1
|
Li H, Liu Q, Shan Q, Xu H, Wang J, Liu L, Wang Y. Identification of mitochondrial-related causal genes for major depression disorder via integrating multi-omics. J Affect Disord 2025; 382:540-548. [PMID: 40274126 DOI: 10.1016/j.jad.2025.04.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
CONTEXT Mitochondria dysfunction plays a pivotal role in major depressive disorder (MDD), but the causal link between mitochondria dysfunction and MDD remains unclear. AIMS This study aimed to explore the causal effects of mitochondrial-related genes (MRGs) on MDD by integrating multi-omics data. METHODS Summary statistics of DNA methylation, gene expression, and protein for MRGs were obtained from the corresponding quantitative trait loci in European ancestry individuals. GWAS summary statistics for MDD were sourced from the Psychiatric Genomics Consortium (PGC, discovery) and FinnGen R10 study (replication). Summary-data-based Mendelian Randomization (SMR) was performed to assess the association between DNA methylation, gene expression, and protein abundances of MRGs with the risk of MDD. Colocalization analysis was employed to assess the potential shared genetic variants between MRGs and MDD. Two-sample MR was conducted to assess the sensitivity of the SMR results. Single-nucleus RNA-sequencing (snRNA-seq) and bulk RNA-seq data were used to explore the candidate MRG expression. RESULTS We identified methylation levels of PPTC7 (cg08752433) and methylation levels of VRS2 (cg07945879, cg14935711, cg00244776, cg15848685, cg12457901, cg16958594) associated with a decreased risk of MDD. Conversely, the methylation levels of VRS2 (cg26784891, cg05853013, cg04966294) and MRPL46 (cg00200755) were associated with increased risk of MDD. High expression of COQ8A and TRMT10C were associated with an increased risk of MDD. Notably, COQ8A was predominantly expressed in both inhibitory and excitatory neurons in MDD patients. CONCLUSION This study established a causal relationship between mitochondrial dysfunction and MDD, identifying candidate MRGs, and providing potential diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Hongping Li
- Guizhou Medical University, Guiyang 551113, China; Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Neurology, The Second People's Hospital of Guiyang (Jinyang Hospital), The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550023, China
| | - Qing Liu
- Department of Neurology, The Second People's Hospital of Guiyang (Jinyang Hospital), The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550023, China
| | - Qing Shan
- Guizhou Medical University, Guiyang 551113, China
| | - Huasen Xu
- Guizhou Medical University, Guiyang 551113, China
| | - Junwen Wang
- Guizhou Medical University, Guiyang 551113, China; Department of Psychiatry, The Second People's Hospital of Guiyang (Jinyang Hospital), The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550023, China
| | - Longfei Liu
- Guizhou Medical University, Guiyang 551113, China
| | - Yiming Wang
- Guizhou Medical University, Guiyang 551113, China; Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
2
|
Bai Y, Liu W, Zhang F, Zheng Y, Guo Q, Hu H, Hu Y, Chen H, Li G, Tang Y, Liu X. Dysregulation of peripheral oxidative stress and the Nrf2 antioxidant system in Major Depressive Disorder. J Affect Disord 2025; 382:336-345. [PMID: 40258421 DOI: 10.1016/j.jad.2025.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/08/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Oxidative stress and inflammation have been found to be involved in the development of major depressive disorder (MDD). The aim of this study was to investigate the peripheral levels of oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant system markers in patients with MDD and to evaluate the changes in these markers after 12 weeks of antidepressant treatment. METHODS We consecutively enrolled 104 drug-naïve or drug-free patients with an acute episode of MDD and 50 healthy controls (HCs). Plasma levels of Nrf2, phospho-Nrf2 (p-Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD), malondialdehyde (MDA), phospholipase A2 (PLA2) and cyclooxygenase-2 (COX-2), were measured with the enzyme-linked immunosorbent assay. RESULTS Patients with MDD exhibited lower levels of the antioxidant system Nrf2, p-Nrf2, HO-1, SOD and higher levels of oxidative stress markers COX-2, PLA2, MDA compared to HCs (all p < 0.001). HO-1 levels differed significantly among melancholic, anxious, and atypical depression (p = 0.002). In addition, we found a negative correlation between somatic symptoms in HAMA scores and Nrf2 levels in MDD group (p = 0.04). At 12 weeks, COX-2 levels significantly increased in the non-remission group compared to baseline (p = 0.039), whereas no significant changes were observed in the remission group. CONCLUSIONS Peripheral oxidative stress and the Nrf2 antioxidant system were found to be dysregulated in patients with MDD. The Nrf2 antioxidant system might be a protective factor for somatic symptoms in MDD, whereas COX-2 might be a risk factor for poor antidepressant efficacy.
Collapse
Affiliation(s)
- Yujie Bai
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wanying Liu
- Department of Psychiatry, Shanghai Putuo Mental Health Center, Shanghai 200065, China
| | - Fuxu Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanqun Zheng
- Department of Psychiatry, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Qian Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hao Hu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yao Hu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haiying Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Guanjun Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Xiaohua Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
3
|
Ghafaji H, Nordenmark TH, Western E, Sorteberg W, Karic T, Sorteberg A. Resilience in good outcome patients with fatigue after aneurysmal subarachnoid hemorrhage. Behav Brain Res 2025; 483:115466. [PMID: 39923942 DOI: 10.1016/j.bbr.2025.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Resilience is a psychological process that encompasses various facets of personality traits, behaviour, as well as coping, and it enhances the adjustment to adversities faced. Although a lot of interest has been devoted to the protective effects of resilience in handling affective disorders, little is known about the relationship between resilience and chronic fatigue, which is a common and potentially disabling sequel in survivors of aneurysmal subarachnoid hemorrhage (aSAH). Ninety-six good outcome patients with chronic post-aSAH fatigue answered the Resilience Scale for Adults (RSA) which assesses 6 distinct aspects of resilience. They also answered the Fatigue Severity Scale (FSS), Mental Fatigue Scale (MFS), Beck Depression Inventory (BDI-II), Beck's Anxiety Inventory (BAI), and the Brief COPE. The RSA scores were related to fatigue, emotional burden and coping. The prevailing resilience factor was "Social Resources". Patients with the highest scores for fatigue and emotional symptoms scored significantly lower for the factors "Perception of Self", "Perception of Future" and "Family Cohesion". Patients with clinically significant depression scored low across most RSA factors, with the weakest factors being "Perception of Self" and "Perception of Future". Resilience factors were positively associated with adaptive problem focused coping strategies, and in particular with the emotional coping strategy "Acceptance", whereas they correlated negatively with maladaptive avoidant coping. strategies. There is a close interaction between high resilience, adaptive coping strategies and lower burden of chronic fatigue and emotional symptoms.
Collapse
Affiliation(s)
- Hajar Ghafaji
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway.
| | - Tonje Haug Nordenmark
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway; University of Oslo, Department of Psychology, Oslo, Norway
| | - Elin Western
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | | | - Tanja Karic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Angelika Sorteberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| |
Collapse
|
4
|
Choudhury M, Yamamoto R, Xiao X. Genetic architecture of RNA editing, splicing and gene expression in schizophrenia. Hum Mol Genet 2025; 34:277-290. [PMID: 39656777 PMCID: PMC11792240 DOI: 10.1093/hmg/ddae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been conducted over the past decades to investigate the underlying genetic origin of neuropsychiatric diseases, such as schizophrenia (SCZ). While these studies demonstrated the significance of disease-phenotype associations, there is a pressing need to fully characterize the functional relevance of disease-associated genetic variants. Functional genetic loci can affect transcriptional and post-transcriptional phenotypes that may contribute to disease pathology. Here, we investigate the associations between genetic variation and RNA editing, splicing, and overall gene expression through identification of quantitative trait loci (QTL) in the CommonMind Consortium SCZ cohort. We find that editing QTL (edQTL), splicing QTL (sQTL) and expression QTL (eQTL) possess both unique and common gene targets, which are involved in many disease-relevant pathways, including brain function and immune response. We identified two QTL that fall into all three QTL categories (seedQTL), one of which, rs146498205, targets the lincRNA gene, RP11-156P1.3. In addition, we observe that the RNA binding protein AKAP1, with known roles in neuronal regulation and mitochondrial function, had enriched binding sites among edQTL, including the seedQTL, rs146498205. We conduct colocalization with various brain disorders and find that all QTL have top colocalizations with SCZ and related neuropsychiatric diseases. Furthermore, we identify QTL within biologically relevant GWAS loci, such as in ELA2, an important tRNA processing gene associated with SCZ risk. This work presents the investigation of multiple QTL types in parallel and demonstrates how they target both distinct and overlapping SCZ-relevant genes and pathways.
Collapse
Affiliation(s)
- Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Ryo Yamamoto
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, United States
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| |
Collapse
|
5
|
Xin D, Wang Y, Hua G, Liu T. Effect of Benzodiazepines and Z-Drug Medications During Antenatal and Postnatal Depression and Anxiety: A Systematic Review and Meta-Analysis. Comb Chem High Throughput Screen 2025; 28:239-253. [PMID: 38551056 DOI: 10.2174/0113862073278815240325045209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Benzodiazepines (BZD) and Z-drugs are often prescribed for alleviating such symptoms and treating maternal psychiatric disorders and epilepsy. However, their use is limited due to the apprehensions and risks related to poor maternal and neonatal outcomes. OBJECTIVE This meta-analysis evaluated the rationality and efficacy of using Benzodiazepines and Z-drugs for managing anxiety and depression in pregnant women. METHODS The meta-analysis was based on a systematic review through keyword search utilizing Scopus, Pubmed, and Cochrane databases. One hundred three articles were deemed eligible, but only 21 articles were selected for the meta-analysis. RESULTS The meta-analysis showed that despite the indication for anxiety and depression in pregnant women, the usage of BZD and Z-drugs was significantly low compared to other psychotropic medications, with no therapy or non-pharmacological interventions. Our study shows that, during the antenatal and postnatal period, women required more anti-depressants, anti-psychotics, and anxiolytic drugs. CONCLUSION Although BZDs and Z-drugs are effective in managing insomnia during peripartum and post-partum, they are either ineffective or contraindicated for managing anxiety and depression in pregnant women compared to anxiolytics and anti-depressants.
Collapse
Affiliation(s)
- Di Xin
- Depression Ward, Wuhan Mental Health Center, Wuhan, Hubei Province, 430012, China
- Depression Ward, Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, 430012, China
| | - Yan Wang
- Depression Ward, Wuhan Mental Health Center, Wuhan, Hubei Province, 430012, China
- Depression Ward, Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, 430012, China
| | - Guangping Hua
- Depression Ward, Wuhan Mental Health Center, Wuhan, Hubei Province, 430012, China
- Depression Ward, Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, 430012, China
| | - Tuo Liu
- Depression Ward, Wuhan Mental Health Center, Wuhan, Hubei Province, 430012, China
- Depression Ward, Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, 430012, China
| |
Collapse
|
6
|
Méndez-Balbuena I, Betancourt-Navarrete BL, Hermosillo-Abundis AC, Flores A, Rebolledo-Herrera LF, Lemuz-López R, Huidobro N, Meza-Andrade R, Pelayo-González HJ, Bonilla-Sánchez MDR, López-Cortes VA, García-Flores MA. Weighted Coherence Analysis as a Window into the Neurophysiological Effects of Traumatic Brain Injury. Bioengineering (Basel) 2024; 11:1187. [PMID: 39768005 PMCID: PMC11673633 DOI: 10.3390/bioengineering11121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI), resulting from external forces, is a leading cause of disability and death, often leading to cognitive deficits that affect attention, concentration, speech and language, learning and memory, reasoning, planning, and problem-solving. Given the diverse mechanisms underlying TBI symptoms, it is essential to characterize its neurophysiological and neuropsychological effects. To address this, we employed weighted coherence (WC) analysis in patients performing the Halstead-Reitan categorization task, alongside a control group of eight healthy individuals. Our findings indicate a significant decrease in WC within the theta and delta bands in the temporal regions during cognitive tasks in the TBI group compared to controls. Additionally, we observed a significant increase in WC in the beta and gamma bands in the parietal region during both rest and cognitive tasks in the TBI group, relative to the control group. Furthermore, there was a strong correlation between WC and task performance scores in the temporal regions.
Collapse
Affiliation(s)
- Ignacio Méndez-Balbuena
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (B.L.B.-N.); (A.C.H.-A.); (H.J.P.-G.); (M.d.R.B.-S.); (V.A.L.-C.); (M.A.G.-F.)
| | - Brenda Lesly Betancourt-Navarrete
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (B.L.B.-N.); (A.C.H.-A.); (H.J.P.-G.); (M.d.R.B.-S.); (V.A.L.-C.); (M.A.G.-F.)
| | - Ana Cristina Hermosillo-Abundis
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (B.L.B.-N.); (A.C.H.-A.); (H.J.P.-G.); (M.d.R.B.-S.); (V.A.L.-C.); (M.A.G.-F.)
| | - Amira Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico
| | | | - Rafael Lemuz-López
- Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico;
| | - Nayeli Huidobro
- School of Biological Sciences, UPAEP-CONCYTEP, Puebla 72000, Mexico;
| | - Roberto Meza-Andrade
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Puebla 72000, Mexico;
| | - Héctor Juan Pelayo-González
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (B.L.B.-N.); (A.C.H.-A.); (H.J.P.-G.); (M.d.R.B.-S.); (V.A.L.-C.); (M.A.G.-F.)
| | - María del Rosario Bonilla-Sánchez
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (B.L.B.-N.); (A.C.H.-A.); (H.J.P.-G.); (M.d.R.B.-S.); (V.A.L.-C.); (M.A.G.-F.)
| | - Vicente Arturo López-Cortes
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (B.L.B.-N.); (A.C.H.-A.); (H.J.P.-G.); (M.d.R.B.-S.); (V.A.L.-C.); (M.A.G.-F.)
| | - Marco Antonio García-Flores
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (B.L.B.-N.); (A.C.H.-A.); (H.J.P.-G.); (M.d.R.B.-S.); (V.A.L.-C.); (M.A.G.-F.)
| |
Collapse
|
7
|
Ng B, Tasaki S, Greathouse KM, Walker CK, Zhang A, Covitz S, Cieslak M, Weber AJ, Adamson AB, Andrade JP, Poovey EH, Curtis KA, Muhammad HM, Seidlitz J, Satterthwaite T, Bennett DA, Seyfried NT, Vogel J, Gaiteri C, Herskowitz JH. Integration across biophysical scales identifies molecular and cellular correlates of person-to-person variability in human brain connectivity. Nat Neurosci 2024; 27:2240-2252. [PMID: 39482360 PMCID: PMC11537986 DOI: 10.1038/s41593-024-01788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Brain connectivity arises from interactions across biophysical scales, ranging from molecular to cellular to anatomical to network level. To date, there has been little progress toward integrated analysis across these scales. To bridge this gap, from a unique cohort of 98 individuals, we collected antemortem neuroimaging and genetic data, as well as postmortem dendritic spine morphometric, proteomic and gene expression data from the superior frontal and inferior temporal gyri. Through the integration of the molecular and dendritic spine morphology data, we identified hundreds of proteins that explain interindividual differences in functional connectivity and structural covariation. These proteins are enriched for synaptic structures and functions, energy metabolism and RNA processing. By integrating data at the genetic, molecular, subcellular and tissue levels, we link specific biochemical changes at synapses to connectivity between brain regions. These results demonstrate the feasibility of integrating data from vastly different biophysical scales to provide a more comprehensive understanding of brain connectivity.
Collapse
Affiliation(s)
- Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ada Zhang
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sydney Covitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Matt Cieslak
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley B Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia P Andrade
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily H Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hamad M Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jakob Seidlitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ted Satterthwaite
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob Vogel
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Clinical Science, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Gal Z, Torok D, Gonda X, Eszlari N, Anderson IM, Deakin B, Petschner P, Juhasz G, Bagdy G. New Evidence for the Role of the Blood-Brain Barrier and Inflammation in Stress-Associated Depression: A Gene-Environment Analysis Covering 19,296 Genes in 109,360 Humans. Int J Mol Sci 2024; 25:11332. [PMID: 39457114 PMCID: PMC11508422 DOI: 10.3390/ijms252011332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Mounting evidence supports the key role of the disrupted integrity of the blood-brain barrier (BBB) in stress- and inflammation-associated depression. We assumed that variations in genes regulating the expression and coding proteins constructing and maintaining this barrier, along with those involved in inflammation, have a predisposing or protecting role in the development of depressive symptoms after experiencing severe stress. To prove this, genome-by-environment (GxE) interaction analyses were conducted on 6.26 M SNPS covering 19,296 genes on PHQ9 depression in interaction with adult traumatic events scores in the UK Biobank (n = 109,360) in a hypothesis-free setup. Among the 63 genes that were significant in stress-connected depression, 17 were associated with BBB, 23 with inflammatory processes, and 4 with neuroticism. Compared to all genes, the enrichment of significant BBB-associated hits was 3.82, and those of inflammation-associated hits were 1.59. Besides some sex differences, CSMD1 and PTPRD, encoding proteins taking part in BBB integrity, were the most significant hits in both males and females. In conclusion, the identified risk genes and their encoded proteins could provide biomarkers or new drug targets to promote BBB integrity and thus prevent or decrease stress- and inflammation-associated depressive symptoms, and possibly infection, e.g., COVID-19-associated mental and neurological symptoms.
Collapse
Affiliation(s)
- Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (P.P.); (G.J.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary;
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (P.P.); (G.J.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary;
| | - Xenia Gonda
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary;
- Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (P.P.); (G.J.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary;
| | - Ian Muir Anderson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Bill Deakin
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (P.P.); (G.J.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary;
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (P.P.); (G.J.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary;
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (P.P.); (G.J.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary;
| |
Collapse
|
9
|
Odriozola A, González A, Álvarez-Herms J, Corbi F. Sleep regulation and host genetics. ADVANCES IN GENETICS 2024; 111:497-535. [PMID: 38908905 DOI: 10.1016/bs.adgen.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Due to the multifactorial and complex nature of rest, we focus on phenotypes related to sleep. Sleep regulation is a multifactorial process. In this chapter, we focus on those phenotypes inherent to sleep that are highly prevalent in the population, and that can be modulated by lifestyle, such as sleep quality and duration, insomnia, restless leg syndrome and daytime sleepiness. We, therefore, leave in the background those phenotypes that constitute infrequent pathologies or for which the current level of scientific evidence does not favour the implementation of practical approaches of this type. Similarly, the regulation of sleep quality is intimately linked to the regulation of the circadian rhythm. Although this relationship is discussed in the sections that require it, the in-depth study of circadian rhythm regulation at the molecular level deserves a separate chapter, and this is how it is dealt with in this volume.
Collapse
Affiliation(s)
- Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
10
|
Landa J, Serafim AB, Alba M, Maudes E, Molina-Porcel L, Garcia-Serra A, Mannara F, Dalmau J, Graus F, Sabater L. IgLON5 deficiency produces behavioral alterations in a knockout mouse model. Front Immunol 2024; 15:1347948. [PMID: 38370417 PMCID: PMC10869603 DOI: 10.3389/fimmu.2024.1347948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Background Anti-IgLON5 disease is a neurological disorder characterized by autoantibodies against IgLON5 and pathological evidence of neurodegeneration. IgLON5 is a cell adhesion molecule of unknown function that is highly expressed in the brain. Our aim was to investigate the impact of IgLON5 loss-of-function in evaluating brain morphology, social behavior, and the development of symptoms observed in an IgLON5 knockout (IgLON5-KO) mouse model. Methods The IgLON5-KO mice were generated using CRISPR-Cas9 technology. Immunohistochemistry on fixed sagittal brain sections and Western blotting brain lysates were used to confirm IgLON5 silencing and to evaluate the presence of other cell surface proteins. Two- month-old IgLON5-KO and wild-type (WT) mice underwent a comprehensive battery of behavioral tests to assess 1) locomotion, 2) memory, 3) anxiety, 4) social interaction, and 5) depressive-like behavior. Brain sections were examined for the presence of anatomical abnormalities and deposits of hyperphosphorylated tau in young adult (2-month-old) and aged (22-month-old) mice. Results Mice did not develop neurological symptoms reminiscent of those seen in patients with anti-IgLON5 disease. Behavioral testing revealed that 2-month-old IgLON5-KO mice showed subtle alterations in motor coordination and balance. IgLON5-KO females exhibited hyperactivity during night and day. Males were observed to have depressive-like behavior and excessive nest-building behavior. Neuropathological studies did not reveal brain morphological alterations or hyperphosphorylated tau deposits. Conclusion IgLON5-KO mice showed subtle alterations in behavior and deficits in fine motor coordination but did not develop the clinical phenotype of anti-IgLON5 disease.
Collapse
Affiliation(s)
- Jon Landa
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Ana Beatriz Serafim
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Mercedes Alba
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Estibaliz Maudes
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurological Tissue Bank, Biobanc, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Garcia-Serra
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Francesco Mannara
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Josep Dalmau
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Francesc Graus
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Lidia Sabater
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
11
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
12
|
Zhang J, Zhang R, Peng Y, Aa J, Wang G. AI Machine Learning Technique Characterizes Potential Markers of Depression in Two Animal Models of Depression. Brain Sci 2023; 13:brainsci13050763. [PMID: 37239235 DOI: 10.3390/brainsci13050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: there is an urgent clinical need for rapid and effective antidepressants. (2) Methods: We employed proteomics to profile proteins in two animal models (n = 48) of Chronic Unpredictable Stress and Chronic Social Defeat Stress. Additionally, partial least squares projection to latent structure discriminant analysis and machine learning were used to distinguish the models and the healthy control, extract and select protein features and build biomarker panels for the identification of different mouse models of depression. (3) Results: The two depression models were significantly different from the healthy control, and there were common changes in proteins in the depression-related brain regions of the two models; i.e., SRCN1 was down-regulated in the dorsal raphe nucleus in both models of depression. Additionally, SYIM was up-regulated in the medial prefrontal cortex in the two depression models. Bioinformatics analysis suggested that perturbed proteins are involved in energy metabolism, nerve projection, etc. Further examination confirmed that the trends of feature proteins were consistent with mRNA expression levels. (4) Conclusions: To the best of our knowledge, this is the first study to probe new targets of depression in multiple brain regions of two typical models of depression, which could be targets worthy of study.
Collapse
Affiliation(s)
- Jing Zhang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Ran Zhang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Ying Peng
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| |
Collapse
|
13
|
Šimon M, Mikec Š, Morton NM, Atanur SS, Konc J, Horvat S, Kunej T. Genome-wide screening for genetic variants in polyadenylation signal (PAS) sites in mouse selection lines for fatness and leanness. Mamm Genome 2023; 34:12-31. [PMID: 36414820 PMCID: PMC9684942 DOI: 10.1007/s00335-022-09967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Alternative polyadenylation (APA) determines mRNA stability, localisation, translation and protein function. Several diseases, including obesity, have been linked to APA. Studies have shown that single nucleotide polymorphisms in polyadenylation signals (PAS-SNPs) can influence APA and affect phenotype and disease susceptibility. However, these studies focussed on associations between single PAS-SNP alleles with very large effects and phenotype. Therefore, we performed a genome-wide screening for PAS-SNPs in the polygenic mouse selection lines for fatness and leanness by whole-genome sequencing. The genetic variants identified in the two lines were overlapped with locations of PAS sites obtained from the PolyASite 2.0 database. Expression data for selected genes were extracted from the microarray expression experiment performed on multiple tissue samples. In total, 682 PAS-SNPs were identified within 583 genes involved in various biological processes, including transport, protein modifications and degradation, cell adhesion and immune response. Moreover, 63 of the 583 orthologous genes in human have been previously associated with human diseases, such as nervous system and physical disorders, and immune, endocrine, and metabolic diseases. In both lines, PAS-SNPs have also been identified in genes broadly involved in APA, such as Polr2c, Eif3e and Ints11. Five PAS-SNPs within 5 genes (Car, Col4a1, Itga7, Lat, Nmnat1) were prioritised as potential functional variants and could contribute to the phenotypic disparity between the two selection lines. The developed PAS-SNPs catalogue presents a key resource for planning functional studies to uncover the role of PAS-SNPs in APA, disease susceptibility and fat deposition.
Collapse
Affiliation(s)
- Martin Šimon
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Špela Mikec
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Nicholas M. Morton
- grid.511172.10000 0004 0613 128XUniversity of Edinburgh, The Queen’s Medical Research Institute, Centre for Cardiovascular Science, Edinburgh, UK
| | - Santosh S. Atanur
- grid.7445.20000 0001 2113 8111Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- grid.4305.20000 0004 1936 7988Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Simon Horvat
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Tanja Kunej
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
14
|
Martinez-Monleon A, Gaarder J, Djos A, Kogner P, Fransson S. Identification of recurrent 3q13.31 chromosomal rearrangement indicates LSAMP as a tumor suppressor gene in neuroblastoma. Int J Oncol 2023; 62:27. [PMID: 36601748 PMCID: PMC9851131 DOI: 10.3892/ijo.2023.5475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/04/2022] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma (NB) is a childhood malignancy of the sympathetic nervous system. NB is mainly driven by copy number alterations, such as MYCN amplification, large deletions of chromosome arm 11q and gain of chromosome arm 17q, which are all markers of high‑risk disease. Genes targeted by recurrent, smaller, focal alterations include CDKN2A/B, TERT, PTPRD and ATRX. Our previous study on relapsed NB detected recurrent structural alterations centered at limbic system‑associated membrane protein (LSAMP; HUGO Gene Nomenclature Committee: 6705; chromosomal location 3q13.31), which is a gene frequently reported to be deleted or downregulated in other types of cancer. Notably, in cancer, LSAMP has been shown to have tumor‑suppressing functions. The present study performed an expanded investigation using whole genome sequencing of tumors from 35 patients, mainly with high‑risk NB. Focal duplications or deletions targeting LSAMP were detected in six cases (17%), whereas single nucleotide polymorphism‑microarray analysis of 16 NB cell lines detected segmental alterations at 3q13.31 in seven out of the 16 NB cell lines (44%). Furthermore, low expression of LSAMP in NB tumors was significantly associated with poor overall and event‑free survival. In vitro, knockdown of LSAMP in NB cell lines increased cell proliferation, whereas overexpression decreased proliferation and viability. These findings supported a tumor suppressor role for LSAMP in NB. However, the higher incidence of LSAMP aberrations in cell lines and in relapsed NB tumors suggested that these alterations were a late event predominantly in advanced NB with a poor prognosis, indicating a role of LSAMP in tumor progression rather than in tumor initiation. In conclusion, the present study demonstrated recurrent genomic aberrations of chromosomal region 3q13.31 that targeted the LSAMP gene, which encodes a membrane protein involved in cell adhesion, central nervous system development and neurite outgrowth. The frequent aberrations affecting LSAMP, together with functional evidence, suggested an anti‑proliferative role of LSAMP in NB.
Collapse
Affiliation(s)
- Angela Martinez-Monleon
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jennie Gaarder
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden,Correspondence to: Dr Susanne Fransson, Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 3B, SE-405 30 Gothenburg, Sweden, E-mail:
| |
Collapse
|
15
|
Behavioral Phenotyping of Bbs6 and Bbs8 Knockout Mice Reveals Major Alterations in Communication and Anxiety. Int J Mol Sci 2022; 23:ijms232314506. [PMID: 36498834 PMCID: PMC9741393 DOI: 10.3390/ijms232314506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The primary cilium is an organelle with a central role in cellular signal perception. Mutations in genes that encode cilia-associated proteins result in a collection of human syndromes collectively termed ciliopathies. Of these, the Bardet-Biedl syndrome (BBS) is considered one of the archetypical ciliopathies, as patients exhibit virtually all respective clinical phenotypes, such as pathological changes of the retina or the kidney. However, the behavioral phenotype associated with ciliary dysfunction has received little attention thus far. Here, we extensively characterized the behavior of two rodent models of BBS, Bbs6/Mkks, and Bbs8/Ttc8 knockout mice concerning social behavior, anxiety, and cognitive abilities. While learning tasks remained unaffected due to the genotype, we observed diminished social behavior and altered communication. Additionally, Bbs knockout mice displayed reduced anxiety. This was not due to altered adrenal gland function or corticosterone serum levels. However, hypothalamic expression of Lsamp, the limbic system associated protein, and Adam10, a protease acting on Lsamp, were reduced. This was accompanied by changes in characteristics of adult hypothalamic neurosphere cultures. In conclusion, we provide evidence that behavioral changes in Bbs knockout mice are mainly found in social and anxiety traits and might be based on an altered architecture of the hypothalamus.
Collapse
|
16
|
Watanabe K, Jansen PR, Savage JE, Nandakumar P, Wang X, Hinds DA, Gelernter J, Levey DF, Polimanti R, Stein MB, Van Someren EJW, Smit AB, Posthuma D. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat Genet 2022; 54:1125-1132. [PMID: 35835914 DOI: 10.1038/s41588-022-01124-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/06/2022] [Indexed: 12/20/2022]
Abstract
Insomnia is a heritable, highly prevalent sleep disorder for which no sufficient treatment currently exists. Previous genome-wide association studies with up to 1.3 million subjects identified over 200 associated loci. This extreme polygenicity suggested that many more loci remain to be discovered. The current study almost doubled the sample size to 593,724 cases and 1,771,286 controls, thereby increasing statistical power, and identified 554 risk loci (including 364 novel loci). To capitalize on this large number of loci, we propose a novel strategy to prioritize genes using external biological resources and functional interactions between genes across risk loci. Of all 3,898 genes naively implicated from the risk loci, we prioritize 289 and find brain-tissue expression specificity and enrichment in specific gene sets of synaptic signaling functions and neuronal differentiation. We show that this novel gene prioritization strategy yields specific hypotheses on underlying mechanisms of insomnia that would have been missed by traditional approaches.
Collapse
Affiliation(s)
- Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Section Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | | | - Xin Wang
- 23andMe, Inc., Sunnyvale, CA, USA
| | | | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eus J W Van Someren
- Departments of Integrative Neurophysiology and Psychiatry InGeest, Amsterdam Neuroscience, VU University and Medical Center, Amsterdam, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands.
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Norkeviciene A, Gocentiene R, Sestokaite A, Sabaliauskaite R, Dabkeviciene D, Jarmalaite S, Bulotiene G. A Systematic Review of Candidate Genes for Major Depression. Medicina (B Aires) 2022; 58:medicina58020285. [PMID: 35208605 PMCID: PMC8875554 DOI: 10.3390/medicina58020285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The aim of this systematic review was to analyse which candidate genes were examined in genetic association studies and their association with major depressive disorder (MDD). Materials and Methods: We searched PUBMED for relevant studies published between 1 July 2012 and 31 March 2019, using combinations of keywords: “major depressive disorder” OR “major depression” AND “gene candidate”, “major depressive disorder” OR “major depression” AND “polymorphism”. Synthesis focused on assessing the likelihood of bias and investigating factors that may explain differences between the results of studies. For selected gene list after literature overview, functional enrichment analysis and gene ontology term enrichment analysis were conducted. Results: 141 studies were included in the qualitative review of gene association studies focusing on MDD. 86 studies declared significant results (p < 0.05) for 172 SNPs in 85 genes. The 13 SNPs associations were confirmed by at least two studies. The 18 genetic polymorphism associations were confirmed in both the previous and this systematic analysis by at least one study. The majority of the studies (68.79 %) did not use or describe power analysis, which may have had an impact over the significance of their results. Almost a third of studies (N = 54) were conducted in Chinese Han population. Conclusion: Unfortunately, there is still insufficient data on the links between genes and depression. Despite the reported genetic associations, most studies were lacking in statistical power analysis, research samples were small, and most gene polymorphisms have been confirmed in only one study. Further genetic research with larger research samples is needed to discern whether the relationship is random or causal. Summations: This systematic review had summarized all reported genetic associations and has highlighted the genetic associations that have been replicated. Limitations: Unfortunately, most gene polymorphisms have been confirmed only once, so further studies are warranted for replicating these genetic associations. In addition, most studies included a small number of MDD cases that could be indicative for false positive. Considering that polymorphism loci and associations with MDD is also vastly dependent on interpersonal variation, extensive studies of gene interaction pathways could provide more answers to the complexity of MDD.
Collapse
Affiliation(s)
- Audrone Norkeviciene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Romena Gocentiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Agne Sestokaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Rasa Sabaliauskaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Daiva Dabkeviciene
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Sonata Jarmalaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Giedre Bulotiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
- Correspondence:
| |
Collapse
|
18
|
Spatiotemporal expression of IgLON family members in the developing mouse nervous system. Sci Rep 2021; 11:19536. [PMID: 34599206 PMCID: PMC8486791 DOI: 10.1038/s41598-021-97768-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Differential expression of cell adhesion molecules in neuronal populations is one of the many mechanisms promoting the formation of functional neural circuits in the developing nervous system. The IgLON family consists of five cell surface immunoglobulin proteins that have been associated with various developmental disorders, such as autism spectrum disorder, schizophrenia, and major depressive disorder. However, there is still limited and fragmented information about their patterns of expression in certain regions of the developing nervous system and how their expression contributes to their function. Utilizing an in situ hybridization approach, we have analyzed the spatiotemporal expression of all IgLON family members in the developing mouse brain, spinal cord, eye, olfactory epithelium, and vomeronasal organ. At one prenatal (E16) and two postnatal (P0 and P15) ages, we show that each IgLON displays distinct expression patterns in the olfactory system, cerebral cortex, midbrain, cerebellum, spinal cord, and eye, indicating that they likely contribute to the wiring of specific neuronal circuitry. These analyses will inform future functional studies aimed at identifying additional roles for these proteins in nervous system development.
Collapse
|
19
|
Tretiakov A, Malakhova A, Naumova E, Rudko O, Klimov E. Genetic Biomarkers of Panic Disorder: A Systematic Review. Genes (Basel) 2020; 11:genes11111310. [PMID: 33158196 PMCID: PMC7694264 DOI: 10.3390/genes11111310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Although panic disorder (PD) is one of the most common anxiety disorders severely impacting quality of life, no effective genetic testing exists; known data on possible genetic biomarkers is often scattered and unsystematic which complicates further studies. (2) Methods: We used PathwayStudio 12.3 (Elsevier, The Netherlands) to acquire literature data for further manual review and analysis. 229 articles were extracted, 55 articles reporting associations, and 32 articles reporting no associations were finally selected. (3) Results: We provide exhaustive information on genetic biomarkers associated with PD known in the scientific literature. Data is presented in two tables. Genes COMT and SLC6A4 may be considered the most promising for PD diagnostic to date. (4) Conclusions: This review illustrates current progress in association studies of PD and may indicate possible molecular mechanisms of its pathogenesis. This is a possible basis for data analysis, novel experimental studies, or developing test systems and personalized treatment approaches.
Collapse
Affiliation(s)
- Artemii Tretiakov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alena Malakhova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
| | - Elena Naumova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Rudko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Eugene Klimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence:
| |
Collapse
|
20
|
Bregin A, Kaare M, Jagomäe T, Karis K, Singh K, Laugus K, Innos J, Leidmaa E, Heinla I, Visnapuu T, Oja EM, Kõiv K, Lilleväli K, Harro J, Philips MA, Vasar E. Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system. Pharmacol Biochem Behav 2020; 198:173017. [PMID: 32828972 DOI: 10.1016/j.pbb.2020.173017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Limbic system associated membrane protein (Lsamp) is a neural adhesion protein which has been recently found to be differentially expressed between serotonergic neuron subtypes. We have previously shown elevated serotonin (5-HT) turnover rate in Lsamp-deficient mice. The purpose of the current study was to elucidate the role of Lsamp in serotonergic neurotransmission. Chronic (18 days) administration of serotonin reuptake inhibitor (SSRI) escitalopram (10 mg/kg) significantly increased general activity in wild-type mice in the open field and protected exploration in Lsamp-/- mice in the elevated-plus maze. An important psychopathology-related endophenotype, elevated 5-HT turnover in the brain of Lsamp-deficient mice, was reproduced in the saline group. Escitalopram restored the elevated 5-HT turnover of Lsamp-deficient mice to a level comparable with their wild-type littermates, suggesting that high 5-HT turnover in mutants is mediated by the increased activity of serotonin transporter (SERT protein encoded by Slc6a4 gene). The baseline level of Slc6a4 transcript was not changed in Lsamp-deficient mice, however, our immunohistochemical analysis showed partial co-expression of Lsamp with both SERT and Tph2 proteins in raphe. Overactivity of SERT in Lsamp-/- mice is further supported by significant elevation of Maoa transcript and increase of DOPAC, another Mao A product, specifically in the raphe. Again, elevation of DOPAC was reduced to the level of wild-type by chronic SSRI treatment. The activity of Lsamp gene promoters varied in 5-HT producing nuclei: both Lsamp 1a and 1b promoters were active in the dorsal raphe; most of the expression in the median raphe was from 1b promoter, whereas Lsamp 1a promoter was almost exclusively active in the caudal subgroup of raphe nuclei. We suggest that Lsamp may have an impact on the integrity of serotonergic synapses, which is possibly the neurochemical basis of the anxiety- and sociability-related phenotype in Lsamp-deficient mice.
Collapse
Affiliation(s)
- Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karina Karis
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eva-Maria Oja
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kadri Kõiv
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Depression-Associated Gene Negr1-Fgfr2 Pathway Is Altered by Antidepressant Treatment. Cells 2020; 9:cells9081818. [PMID: 32751911 PMCID: PMC7464991 DOI: 10.3390/cells9081818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Negr1 gene has been significantly associated with major depression in genetic studies. Negr1 encodes for a cell adhesion molecule cleaved by the protease Adam10, thus activating Fgfr2 and promoting neuronal spine plasticity. We investigated whether antidepressants modulate the expression of genes belonging to Negr1-Fgfr2 pathway in Flinders sensitive line (FSL) rats, in a corticosterone-treated mouse model of depression, and in mouse primary neurons. Negr1 and Adam10 were the genes mostly affected by antidepressant treatment, and in opposite directions. Negr1 was down-regulated by escitalopram in the hypothalamus of FSL rats, by fluoxetine in the hippocampal dentate gyrus of corticosterone-treated mice, and by nortriptyline in hippocampal primary neurons. Adam10 mRNA was increased by nortriptyline administration in the hypothalamus, by escitalopram in the hippocampus of FSL rats, and by fluoxetine in mouse dorsal dentate gyrus. Similarly, nortriptyline increased Adam10 expression in hippocampal cultures. Fgfr2 expression was increased by nortriptyline in the hypothalamus of FSL rats and in hippocampal neurons. Lsamp, another IgLON family protein, increased in mouse dentate gyrus after fluoxetine treatment. These findings suggest that Negr1-Fgfr2 pathway plays a role in the modulation of synaptic plasticity induced by antidepressant treatment to promote therapeutic efficacy by rearranging connectivity in corticolimbic circuits impaired in depression.
Collapse
|
22
|
Boloc D, Rodríguez N, Torres T, García-Cerro S, Parellada M, Saiz-Ruiz J, Cuesta MJ, Bernardo M, Gassó P, Lafuente A, Mas S, Arnaiz JA. Identifying key transcription factors for pharmacogenetic studies of antipsychotics induced extrapyramidal symptoms. Psychopharmacology (Berl) 2020; 237:2151-2159. [PMID: 32382784 DOI: 10.1007/s00213-020-05526-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We explore the transcription factors involved in the molecular mechanism of antipsychotic (AP)-induced acute extrapyramidalsymptoms (EPS) in order to identify new candidate genes for pharmacogenetic studies. METHODS Protein-protein interaction (PPI) networks previously created from three pharmacogenomic models (in vitro, animal, and peripheral blood inhumans) were used to, by means of several bioinformatic tools; identify key transcription factors (TFs) that regulate each network. Once the TFs wereidentified, SNPs disrupting the binding sites (TFBS) of these TFs in the genes of each network were selected for genotyping. Finally, SNP-basedassociations with EPS were analyzed in a sample of 356 psychiatric patients receiving AP. RESULTS Our analysis identified 33 TFs expressed in the striatum, and 125 SNPs disrupting TFBS in 50 genes of our initial networks. Two SNPs (rs938112,rs2987902) in two genes (LSMAP and ABL1) were significantly associated with AP induced EPS (p < 0.001). These SNPs disrupt TFBS regulated byPOU2F1. CONCLUSION Our results highlight the possible role of the disruption of TFBS by SNPs in the pharmacological response to AP.
Collapse
Affiliation(s)
- Daniel Boloc
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Teresa Torres
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Susana García-Cerro
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Jeronimo Saiz-Ruiz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Hospital Ramon y Cajal, Universidad de Alcala, IRYCIS, Madrid, Spain
| | - Manuel J Cuesta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry, Complejo Hospitalario de Navarra. Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miquel Bernardo
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Patricia Gassó
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Amalia Lafuente
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain.
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Joan Albert Arnaiz
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Primrose syndrome: a phenotypic comparison of patients with a ZBTB20 missense variant versus a 3q13.31 microdeletion including ZBTB20. Eur J Hum Genet 2020; 28:1044-1055. [PMID: 32071410 DOI: 10.1038/s41431-020-0582-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022] Open
Abstract
Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20 variants were identified as responsible for this syndrome. Indeed, ZBTB20 plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20 missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype-genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p = 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (p nonsignificant). Corpus callosum dysgenesis (p = 0.00004), hypothyroidism (p = 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.
Collapse
|
24
|
Cinquina V, Calvigioni D, Farlik M, Halbritter F, Fife-Gernedl V, Shirran SL, Fuszard MA, Botting CH, Poullet P, Piscitelli F, Máté Z, Szabó G, Yanagawa Y, Kasper S, Di Marzo V, Mackie K, McBain CJ, Bock C, Keimpema E, Harkany T. Life-long epigenetic programming of cortical architecture by maternal 'Western' diet during pregnancy. Mol Psychiatry 2020; 25:22-36. [PMID: 31735910 DOI: 10.1038/s41380-019-0580-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.
Collapse
Affiliation(s)
- Valentina Cinquina
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sally L Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | - Matthew A Fuszard
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom.,Faculty of Medicine, Martin-Luther University, Halle-Wittenberg, Halle, Germany
| | | | | | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University School of Medicine, Maebashi, Japan
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Chris J McBain
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, NIH, Bethesda, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry 2019; 24:1189-1205. [PMID: 30651602 DOI: 10.1038/s41380-018-0347-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
Recent genome-wide association studies on major depressive disorder have implicated neuronal growth regulator 1 (Negr1), a GPI-anchored cell adhesion molecule in the immunoglobulin LON family. Although Negr1 has been shown to regulate neurite outgrowth and synapse formation, the mechanism through which this protein affects mood disorders is still largely unknown. In this research, we characterized Negr1-deficient (negr1-/-) mice to elucidate the function of Negr1 in anxiety and depression. We found that anxiety- and depression-like behaviors increased in negr1-/- mice compared with wild-type mice. In addition, negr1-/- mice had decreased adult hippocampal neurogenesis compared to wild-type mice. Concurrently, both LTP and mEPSC in the dentate gyrus (DG) region were severely compromised in negr1-/- mice. In our effort to elucidate the underlying molecular mechanisms, we found that lipocalin-2 (Lcn2) expression was decreased in the hippocampus of negr1-/- mice compared to wild-type mice. Heterologous Lcn2 expression in the hippocampal DG of negr1-/- mice rescued anxiety- and depression-like behaviors and restored neurogenesis and mEPSC frequency to their normal levels in these mice. Furthermore, we discovered that Negr1 interacts with leukemia inhibitory factor receptor (LIFR) and modulates LIF-induced Lcn2 expression. Taken together, our data uncovered a novel mechanism of mood regulation by Negr1 involving an interaction between Negr1 and LIFR along with Lcn2 expression.
Collapse
|
26
|
Increased sensitivity to psychostimulants and GABAergic drugs in Lsamp-deficient mice. Pharmacol Biochem Behav 2019; 183:87-97. [PMID: 31163180 DOI: 10.1016/j.pbb.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
Lsamp, in combinations with other members of the IgLON family of cell adhesion molecules, promotes and inhibits neurite outgrowth and synapse formation during development. Mice lacking Lsamp gene display decreased social behaviour, hyperactivity; decreased anxiety level, alongside with altered balance in GABAA receptor α1 and α2 subunits; and decreased sensitivity to amphetamine, alongside with elevated serotonin function. In human studies, Lsamp has been associated with several psychiatric diseases, including schizophrenia, and suicide. Here, we provide a more thorough characterization of the pharmacological phenotype of Lsamp-deficient mice, including testing for sensitivity to morphine, cocaine, MK-801 and ketamine. More thorougly, sensitivity to GABA modulators (diazepam, alprazolam, ethanol, pentobarbital, TP003, and SL651498) was assessed. In brief, Lsamp-deficient mice were more sensitive to the locomotor activating effects of cocaine and morphine, and hypersensitive to the sedative and muscle relaxant effects of GABA modulators, most likely reflecting enhanced function of α1 and α5 subunits of the GABAA receptor. No gross differences in sensitivity to NMDA receptor modulators were observed. Thus, as the lack of Lsamp gene leads to widespread imbalances in major neurotransmitter systems in the brain accompanied by remarkable changes in behavioural phenotype as well, Lsamp-deficient mice are a promising model for mimicking psychiatric disorders.
Collapse
|
27
|
Khan S, Nabi G, Yao L, Siddique R, Sajjad W, Kumar S, Duan P, Hou H. Health risks associated with genetic alterations in internal clock system by external factors. Int J Biol Sci 2018; 14:791-798. [PMID: 29910689 PMCID: PMC6001675 DOI: 10.7150/ijbs.23744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
The circadian system maintains the main aspects of physiological and behavioral processes. Both circadian rhythm and sleep impact an organism's health through interaction with environmental factors. Variations in external factors influence the functionality of clock genes and disrupt 24-hour rhythmic cycle. The disrupted circadian rhythm and disregulated sleep affect an organism's health, thereby causing several disorders including cancer, depression and cardiac disorders. Considering the role of clock genes and environmental factors, extensive investigation is required focusing on pathways involved in development of life-threatening disorders. This review identifies the major risks and associated factors related with disruption in circadian system and sleep.
Collapse
Affiliation(s)
- Suliman Khan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, P.R China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University
- University of Chinese Academy of Sciences, Beijing 100049
| | - Ghulam Nabi
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, P.R China
- University of Chinese Academy of Sciences, Beijing 100049
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University
| | - Rabeea Siddique
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wasim Sajjad
- University of Chinese Academy of Sciences, Beijing 100049
- Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and geophysics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Sunjeet Kumar
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, P.R China
| | - Pengfei Duan
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University
| | - Hongwei Hou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, P.R China
| |
Collapse
|
28
|
Singh K, Lilleväli K, Gilbert SF, Bregin A, Narvik J, Jayaram M, Rahi M, Innos J, Kaasik A, Vasar E, Philips MA. The combined impact of IgLON family proteins Lsamp and Neurotrimin on developing neurons and behavioral profiles in mouse. Brain Res Bull 2018; 140:5-18. [PMID: 29605488 DOI: 10.1016/j.brainresbull.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Cell surface neural adhesion proteins are critical components in the complex orchestration of cell proliferation, apoptosis, and neuritogenesis essential for proper brain construction and behavior. We focused on the impact of two plasticity-associated IgLON family neural adhesion molecules, Neurotrimin (Ntm) and Limbic system associated membrane protein (Lsamp), on mouse behavior and its underlying neural development. Phenotyping neurons derived from the hippocampi of Lsamp-/-, Ntm-/- and Lsamp-/-Ntm-/- mice was performed in parallel with behavioral testing. While the anatomy of mutant brains revealed no gross changes, the Ntm-/- hippocampal neurons exhibited premature sprouting of neurites and manifested accelerated neurite elongation and branching. We propose that Ntm exerts an inhibitory impact on neurite outgrowth, whereas Lsamp appears to be an enhancer of the said process as premature neuritogenesis in Ntm-/- neurons is apparent only in the presence of Lsamp. We also show interplay between Lsamp and Ntm in regulating tissue homeostasis: the impact of Ntm on cellular proliferation was dependent on Lsamp, and Lsamp appeared to be a positive regulator of apoptosis in the presence of Ntm. Behavioral phenotyping indicated test-specific interactions between Lsamp and Ntm. The phenotypes of single mutant lines, such as reduced swimming speed in Morris water maze and increased activity in the elevated plus maze, were magnified in Lsamp-/-Ntm-/- mice. Altogether, evidence both from behavioral experiments and cultured hippocampal cells show combined and differential interactions between Ntm and Lsamp in the formation of hippocampal circuits and behavioral profiles. We demonstrate that mutual interactions between IgLON molecules regulate the initiation of neurite sprouting at very early ages, and even cell-autonomously, independent of their regulation of cell-cell adhesion.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Jane Narvik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Märt Rahi
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| |
Collapse
|
29
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
30
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
31
|
Shiftwork-Mediated Disruptions of Circadian Rhythms and Sleep Homeostasis Cause Serious Health Problems. Int J Genomics 2018; 2018:8576890. [PMID: 29607311 PMCID: PMC5828540 DOI: 10.1155/2018/8576890] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Shiftwork became common during the last few decades with the growing demands of human life. Despite the social inactivity and irregularity in habits, working in continuous irregular shifts causes serious health issues including sleep disorders, psychiatric disorders, cancer, and metabolic disorders. These health problems arise due to the disruption in circadian clock system, which is associated with alterations in genetic expressions. Alteration in clock controlling genes further affects genes linked with disorders including major depression disorder, bipolar disorder, phase delay and phase advance sleep syndromes, breast cancer, and colon cancer. A diverse research work is needed focusing on broad spectrum changes caused by jet lag in brain and neuronal system. This review is an attempt to motivate the researchers to conduct advanced studies in this area to identify the risk factors and mechanisms. Its goal is extended to make the shift workers aware about the risks associated with shiftwork.
Collapse
|
32
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
33
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 3: Evidence from chromosome 3 high density association screen. J Comp Neurol 2017; 526:59-79. [PMID: 28856687 DOI: 10.1002/cne.24311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was systematically reported (Aukes et al, Genet Med 2012, 14, 338-341) and convergent evidence from genetics, symptomatology, and psychopharmacology imply that there are intrinsic connections between these three major psychiatric disorders, for example, any two or even three of these disorders could co-exist in some families. A total of 60, 838 single-nucleotide polymorphisms (SNPs) on chromosome 3 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD patients and 1,000 controls. The population of Shandong province was formed in 14 century and believed that it belongs to homogenous population. Associated SNPs were systematically revealed and outstanding susceptibility genes (CADPS, GRM7,KALRN, LSAMP, NLGN1, PRICKLE2, ROBO2) were identified. Unexpectedly, flanking genes for the associated SNPs distinctive for BPD and/or MDD were replicated in an enlarged cohort of 986 SCZ patients. The evidence from this chromosome 3 analysis supports the notion that both of bipolar and MDD might be subtypes of schizophrenia rather than independent disease entity. Also, a similar finding was detected on chromosome 5, 6, 7, and 8 (Chen et al. Am J Transl Res 2017;9 (5):2473-2491; Curr Mol Med 2016;16(9):840-854; Behav Brain Res 2015;293:241-251; Mol Neurobiol 2016. doi: 10.1007/s12035-016-0102-1). Furthermore, PRICKLE2 play an important role in the pathogenesis of three major psychoses in this population.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Bin Cai
- CapitalBio corporation, Beijing, People's Republic of China
| | - Xiaohong Chen
- CapitalBio corporation, Beijing, People's Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
34
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
35
|
Vanaveski T, Singh K, Narvik J, Eskla KL, Visnapuu T, Heinla I, Jayaram M, Innos J, Lilleväli K, Philips MA, Vasar E. Promoter-Specific Expression and Genomic Structure of IgLON Family Genes in Mouse. Front Neurosci 2017; 11:38. [PMID: 28210208 PMCID: PMC5288359 DOI: 10.3389/fnins.2017.00038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/19/2017] [Indexed: 01/20/2023] Open
Abstract
IgLON family is composed of five genes: Lsamp, Ntm, Opcml, Negr1, and Iglon5; encoding for five highly homologous neural adhesion proteins that regulate neurite outgrowth and synapse formation. In the current study we performed in silico analysis revealing that Ntm and Opcml display similar genomic structure as previously reported for Lsamp, characterized by two alternative promotors 1a and 1b. Negr1 and Iglon5 transcripts have uniform 5′ region, suggesting single promoter. Iglon5, the recently characterized family member, shares high level of conservation and structural qualities characteristic to IgLON family such as N-terminal signal peptide, three Ig domains, and GPI anchor binding site. By using custom 5′-isoform-specific TaqMan gene-expression assay, we demonstrated heterogeneous expression of IgLON transcripts in different areas of mouse brain and several-fold lower expression in selected tissues outside central nervous system. As an example, the expression of IgLON transcripts in urogenital and reproductive system is in line with repeated reports of urogenital tumors accompanied by mutations in IgLON genes. Considering the high levels of intra-family homology shared by IgLONs, we investigated potential compensatory effects at the level of IgLON isoforms in the brains of mice deficient of one or two family members. We found that the lack of IgLONs is not compensated by a systematic quantitative increase of the other family members. On the contrary, the expression of Ntm 1a transcript and NEGR1 protein was significantly reduced in the frontal cortex of Lsamp-deficient mice suggesting that the expression patterns within IgLON family are balanced coherently. The actions of individual IgLONs, however, can be antagonistic as demonstrated by differential expression of Syp in deletion mutants of IgLONs. In conclusion, we show that the genomic twin-promoter structure has impact on both anatomical distribution and intra-family interactions of IgLON family members. Remarkable variety in the activity levels of 1a and 1b promoters both in the brain and in other tissues, suggests complex functional regulation of IgLONs by alternative signal peptides driven by 1a and 1b promoters.
Collapse
Affiliation(s)
- Taavi Vanaveski
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Jane Narvik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of TartuTartu, Estonia; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of HelsinkiHelsinki, Finland
| | - Indrek Heinla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| |
Collapse
|
36
|
Candidate genes in panic disorder: meta-analyses of 23 common variants in major anxiogenic pathways. Mol Psychiatry 2016; 21:665-79. [PMID: 26390831 DOI: 10.1038/mp.2015.138] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022]
Abstract
The utilization of molecular genetics approaches in examination of panic disorder (PD) has implicated several variants as potential susceptibility factors for panicogenesis. However, the identification of robust PD susceptibility genes has been complicated by phenotypic diversity, underpowered association studies and ancestry-specific effects. In the present study, we performed a succinct review of case-control association studies published prior to April 2015. Meta-analyses were performed for candidate gene variants examined in at least three studies using the Cochrane Mantel-Haenszel fixed-effect model. Secondary analyses were also performed to assess the influences of sex, agoraphobia co-morbidity and ancestry-specific effects on panicogenesis. Meta-analyses were performed on 23 variants in 20 PD candidate genes. Significant associations after correction for multiple testing were observed for three variants, TMEM132D rs7370927 (T allele: odds ratio (OR)=1.27, 95% confidence interval (CI): 1.15-1.40, P=2.49 × 10(-6)), rs11060369 (CC genotype: OR=0.65, 95% CI: 0.53-0.79, P=1.81 × 10(-5)) and COMT rs4680 (Val (G) allele: OR=1.27, 95% CI: 1.14-1.42, P=2.49 × 10(-5)) in studies with samples of European ancestry. Nominal associations that did not survive correction for multiple testing were observed for NPSR1 rs324891 (T allele: OR=1.22, 95% CI: 1.07-1.38, P=0.002), TPH1 rs1800532 (AA genotype: OR=1.46, 95% CI: 1.14-1.89, P=0.003) and HTR2A rs6313 (T allele: OR=1.19, 95% CI: 1.07-1.33, P=0.002) in studies with samples of European ancestry and for MAOA-uVNTR in female PD (low-active alleles: OR=1.21, 95% CI: 1.07-1.38, P=0.004). No significant associations were observed in the secondary analyses considering sex, agoraphobia co-morbidity and studies with samples of Asian ancestry. Although these findings highlight a few associations, PD likely involves genetic variation in a multitude of biological pathways that is diverse among populations. Future studies must incorporate larger sample sizes and genome-wide approaches to further quantify the observed genetic variation among populations and subphenotypes of PD.
Collapse
|
37
|
Luo XJ, Mattheisen M, Li M, Huang L, Rietschel M, Børglum AD, Als TD, van den Oord EJ, Aberg KA, Mors O, Mortensen PB, Luo Z, Degenhardt F, Cichon S, Schulze TG, Nöthen MM, Su B, Zhao Z, Gan L, Yao YG. Systematic Integration of Brain eQTL and GWAS Identifies ZNF323 as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function. Schizophr Bull 2015; 41:1294-308. [PMID: 25759474 PMCID: PMC4601704 DOI: 10.1093/schbul/sbv017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies have identified multiple risk variants and loci that show robust association with schizophrenia. Nevertheless, it remains unclear how these variants confer risk to schizophrenia. In addition, the driving force that maintains the schizophrenia risk variants in human gene pool is poorly understood. To investigate whether expression-associated genetic variants contribute to schizophrenia susceptibility, we systematically integrated brain expression quantitative trait loci and genome-wide association data of schizophrenia using Sherlock, a Bayesian statistical framework. Our analyses identified ZNF323 as a schizophrenia risk gene (P = 2.22×10(-6)). Subsequent analyses confirmed the association of the ZNF323 and its expression-associated single nucleotide polymorphism rs1150711 in independent samples (gene-expression: P = 1.40×10(-6); single-marker meta-analysis in the combined discovery and replication sample comprising 44123 individuals: P = 6.85×10(-10)). We found that the ZNF323 was significantly downregulated in hippocampus and frontal cortex of schizophrenia patients (P = .0038 and P = .0233, respectively). Evidence for pleiotropic effects was detected (association of rs1150711 with lung function and gene expression of ZNF323 in lung: P = 6.62×10(-5) and P = 9.00×10(-5), respectively) with the risk allele (T allele) for schizophrenia acting as protective allele for lung function. Subsequent population genetics analyses suggest that the risk allele (T) of rs1150711 might have undergone recent positive selection in human population. Our findings suggest that the ZNF323 is a schizophrenia susceptibility gene whose expression may influence schizophrenia risk. Our study also illustrates a possible mechanism for maintaining schizophrenia risk variants in the human gene pool.
Collapse
Affiliation(s)
- Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; These authors contributed equally to this work.
| | - Manuel Mattheisen
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, 8000 Aarhus C, Denmark;,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark;,Department of Genomics, Life & Brain Center, and Institute of Human Genetics, University of Bonn, Bonn, Germany;,These authors contributed equally to this work
| | - Ming Li
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anders D. Børglum
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, 8000 Aarhus C, Denmark;,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark;,Research Department, Psychiatric Hospital, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas D. Als
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, 8000 Aarhus C, Denmark;,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - Edwin J. van den Oord
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University
| | - Karolina A. Aberg
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark;,Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark;,National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Franziska Degenhardt
- Department of Genomics, Life & Brain Center, and Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University Basel, Basel, Switzerland;,Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
| | - Thomas G. Schulze
- Department of Psychiatry and Psychotherapy, University Medical Center Georg-August-Universität, 37075 Goettingen, Germany;,Institute of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians-University Munich
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, and Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | | | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhongming Zhao
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lin Gan
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China;,CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
38
|
Coccaro N, Zagaria A, Tota G, Anelli L, Orsini P, Casieri P, Cellamare A, Minervini A, Impera L, Minervini CF, Brunetti C, Mestice A, Carluccio P, Cumbo C, Specchia G, Albano F. Overexpression of the LSAMP and TUSC7 genes in acute myeloid leukemia following microdeletion/duplication of chromosome 3. Cancer Genet 2015; 208:517-22. [PMID: 26345353 DOI: 10.1016/j.cancergen.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/09/2015] [Accepted: 07/27/2015] [Indexed: 01/17/2023]
Abstract
The 3q13.31 microdeletion syndrome is characterized by developmental delay, postnatal growth above the mean, characteristic facial features, and abnormal male genitalia. Moreover, a frequent deletion in the 3q13.31 chromosome region has been identified in patients who are affected by osteosarcomas. Among the genes located within the deleted region, the involvement of the limbic system-associated membrane protein gene (LSAMP), together with a non-coding RNA tumor suppressor candidate 7 gene (TUSC7), has been suggested. We describe the case of an adult acute myeloid leukemia (AML) patient with a novel chromosomal rearrangement characterized by a 3q13.31 microdeletion and an extra copy of the 3q13.31-q29 chromosomal region translocated to the long arm of the Y chromosome. This karyotypic aberration seems to cause LSAMP and TUSC7 gene expression dysregulation. In conclusion, we report the first case of LSAMP and TUSC7 gene overexpression, possibly due to a position effect in an AML patient bearing a 3q13.31 cryptic deletion.
Collapse
MESH Headings
- Aged
- Cell Adhesion Molecules, Neuronal/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Y/genetics
- GPI-Linked Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- RNA, Long Noncoding/genetics
- Sequence Deletion
- Translocation, Genetic
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Angelo Cellamare
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | | | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Anna Mestice
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Paola Carluccio
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy.
| |
Collapse
|
39
|
Heinla I, Leidmaa E, Kongi K, Pennert A, Innos J, Nurk K, Tekko T, Singh K, Vanaveski T, Reimets R, Mandel M, Lang A, Lilleväli K, Kaasik A, Vasar E, Philips MA. Gene expression patterns and environmental enrichment-induced effects in the hippocampi of mice suggest importance of Lsamp in plasticity. Front Neurosci 2015; 9:205. [PMID: 26136648 PMCID: PMC4470440 DOI: 10.3389/fnins.2015.00205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/23/2015] [Indexed: 12/31/2022] Open
Abstract
Limbic system associated membrane protein (Lsamp) gene is involved in behavioral adaptation in social and anxiogenic environments and has been associated with a broad spectrum of psychiatric diseases. Here we studied the activity of alternative promoters of Lsamp gene in mice in three rearing conditions (standard housing, environmental enrichment and social isolation) and in two different genetic backgrounds (129S6/SvEv and C57BL/6). Isolation had no effect on the expression levels of Lsamp. Environmental enrichment elevated the expression levels of Lsamp 1b transcript specifically in the hippocampus in B6 mice, and the same tendency existed across both mouse lines and both transcripts. Furthermore, we showed that the density of cells exhibiting 1b promoter activity is remarkably higher in the subgranular zone of the dentate gyrus in the hippocampal formation which is a specific area of enrichment-induced neurogenesis in adult rodents. On the contrary to 1b, 1a promoter is selectively active in the pyramidal and granule cell layers. We provide evidence that Lsamp modulates enrichment-induced activation of Bdnf as the enrichment-induced elevation of Bdnf in the hippocampus is significantly diminished in Lsamp-deficient mice; furthermore, a significant correlation was found between the expression levels of Lsamp and Bdnf transcripts in the hippocampus and frontal cortex. Significant strain differences in Lsamp expression were detected in the hippocampus, frontal cortex and thalamus that could be related to the different behavioral phenotype of B6 and 129Sv mice. Our data provides further evidence that LSAMP is implicated in the hippocampal connectivity and plasticity thereby modulating adaptability in changing environments.
Collapse
Affiliation(s)
- Indrek Heinla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Este Leidmaa
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia ; Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Karina Kongi
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Airi Pennert
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Kaarel Nurk
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Taavi Vanaveski
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Riin Reimets
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Merle Mandel
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Aavo Lang
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| |
Collapse
|
40
|
Pires AJ, Casanova CC, Quevedo LDA, Jansen K, Silva RAD. Panic disorder and psychoactive substance use in primary care. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2014; 36:113-8. [PMID: 27000711 DOI: 10.1590/2237-6089-2013-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To identify the association between panic disorder and licit and illicit substance use in the population provided with primary care in the southern Brazil. METHODS This is a cross-sectional study with patients from three primary care centers. We used the Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) to evaluate substance use and the Mini International Neuropsychiatric Interview (MINI) to diagnose panic disorder. RESULTS A total of 1,081 subjects were evaluated. The prevalence of panic disorder was 5.6%. Panic disorder was associated with using marijuana (p = 0.001), tobacco (p = 0.001), cocaine (p < 0.001), and other illicit substances (p < 0.001). CONCLUSION A significant association is noticed between panic disorder and licit and illicit substance use, thus, it is interesting to rethink the approach to treatment/intervention in patients with dual diagnosis.
Collapse
Affiliation(s)
| | | | | | - Karen Jansen
- Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | | |
Collapse
|
41
|
Koido K, Janno S, Traks T, Parksepp M, Ljubajev Ü, Veiksaar P, Must A, Shlik J, Vasar V, Vasar E. Associations between polymorphisms of LSAMP gene and schizophrenia. Psychiatry Res 2014; 215:797-8. [PMID: 24491686 DOI: 10.1016/j.psychres.2014.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to explore relationships between single-nucleotide polymorphisms (SNPs) in the limbic system-associated membrane protein (LSAMP) gene and schizophrenia. Twenty-two SNPs were analysed in 127 unrelated schizophrenic patients and in 171 healthy controls. The results showed significant allelic and haplotypic associations between LSAMP gene and schizophrenia.
Collapse
Affiliation(s)
- Kati Koido
- Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Sven Janno
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Tanel Traks
- Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
| | - Madis Parksepp
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Ülle Ljubajev
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Peeter Veiksaar
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Anne Must
- Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jakov Shlik
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Veiko Vasar
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
42
|
Philips MA, Lilleväli K, Heinla I, Luuk H, Hundahl CA, Kongi K, Vanaveski T, Tekko T, Innos J, Vasar E. Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain. Brain Struct Funct 2014; 220:1381-93. [PMID: 24633737 PMCID: PMC4409639 DOI: 10.1007/s00429-014-0732-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/07/2014] [Indexed: 12/14/2022]
Abstract
Limbic system-associated membrane protein (LSAMP) is a neural cell adhesion molecule involved in neurite formation and outgrowth. The purpose of the present study was to characterize the distribution of alternatively transcribed Lsamp isoforms in the mouse brain and its implications on the regulation of behavior. Limbic system-associated membrane protein 1b transcript was visualized by using a mouse strain expressing beta-galactosidase under the control of Lsamp 1b promoter. The distribution of Lsamp 1a transcript and summarized expression of the Lsamp transcripts was investigated by non-radioactive in situ RNA hybridization analysis. Cross-validation was performed by using radioactive in situ hybridization with oligonucleotide probes. Quantitative RT-PCR was used to study correlations between the expression of Lsamp isoforms and behavioral parameters. The expression pattern of two promoters differs remarkably from the developmental initiation at embryonic day 12.5. Limbic system-associated membrane protein 1a promoter is active in “classic” limbic structures where the hippocampus and amygdaloid area display the highest expression. Promoter 1b is mostly active in the thalamic sensory nuclei and cortical sensory areas, but also in areas that regulate stress and arousal. Higher levels of Lsamp 1a transcript had significant correlations with all of the measures indicating higher trait anxiety in the elevated plus-maze test. Limbic system-associated membrane protein transcript levels in the hippocampus and ventral striatum correlated with behavioral parameters in the social interaction test. The data are in line with decreased anxiety and alterations in social behavior in Lsamp-deficient mice. We propose that Lsamp is involved in emotional and social operating systems by complex regulation of two alternative promoters.
Collapse
Affiliation(s)
- Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Estonia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gimelli S, Leoni M, Di Rocco M, Caridi G, Porta S, Cuoco C, Gimelli G, Tassano E. A rare 3q13.31 microdeletion including GAP43 and LSAMP genes. Mol Cytogenet 2013; 6:52. [PMID: 24279697 PMCID: PMC3906914 DOI: 10.1186/1755-8166-6-52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022] Open
Abstract
Background Interstitial deletions affecting the proximal long arm of chromosome 3 have been rarely reported in the literature. The deleted segments vary in localization and size with different breakpoints making genotype-phenotype correlation very difficult. Until now, a girl with a 1.9-Mb interstitial deletion of 3q13.2q13.31 and 14 novel patients with deletions in 3q11q23 have been reported. Results Here we report on a 7-year-old girl with neuropsychiatric disorders and renal, vascular and skeletal anomalies. Array-CGH analysis revealed a small rare inherited 3q13.31 deletion containing only two genes, GAP43 and LSAMP. The mutation analysis of the two genes was negative on the other non-deleted chromosome. GAP43 is considered a crucial component for an effective regenerative response in the nervous system and its mRNA is localized exclusively to nerve tissue where the protein is linked to the synaptosomal membrane. LSAMP is a 64- to 68-kD neuronal surface glycoprotein found in cortical and subcortical regions of the limbic system that acts as an adhesion molecule and guides the development of specific patterns of neuronal connection. The deleted region is adjacent to a “desert gene” region extending 2.099 Mb. Conclusions We discuss the effects of GAP43 and LSAMP haploinsufficiency, proposing that their deletion may be responsible for the main phenotype. Further cases with similar microdeletion are expected to be diagnosed and will help to better characterize the clinical spectrum of phenotypes associated with 3q13.31 microdeletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elisa Tassano
- Laboratorio di Citogenetica, Istituto G, Gaslini, Genoa, Italy.
| |
Collapse
|
44
|
Innos J, Koido K, Philips MA, Vasar E. Limbic system associated membrane protein as a potential target for neuropsychiatric disorders. Front Pharmacol 2013; 4:32. [PMID: 23532449 PMCID: PMC3607788 DOI: 10.3389/fphar.2013.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/08/2013] [Indexed: 12/16/2022] Open
Abstract
The studies performed in laboratory animals and psychiatric patients suggest a possible role of limbic system-associated membrane protein (LAMP) in the mechanisms of psychiatric disorders. Stressful manipulations and genetic invalidation have revealed a role of the Lsamp gene in the regulation of anxiety in rodents. Besides that, Lsamp-deficient mice display reduced aggressiveness and impaired adaptation in novel and stressful environments. The behavioral effects of amphetamine were blunted in genetically modified mice. Recent pharmacological and biochemical studies point toward altered function of GABA-, 5-hydroxytryptamine-, and dopaminergic systems in Lsamp-deficient mice. Moreover, we found an association between the gene polymorphisms of LSAMP and major depressive disorder (MDD). Patients suffering from MDD had significantly increased ratio between risk and protective haplotypes of the LSAMP gene compared to healthy volunteers. However, the impact of these haplotypes for the function of LAMP is not clear and remains to be elucidated in future studies.
Collapse
Affiliation(s)
- Jürgen Innos
- Department of Physiology, University of Tartu Tartu, Estonia
| | | | | | | |
Collapse
|
45
|
Innos J, Leidmaa E, Philips MA, Sütt S, Alttoa A, Harro J, Kõks S, Vasar E. Lsamp⁻/⁻ mice display lower sensitivity to amphetamine and have elevated 5-HT turnover. Biochem Biophys Res Commun 2012. [PMID: 23206697 DOI: 10.1016/j.bbrc.2012.11.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mice, the limbic system-associated membrane protein (Lsamp) gene has been implicated in locomotion, anxiety, fear reaction, learning, social behaviour and adaptation. Human data links the LSAMP gene to several psychiatric disorders and completed suicide. Here, we investigated changes in major monoamine systems in mice lacking the Lsamp gene. First, the locomotor and rewarding effects of amphetamine were studied in Lsamp(-/-) mice and Lsamp(+/+) mice. Second, monoamine levels in major brain regions in response to saline and amphetamine injections were measured and, third, the expression levels of dopamine system-related genes in the brain were studied in these mice. Lsamp(-/-) mice displayed lower sensitivity to amphetamine in the motility box. Likewise, in the place preference test, the rewarding effect of amphetamine was absent in Lsamp(-/-) mice. In all brain regions studied, Lsamp(-/-) mice displayed lower serotonin (5-HT) baseline levels, but a greater 5-HT turnover rate, and amphetamine increased the level of 5-HT and lowered 5-HT turnover to a greater extent in Lsamp(-/-) mice. Finally, Lsamp(-/-) mice had lower level of dopamine transporter (DAT) mRNA in the mesencephalon. In conclusion, Lsamp-deficiency leads to increased endogenous 5-HT-ergic tone and enhanced 5-HT release in response to amphetamine. Elevated 5-HT function and reduced activity of DAT are the probable reasons for the blunted effects of amphetamine in these mice. Lsamp(-/-) mice are a promising model to study the neurobiological mechanisms of deviant social behaviour and adaptation impairment observed in many psychiatric disorders.
Collapse
Affiliation(s)
- Jürgen Innos
- Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|