patients. An early economic evaluation assessed which patients with a second hip fracture could benefit most from an exoskeleton preventing falls and whether its development is feasible. Methods The life-course of hip fractured patients presenting with dementia or cardiovascular diseases was simulated using a Markov model relying on the United Kingdom administrative data and complemented by published literature. A group of experts provided the exoskeleton parameters. Secondary analyses included a threshold analysis to identify the exoskeleton requirements (e.g. minimum impact of the exoskeleton on patients’ quality of life) leading to a reimbursable incremental cost-effectiveness ratio. Similarly, the uncertainty around these requirements was modelled by varying their standard errors and represented alongside population Expected Value of Perfect Information (EVPI). Results Our base-case found the exoskeleton cost-effective when providing a statistically significant reduction in SHF risk. The secondary analyses identified 286 cost-effective combinations of the exoskeleton requirements. The uncertainty around these requirements was explored producing further 22,880 scenarios, which showed that this significant reduction in SHF risk was not necessary to support the exoskeleton adoption in clinical practice. Conversely, a significant improvement in women quality of life was crucial to obtain an acceptable population EVPI regardless of the cost of the exoskeleton. Conclusions Our study identified the exoskeleton requisites to be cost-effective and the value of future research. Decision-makers could use our analyses to assess not only whether the exoskeleton could be cost-effective but also how much further research and development of the exoskeleton is worth to be pursued.
Collapse
Affiliation(s)
- Stefania Manetti
- Institute of Management, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | | | - Francesco Fusco
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, Oxford, UK. .,Centre for Health Economics, University of York, Heslington, York, UK. .,Department of Public Health & Primary Care, University of Cambridge, Institute of Public Health, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK.
| |
Collapse
|
35
|
Hamza MF, Ghazilla RAR, Muhammad BB, Yap HJ. Balance and stability issues in lower extremity exoskeletons: A systematic review. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ji J, Song T, Guo S, Xi F, Wu H. Robotic-Assisted Rehabilitation Trainer Improves Balance Function in Stroke Survivors. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2018.2883653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
High-Specificity Digital Architecture for Real-Time Recognition of Loss of Balance Inducing Fall. SENSORS 2020; 20:s20030769. [PMID: 32023861 PMCID: PMC7038501 DOI: 10.3390/s20030769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022]
Abstract
Falls are a significant cause of loss of independence, disability and reduced quality of life in people with Parkinson's disease (PD). Intervening quickly and accurately on the postural instability could strongly reduce the consequences of falls. In this context, the paper proposes and validates a novel architecture for the reliable recognition of losses of balance situations. The proposed system addresses some challenges related to the daily life applicability of near-fall recognition systems: the high specificity and system robustness against the Activities of Daily Life (ADL). In this respect, the proposed algorithm has been tested on five different tasks: walking steps, sudden curves, chair transfers via the timed up and go (TUG) test, balance-challenging obstacle avoidance and slip-induced loss of balance. The system analyzes data from wireless acquisition devices that capture electroencephalography (EEG) and electromyography (EMG) signals. The collected data are sent to two main units: the muscular unit and the cortical one. The first realizes a binary ON/OFF pattern from muscular activity (10 EMGs) and triggers the cortical unit. This latter unit evaluates the rate of variation in the EEG power spectrum density (PSD), considering five bands of interest. The neuromuscular features are then sent to a logical network for the final classification, which distinguishes among falls and ADL. In this preliminary study, we tested the proposed model on 9 healthy subjects (aged 26.3 ± 2.4 years), even if the study on PD patients is under investigation. Experimental validation on healthy subjects showed that the system reacts in 370.62 ± 60.85 ms with a sensitivity of 93.33 ± 5.16%. During the ADL tests the system showed a specificity of 98.91 ± 0.44% in steady walking steps recognition, 99.61 ± 0.66% in sudden curves detection, 98.95 ± 1.27% in contractions related to TUG tests and 98.42 ± 0.90% in the obstacle avoidance protocol.
Collapse
|
38
|
Aprigliano F, Guaitolini M, Sabatini AM, Micera S, Monaco V. Pre-impact detection algorithm to identify lack of balance due to tripping-like perturbations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2430-2433. [PMID: 31946389 DOI: 10.1109/embc.2019.8856383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigates the performance of an updated version of our pre-impact detection algorithm while parsing out hip kinematics in order to identify unexpected tripping-like perturbations during walking. This approach grounds on the hypothesis that due to unexpected gait disturbances, the cyclic features of hip kinematics are suddenly altered thus promptly highlighting that the balance is challenged. To achieve our goal, hip angles of eight healthy young subjects were recorded while they were managing unexpected tripping trials delivered during the steady locomotion. Results showed that the updated version of our pre-impact detection algorithm allows for identifying a lack of balance due to tripping-like perturbations, after a suitable tuning of the algorithm parameters. The best performance is represented by a mean detection time ranging within 0.8-0.9 s with a low percentage of false alarms (i.e., lower than 10%). Accordingly, we can conclude that the proposed strategy is able to detect lack of balance due to different kinds of gait disturbances (e.g., slippages, tripping) and that it could be easily implemented in lower limb orthoses/prostheses since it only relies on joint angles.
Collapse
|
39
|
Guaitolini M, Aprigliano F, Mannini A, Monaco V, Micera S, Sabatini AM. Evaluation of time-frequency features as detectors of lack of balance due to tripping-like perturbations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2443-2446. [PMID: 31946392 DOI: 10.1109/embc.2019.8857442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Unbalancing events during gait can end up in falls and, thus, injury. Detecting events that could bring to fall and consequently activating fall prevention systems before the impact may help to mitigate related injuries. However, there is uncertainty about signals and methods that could offer the best performance. In this paper we investigated a novel trip detection method based on time-frequency features to evaluate the performances of these features as trip detectors. Hip angles of eight healthy young subjects were recorded while performing unexpected tripping trials delivered during steady locomotion. Then the Short-Time Fourier Transform (STFT) of the hip angle was estimated. Median frequency, power, centroidal frequency as well as frequency dispersion were computed for each time sliced power spectrum. These features were used as input for a trip detection algorithm. We assessed detection time (Tdetect), specificity (Spec) and sensitivity (Sens) for each feature. Performances obtained with median frequencies over time(Tdetect 0.91 ± 0.47 s; Sens 0.96) were better than those obtained using the hip angle signal in time domain (Tdetect 1.19 ± 0.27 s; Sens 0.83). Other features did not show significant results. Thus, median frequency over time expected to achieve effective real-time event detection systems, with the aim of a future on-board application concerning detection and prevention measures.
Collapse
|
40
|
Ishmael MK, Tran M, Lenzi T. ExoProsthetics: Assisting Above-Knee Amputees with a Lightweight Powered Hip Exoskeleton. IEEE Int Conf Rehabil Robot 2020; 2019:925-930. [PMID: 31374748 DOI: 10.1109/icorr.2019.8779412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this paper, we explore the effect of residual hip assistance in one above-knee amputee subject using a novel lightweight powered hip exoskeleton. Differently from a powered prosthesis, a powered hip exoskeleton adds mass proximally. Thus, we expect that the negative effect of the added mass will be lower for a powered hip exoskeleton than a powered ankle and knee prosthesis. Consequently, residual-hip assistance may more easily lead to a net reduction of metabolic effort. To preliminarily assess this hypothesis, we measured the physiological cost index (PCI) while an above-knee subject walked with and without a powered hip exoskeleton. Experimental results show 20.5% reduction of PCI when walking with the powered hip exoskeleton.
Collapse
|
41
|
Abstract
SummaryThis study investigates the effectiveness of a robot-mediated strategy aimed at promoting balance recovery after multidirectional slippages. Six older adults were asked to manage anteroposterior and mediolateral slippages while donning an active pelvis orthosis (APO). The APO was set up either to assist volunteers during balance loss or to be transparent. The margin of stability, in sagittal and frontal planes, was the main metric to assess the effectiveness of balance recovery. Results showed that the assistive strategy is effective at promoting balance recovery in the sagittal plane, for both perturbing paradigms; however, it is not effective at controlling stability in the frontal plane.
Collapse
|
42
|
Guaitolini M, Aprigliano F, Mannini A, Micera S, Monaco V, Sabatini AM. Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network. SENSORS 2019; 19:s19194117. [PMID: 31547624 PMCID: PMC6806087 DOI: 10.3390/s19194117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023]
Abstract
Loss of stability is a precursor to falling and therefore represents a leading cause of injury, especially in fragile people. Thus, dynamic stability during activities of daily living (ADLs) needs to be considered to assess balance control and fall risk. The dynamic margin of stability (MOS) is often used as an indicator of how the body center of mass is located and moves relative to the base of support. In this work, we propose a magneto-inertial measurement unit (MIMU)-based method to assess the MOS of a gait. Six young healthy subjects were asked to walk on a treadmill at different velocities while wearing MIMUs on their lower limbs and pelvis. We then assessed the MOS by computing the lower body displacement with respect to the leading inverse kinematics approach. The results were compared with those obtained using a camera-based system in terms of root mean square deviation (RMSD) and correlation coefficient (ρ). We obtained a RMSD of ≤1.80 cm and ρ ≥ 0.85 for each walking velocity. The findings revealed that our method is comparable to camera-based systems in terms of accuracy, suggesting that it may represent a strategy to assess stability during ADLs in unstructured environments.
Collapse
Affiliation(s)
- Michelangelo Guaitolini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Federica Aprigliano
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Andrea Mannini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.
| | - Vito Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy.
| | - Angelo Maria Sabatini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| |
Collapse
|
43
|
Ringhof S, Patzer I, Beil J, Asfour T, Stein T. Does a Passive Unilateral Lower Limb Exoskeleton Affect Human Static and Dynamic Balance Control? Front Sports Act Living 2019; 1:22. [PMID: 33344946 PMCID: PMC7739571 DOI: 10.3389/fspor.2019.00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022] Open
Abstract
Exoskeletons are wearable devices closely coupled to the human, which can interact with the musculoskeletal system, e. g., to augment physical and functional capabilities. A main prerequisite for the development and application of exoskeletons is to investigate the human-exoskeleton interaction, particularly in terms of potential inferences with human motor control. Therefore, the purpose of the present study was to investigate whether a passive unilateral lower limb exoskeleton has an impact on static and dynamic reactive balance control. Eleven healthy subjects (22.9 ± 2.5 years, five females) volunteered for this study and performed three different balance tasks: bipedal standing, single-leg standing, and platform perturbations in single-leg standing. All the balance tasks were conducted with and without a passive unilateral lower limb exoskeleton, while force plates and a motion capture system were used to capture the center of pressure mean sway velocity and the time to stabilization, respectively. Dependent t-tests were separately run for both static balance tests, and a repeated-measure analysis of variance with factors exoskeleton and direction of perturbation was calculated for the dynamic reactive balance task. The exoskeleton did not significantly influence postural sway in bipedal stance. However, in single-leg stance, the mediolateral mean sway velocity of the center of pressure was significantly shorter for the exoskeleton condition. For the dynamic reactive balance task, the participants tended to regain stability less quickly with the exoskeleton, as indicated by a large effect size and longer time to stabilization for all directions of perturbation. In summary, the study showed that the exoskeleton provided some assistive support under static conditions, which however may disappear when sufficient stability is available (bipedal stance). Besides, the exoskeleton tended to impair dynamic reactive balance, potentially by impeding adequate compensatory adjustments. These are important findings with strong implications for the future design and application of exoskeletons, emphasizing the significance of taking into account the mechanisms of human motor control.
Collapse
Affiliation(s)
- Steffen Ringhof
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Isabel Patzer
- High Performance Humanoid Technologies, Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jonas Beil
- High Performance Humanoid Technologies, Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tamim Asfour
- High Performance Humanoid Technologies, Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Thorsten Stein
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
44
|
Aprigliano F, Micera S, Monaco V. Pre-Impact Detection Algorithm to Identify Tripping Events Using Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3713. [PMID: 31461908 PMCID: PMC6749342 DOI: 10.3390/s19173713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the performance of an updated version of our pre-impact detection algorithm parsing out the output of a set of Inertial Measurement Units (IMUs) placed on lower limbs and designed to recognize signs of lack of balance due to tripping. Eight young subjects were asked to manage tripping events while walking on a treadmill. An adaptive threshold-based algorithm, relying on a pool of adaptive oscillators, was tuned to identify abrupt kinematics modifications during tripping. Inputs of the algorithm were the elevation angles of lower limb segments, as estimated by IMUs located on thighs, shanks and feet. The results showed that the proposed algorithm can identify a lack of balance in about 0.37 ± 0.11 s after the onset of the perturbation, with a low percentage of false alarms (<10%), by using only data related to the perturbed shank. The proposed algorithm can hence be considered a multi-purpose tool to identify different perturbations (i.e., slippage and tripping). In this respect, it can be implemented for different wearable applications (e.g., smart garments or wearable robots) and adopted during daily life activities to enable on-demand injury prevention systems prior to fall impacts.
Collapse
Affiliation(s)
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Vito Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy.
| |
Collapse
|
45
|
Jabeen S, Berry A, Geijtenbeek T, Harlaar J, Vallery H. Assisting gait with free moments or joint moments on the swing leg. IEEE Int Conf Rehabil Robot 2019; 2019:1079-1084. [PMID: 31374773 DOI: 10.1109/icorr.2019.8779389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Wearable actuators in lower-extremity active orthoses or prostheses have the potential to address a variety of gait disorders. However, whenever conventional joint actuators exert moments on specific limbs, they must simultaneously impose opposing reaction moments on other limbs, which may reduce the desired effects and perturb posture. Momentum exchange actuators exert free moments on individual limbs, potentially overcoming or mitigating these issues.We simulate unperturbed gait to compare conventional joint actuators placed on the knee or hip of the swing leg, and equivalent angular momentum exchange actuators placed on the shank or thigh. Our results indicate that, while conventional joint actuators excel at increasing toe clearance when assisting knee flexion, free moments can yield greater increases in stride length when assisting knee extension or hip flexion.
Collapse
|
46
|
Kim TH, Choi A, Heo HM, Kim K, Lee K, Mun JH. Machine learning-based pre-impact fall detection model to discriminate various types of fall. J Biomech Eng 2019; 141:2730876. [PMID: 30968932 DOI: 10.1115/1.4043449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 11/08/2022]
Abstract
Preimpact fall detection can send alarm service faster to reduce long-lie conditions and decrease the risk of hospitalization. Detecting various types of fall to determine the impact site or direction prior to impact is important because it increases the chance of decreasing the incidence or severity of fall-related injuries. In this study, a robust preimpact fall detection model was developed to classify various activities and falls as multi-class and its performance was compared with the performance of previous developed models. Twelve healthy subjects participated in this study. All subjects were asked to place an inertial measuring unit module by fixing on a belt near the left iliac crest to collect accelerometer data for each activity. Our novel proposed model consists of feature calculation and infinite latent feature selection algorithm, auto labeling of activities, application of machine learning classifiers for discrete and continuous time series data. Nine machine-learning classifiers were applied to detect falls prior to impact and derive final detection results by sorting the classifier. Our model showed the highest classification accuracy. Results for the proposed model that could classify as multi-class showed significantly higher average classification accuracy of 99.57 ± 0.01% for discrete data-based classifiers and 99.84 ± 0.02% for continuous time series-based classifiers than previous models (p < 0.01). In the future, multi-class preimpact fall detection models can be applied to fall protector devices by detecting various activities for sending alerts or immediate feedback reactions to prevent falls.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Republic of Korea, 2066 Seoburo, Jangangu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Ahnryul Choi
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Republic of Korea, 2066 Seoburo, Jangangu, Suwon, Gyeonggi, 16419, Republic of Korea; Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Republic of Korea, 24, Beomil-ro 579 beon-gill, Gangneung, Gangwon, Republic of Korea
| | - Hyun Mu Heo
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Republic of Korea, 2066 Seoburo, Jangangu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kyungran Kim
- Agricultural Health and Safety Division, Rural Development Administration, Republic of Korea, 300 Nongsaengmyeong-ro, Wansan-gu, Jeonju, Jeollabuk 54875, Republic of Korea
| | - Kyungsuk Lee
- Agricultural Health and Safety Division, Rural Development Administration, Republic of Korea, 300 Nongsaengmyeong-ro, Wansan-gu, Jeonju, Jeollabuk 54875, Republic of Korea
| | - Joung Hwan Mun
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Republic of Korea, 2066 Seoburo, Jangangu, Suwon, Gyeonggi, 16419, Republic of Korea, Tel: +82-31-290-7827, Fax: +82-31-290-7830
| |
Collapse
|
47
|
Farkhatdinov I, Ebert J, van Oort G, Vlutters M, van Asseldonk E, Burdet E. Assisting Human Balance in Standing With a Robotic Exoskeleton. IEEE Robot Autom Lett 2019. [DOI: 10.1109/lra.2018.2890671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Aprigliano F, Monaco V, Micera S. External sensory-motor cues while managing unexpected slippages can violate the planar covariation law. J Biomech 2019; 85:193-197. [PMID: 30655080 DOI: 10.1016/j.jbiomech.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 11/20/2022]
Abstract
This study was aimed at investigating the intersegmental coordination of six older adults while managing unexpected slippages delivered during steady walking, and wearing an Active Pelvis Orthosis (APO). The APO was setup either to assist volunteers at the hip levels during balance loss or to be transparent. The Planar Covariation Law (PCL) of the lower limb elevation angles was the main tool used to assess the intersegmental coordination of both limbs (i.e., the perturbed and unperturbed ones). Results revealed that, after the onset of the perturbation, elevation angles of both limbs do not covary, a part from the robot-mediated assistance. These new evidences suggest that external sensory-motor cues can alter the temporal synchronization of elevation angles, thus violating the PCL.
Collapse
Affiliation(s)
- F Aprigliano
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - V Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.
| | - S Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
The Exoskeleton Balance Assistance Control Strategy Based on Single Step Balance Assessment. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel balance assistance control strategy of a hip exoskeleton robot was proposed in this paper. The organic fusion of the human balance assessment and the exoskeleton balance assistance control strategy are the assurance of balance recovery. However, currently there are few human balance assessment methods that are suitable for detecting balance loss during standing and walking, and very little research has focused on exoskeleton balance recovery control. In this paper, a single step balance assessment method was proposed first, and then based on this method an "assist-as-needed" balance assistance control strategy was established. Finally, the exoskeleton balance assistance control experiment was carried out. The experiment results verified the effectiveness of the single balance assessment method and the active balance assistance control strategy.
Collapse
|
50
|
Grimmer M, Riener R, Walsh CJ, Seyfarth A. Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons. J Neuroeng Rehabil 2019; 16:2. [PMID: 30606194 PMCID: PMC6318939 DOI: 10.1186/s12984-018-0458-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Physical and functional losses due to aging and diseases decrease human mobility, independence, and quality of life. This study is aimed at summarizing and quantifying these losses in order to motivate solutions to overcome them with a special focus on the possibilities by using lower limb exoskeletons. METHODS A narrative literature review was performed to determine a broad range of mobility-related physical and functional measures that are affected by aging and selected cardiovascular, respiratory, musculoskeletal, and neurological diseases. RESULTS The study identified that decreases in limb maximum muscle force and power (33% and 49%, respectively, 25-75 yrs) and in maximum oxygen consumption (40%, 20-80 yrs) occur for older adults compared to young adults. Reaction times more than double (18-90 yrs) and losses in the visual, vestibular, and somatosensory systems were reported. Additionally, we found decreases in steps per day (75%, 60-85 yrs), maximum walking speed (24% 25-75 yrs), and maximum six-minute and self-selected walking speed (38% and 21%, respectively, 20-85 yrs), while we found increases in the number of falls relative to the number of steps per day (800%), injuries due to falls (472%, 30-90 yrs) and deaths caused by fall (4000%, 65-90 yrs). Measures were identified to be worse for individuals with impaired mobility. Additional detrimental effects identified for them were the loss of upright standing and locomotion, freezing in movement, joint stress, pain, and changes in gait patterns. DISCUSSION This review shows that aging and chronic conditions result in wide-ranging losses in physical and sensory capabilities. While the impact of these losses are relatively modest for level walking, they become limiting during more demanding tasks such as walking on inclined ground, climbing stairs, or walking over longer periods, and especially when coupled with a debilitating disease. As the physical and functional parameters are closely related, we believe that lost functional capabilities can be indirectly improved by training of the physical capabilities. However, assistive devices can supplement the lost functional capabilities directly by compensating for losses with propulsion, weight support, and balance support. CONCLUSIONS Exoskeletons are a new generation of assistive devices that have the potential to provide both, training capabilities and functional compensation, to enhance human mobility.
Collapse
Affiliation(s)
- Martin Grimmer
- Lauflabor Locomotion Lab, Technische Universität Darmstadt, Magdalenenstr. 27, Darmstadt, 64289 Germany
| | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology, ETH Zurich, Tannenstr. 1, Zurich, 8092 Switzerland
| | - Conor James Walsh
- Harvard Biodesign Lab, John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, 02138 MA United States
| | - André Seyfarth
- Lauflabor Locomotion Lab, Technische Universität Darmstadt, Magdalenenstr. 27, Darmstadt, 64289 Germany
| |
Collapse
|