1
|
Sen P, Ortiz O, Brivio E, Menegaz D, Sotillos Elliott L, Du Y, Ries C, Chen A, Wurst W, Lopez JP, Eder M, Deussing JM. A bipolar disorder-associated missense variant alters adenylyl cyclase 2 activity and promotes mania-like behavior. Mol Psychiatry 2025; 30:97-110. [PMID: 39003412 PMCID: PMC11649569 DOI: 10.1038/s41380-024-02663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
The single nucleotide polymorphism rs13166360, causing a substitution of valine (Val) 147 to leucine (Leu) in the adenylyl cyclase 2 (ADCY2), has previously been associated with bipolar disorder (BD). Here we show that the disease-associated ADCY2 missense mutation diminishes the enzyme´s capacity to generate the second messenger 3',5'-cylic adenosine monophosphate (cAMP) by altering its subcellular localization. We established mice specifically carrying the Val to Leu substitution using CRISPR/Cas9-based gene editing. Mice homozygous for the Leu variant display symptoms of a mania-like state accompanied by cognitive impairments. Mutant animals show additional characteristic signs of rodent mania models, i.e., they are hypersensitive to amphetamine, the observed mania-like behaviors are responsive to lithium treatment and the Val to Leu substitution results in a shifted excitatory/inhibitory synaptic balance towards more excitation. Exposure to chronic social defeat stress switches homozygous Leu variant carriers from a mania- to a depressive-like state, a transition which is reminiscent of the alternations characterizing the symptomatology in BD patients. Single-cell RNA-seq (scRNA-seq) revealed widespread Adcy2 mRNA expression in numerous hippocampal cell types. Differentially expressed genes particularly identified from glutamatergic CA1 neurons point towards ADCY2 variant-dependent alterations in multiple biological processes including cAMP-related signaling pathways. These results validate ADCY2 as a BD risk gene, provide insights into underlying disease mechanisms, and potentially open novel avenues for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Paromita Sen
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Oskar Ortiz
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Elena Brivio
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | | | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, 81377, Munich, Germany
| | - Juan Pablo Lopez
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
2
|
Choi W, Park DJ, Eliceiri BP. Defining tropism and activity of natural and engineered extracellular vesicles. Front Immunol 2024; 15:1363185. [PMID: 38660297 PMCID: PMC11039936 DOI: 10.3389/fimmu.2024.1363185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Extracellular vesicles (EVs) have important roles as mediators of cell-to-cell communication, with physiological functions demonstrated in various in vivo models. Despite advances in our understanding of the biological function of EVs and their potential for use as therapeutics, there are limitations to the clinical approaches for which EVs would be effective. A primary determinant of the biodistribution of EVs is the profile of proteins and other factors on the surface of EVs that define the tropism of EVs in vivo. For example, proteins displayed on the surface of EVs can vary in composition by cell source of the EVs and the microenvironment into which EVs are delivered. In addition, interactions between EVs and recipient cells that determine uptake and endosomal escape in recipient cells affect overall systemic biodistribution. In this review, we discuss the contribution of the EV donor cell and the role of the microenvironment in determining EV tropism and thereby determining the uptake and biological activity of EVs.
Collapse
Affiliation(s)
- Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Brian P. Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
- Department of Dermatology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Weiler M, Stieger KC, Shroff K, Klein JP, Wood WH, Zhang Y, Chandrasekaran P, Lehrmann E, Camandola S, Long JM, Mattson MP, Becker KG, Rapp PR. Transcriptional changes in the rat brain induced by repetitive transcranial magnetic stimulation. Front Hum Neurosci 2023; 17:1215291. [PMID: 38021223 PMCID: PMC10679736 DOI: 10.3389/fnhum.2023.1215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.
Collapse
Affiliation(s)
- Marina Weiler
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin C. Stieger
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kavisha Shroff
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jessie P. Klein
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Piguel NH, Yoon S, Gao R, Horan KE, Garza JC, Petryshen TL, Smith KR, Penzes P. Lithium rescues dendritic abnormalities in Ank3 deficiency models through the synergic effects of GSK3β and cyclic AMP signaling pathways. Neuropsychopharmacology 2023; 48:1000-1010. [PMID: 36376465 PMCID: PMC10209204 DOI: 10.1038/s41386-022-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Bipolar disorder (BD) is a highly heritable mood disorder with intermittent episodes of mania and depression. Lithium is the first-in-line medication to treat BD, but it is only effective in a subset of individuals. Large-scale human genomic studies have repeatedly linked the ANK3 gene (encoding ankyrin-G, AnkG) to BD. Ank3 knockout mouse models mimic BD behavioral features and respond positively to lithium treatment. We investigated cellular phenotypes associated with BD, including dendritic arborization of pyramidal neurons and spine morphology in two models: (1) a conditional knockout mouse model which disrupts Ank3 expression in adult forebrain pyramidal neurons, and (2) an AnkG knockdown model in cortical neuron cultures. We observed a decrease in dendrite complexity and a reduction of dendritic spine number in both models, reminiscent of reports in BD. We showed that lithium treatment corrected dendrite and spine deficits in vitro and in vivo. We targeted two signaling pathways known to be affected by lithium using a highly selective GSK3β inhibitor (CHIR99021) and an adenylate cyclase activator (forskolin). In our cortical neuron culture model, CHIR99021 rescues the spine morphology defects caused by AnkG knockdown, whereas forskolin rescued the dendrite complexity deficit. Interestingly, a synergistic action of both drugs was required to rescue dendrite and spine density defects in AnkG knockdown neurons. Altogether, our results suggest that dendritic abnormalities observed in loss of function ANK3 variants and BD patients may be rescued by lithium treatment. Additionally, drugs selectively targeting GSK3β and cAMP pathways could be beneficial in BD.
Collapse
Affiliation(s)
- Nicolas H Piguel
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sehyoun Yoon
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ruoqi Gao
- University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Katherine E Horan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob C Garza
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Luo L, Cai Y, Zhang Y, Hsu CG, Korshunov VA, Long X, Knight PA, Berk BC, Yan C. Role of PDE10A in vascular smooth muscle cell hyperplasia and pathological vascular remodelling. Cardiovasc Res 2022; 118:2703-2717. [PMID: 34550322 PMCID: PMC9890476 DOI: 10.1093/cvr/cvab304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Biochemistry and Biophysics, University of Rochester School
of Medicine and Dentistry, Rochester, NY,
USA
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yujun Cai
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yishuai Zhang
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chia G Hsu
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Vyacheslav A Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Xiaochun Long
- Department of Vascular Biology Center and Medicine, Medical College of
Georgia, Augusta, GA, USA
| | - Peter A Knight
- Department of Surgery, University of Rochester School of Medicine and
Dentistry, Rochester, NY, USA
| | - Bradford C Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chen Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| |
Collapse
|
6
|
Aranda S, Jiménez E, Martorell L, Muntané G, Vieta E, Vilella E. A systematic review on genome-wide association studies exploring comorbidity in bipolar disorder. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
Jin X, Zhang Y, Celniker SE, Xia Y, Mao JH, Snijders AM, Chang H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci Rep 2021; 11:270. [PMID: 33431988 PMCID: PMC7801399 DOI: 10.1038/s41598-020-79538-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests that the gut microbiome (GM) plays a critical role in health and disease. However, the contribution of GM to psychiatric disorders, especially anxiety, remains unclear. We used the Collaborative Cross (CC) mouse population-based model to identify anxiety associated host genetic and GM factors. Anxiety-like behavior of 445 mice across 30 CC strains was measured using the light/dark box assay and documented by video. A custom tracking system was developed to quantify seven anxiety-related phenotypes based on video. Mice were assigned to a low or high anxiety group by consensus clustering using seven anxiety-related phenotypes. Genome-wide association analysis (GWAS) identified 141 genes (264 SNPs) significantly enriched for anxiety and depression related functions. In the same CC cohort, we measured GM composition and identified five families that differ between high and low anxiety mice. Anxiety level was predicted with 79% accuracy and an AUC of 0.81. Mediation analyses revealed that the genetic contribution to anxiety was partially mediated by the GM. Our findings indicate that GM partially mediates and coordinates the effects of genetics on anxiety.
Collapse
Affiliation(s)
- X Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - S E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - J-H Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - H Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Almeida HS, Mitjans M, Arias B, Vieta E, Ríos J, Benabarre A. Genetic differences between bipolar disorder subtypes: A systematic review focused in bipolar disorder type II. Neurosci Biobehav Rev 2020; 118:623-630. [PMID: 32755611 DOI: 10.1016/j.neubiorev.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The identification of bipolar disorder (BD) type II patients has both treatment and prognostic implications. Better understanding of its underlying genetics may yield useful diagnostic tools. METHODS A systematic review on BDII genetics was done using articles published in 2009-2019, following PRISMA recommendations. RESULTS The most studied polymorphism was BDNF Val66Met with several gene-gene interactions within the dopaminergic system. Associations were reported within the monoaminergic systems (DRD3, ADH1B and SLC6A4), calcium (CACNB2 and CACNG2) and cAMP (PDE1DA, PDE4B and DISC1) signal transduction pathways and the immune system (TNFα, IFNδ and IL-10). Chromosomes 2, 3 and 10 were associated with BDII and polygenic risk scores distinguished between BD subtypes and with major depressive disorder. CONCLUSIONS Research on BDII stems from BDI findings, however with a stronger contribution of gene-gene interactions and low-effect alleles on known neuroplasticity and monoaminergic system genes. Genome studies point to transdiagnostic backgrounds, with wider associations across bipolar spectrum disorders. Findings able to accurately differentiate BDII remain elusive, dependent on better phenotypic characterization and new research methods.
Collapse
Affiliation(s)
- Hugo Sérgio Almeida
- Magalhães Lemos Hospital EPE, Rua Professor Álvaro Rodrigues, 4149-003, Porto, Portugal; Neurosciences Department, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal
| | - Marina Mitjans
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
| | - Barbara Arias
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
| | - Eduard Vieta
- Bipolar Disorders and Depressive Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, iDiBAPS, CiBERSAM, Barcelona, Catalonia, Spain.
| | - José Ríos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antonio Benabarre
- Bipolar Disorders and Depressive Unit, Institute of Neuroscience, Hospital Clínic, University of Barcelona, iDiBAPS, CiBERSAM, Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Aghabozorg Afjeh SS, Shams J, Hamednia S, Boshehri B, Olfat A, Omrani MD. Investigation of the impact of an ADCY2 polymorphism as a predictive biomarker in bipolar disorder, suicide tendency and response to lithium carbonate therapy: the first report from Iran. Pharmacogenomics 2020; 21:1011-1020. [PMID: 32893730 DOI: 10.2217/pgs-2020-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High rates of mortality due to both suicide and medical comorbidities in bipolar patients can be decreased through the administration of lithium, which affects the cerebral endothelium as well as neurons. To investigate the role of ADCY2 in risk of bipolar disorder, we genotyped the ADCY2 rs2290910 in bipolar patients and healthy controls using amplification refractory mutation system PCR. This polymorphism was associated with risk of bipolar disorder (odds ratio [OR]: 0.430; 95% CI: 0.296-0.624; p = 0.001). The C allele was more frequent in suicide ideation group compared other groups (OR: 2.7; 95% CI: 1.386-5.302; p = 0.004). The T allele was more frequent in suicide attempt group compared with suicide ideation group (OR: 0.238; 95% CI: 0.111-0.509; p = 0.001).
Collapse
Affiliation(s)
| | - Jamal Shams
- Behavioral Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19839-631133, Iran
| | - Safar Hamednia
- Department of Psychiatry, Urmia University of Medical Sciences, Urmia, 5714-783345, Iran
| | - Behzad Boshehri
- Department of Forensic Medicine & Toxicology, Urmia University of Medical Sciences, Urmia, 5714-783345, Iran
| | - Amir Olfat
- Department of statistics, Allameh Tabatabai University, Tehran, 14877-01201, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, 19839-631133, Iran
| |
Collapse
|
10
|
Uvais NA, Rakhesh SV, Afra TP, Hafi NAB, Razmi T M. Comorbid psoriasis-bipolar disorder successfully treated with apremilast: much more than a mere coincidence? Gen Psychiatr 2020; 33:e100181. [PMID: 32524074 PMCID: PMC7245448 DOI: 10.1136/gpsych-2019-100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022] Open
Abstract
Psoriasis is a chronic, immune mediated, systemic inflammatory skin disease with a reported prevalence of 0.6%–4.8% in the general population. Bipolar disorder (BP) is a severe episodic psychiatric disorder that ranks as the fourth leading cause of disability. Recent evidence suggests that genetic and immunological factors play a significant role in the development of both disorders. Studies have also shown a higher association of psychiatric disorders among patients with psoriasis. Moreover, several autoimmune comorbidities have been reported in association with BP. Here, we describe a young woman with BP who developed psoriasis after 1 year of developing BP and showed exacerbations in psoriasis lesions with each manic episode. We also highlight the safe and efficacious use of apremilast for psoriatic lesions in the woman.
Collapse
Affiliation(s)
- N A Uvais
- Psychiatry, Iqraa International Hospital and Research Centre, Calicut, Kerala, India
| | - S V Rakhesh
- Dermatology, Iqraa International Hospital and Research Centre, Calicut, Kerala, India
| | - T P Afra
- Dermatology, Iqraa International Hospital and Research Centre, Calicut, Kerala, India
| | - N A Bishurul Hafi
- Dermatology, Iqraa International Hospital and Research Centre, Calicut, Kerala, India
| | - Muhammed Razmi T
- Dermatology, Iqraa International Hospital and Research Centre, Calicut, Kerala, India
| |
Collapse
|
11
|
Erlangsen A, Appadurai V, Wang Y, Turecki G, Mors O, Werge T, Mortensen PB, Starnawska A, Børglum AD, Schork A, Nudel R, Bækvad-Hansen M, Bybjerg-Grauholm J, Hougaard DM, Thompson WK, Nordentoft M, Agerbo E. Genetics of suicide attempts in individuals with and without mental disorders: a population-based genome-wide association study. Mol Psychiatry 2020; 25:2410-2421. [PMID: 30116032 PMCID: PMC7515833 DOI: 10.1038/s41380-018-0218-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 01/30/2023]
Abstract
Family studies have shown an aggregation of suicidal behavior in families. Yet, molecular studies are needed to identify loci accounting for genetic heritability. We conducted a genome-wide association study and estimated single nucleotide polymorphisms (SNP) heritability for a suicide attempt. In a case-cohort study, national data on all individuals born in Denmark after 1981 and diagnosed with severe mental disorders prior to 2013 (n = 57,377) and individuals from the general population (n = 30,000) were obtained. After quality control, the sample consisted of 6024 cases with an incidence of suicide attempt and 44,240 controls with no record of a suicide attempt. Suggestive associations between SNPs, rs6880062 (p-value: 5.4 × 10-8) and rs6880461 (p-value: 9.5 × 10-8), and suicide attempt were identified when adjusting for socio-demographics. Adjusting for mental disorders, three significant associations, all on chromosome 20, were identified: rs4809706 (p-value: 2.8 × 10-8), rs4810824 (p-value: 3.5 × 10-8), and rs6019297 (p-value: 4.7 × 108). Sub-group analysis of cases with affective disorders revealed SNPs associated with suicide attempts when compared to the general population for gene PDE4B. All SNPs explained 4.6% [CI-95: 2.9-6.3%] of the variation in suicide attempt. Controlling for mental disorders reduced the heritability to 1.9% [CI-95: 0.3-3.5%]. Affective and autism spectrum disorders exhibited a SNP heritability of 5.6% [CI-95: 1.9-9.3%] and 9.6% [CI-95: 1.1-18.1%], respectively. Using the largest sample to date, we identified significant SNP associations with suicide attempts and support for a genetic transmission of suicide attempt, which might not solely be explained by mental disorders.
Collapse
Affiliation(s)
- Annette Erlangsen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark. .,Danish Research Institute for Suicide Prevention, Mental Health Centre Copenhagen, Copenhagen, Denmark. .,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Center of Mental Health Research, Australian National University, Canberra, Australia.
| | - Vivek Appadurai
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.466916.a0000 0004 0631 4836Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Yunpeng Wang
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Gustavo Turecki
- grid.14709.3b0000 0004 1936 8649McGill Group for Suicide Studies, Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Ole Mors
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.154185.c0000 0004 0512 597XPsychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Thomas Werge
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.466916.a0000 0004 0631 4836Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Preben B. Mortensen
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722National Centre for Register-based Research (NCRR) and Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| | - Anna Starnawska
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.154185.c0000 0004 0512 597XCentre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Andrew Schork
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.466916.a0000 0004 0631 4836Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Ron Nudel
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.466916.a0000 0004 0631 4836Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Marie Bækvad-Hansen
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.6203.70000 0004 0417 4147Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.6203.70000 0004 0417 4147Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - David M. Hougaard
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.6203.70000 0004 0417 4147Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Wesley K. Thompson
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Division of Mental Health and Addiction, University of Oslo, Oslo, Norway ,grid.154185.c0000 0004 0512 597XPsychosis Research Unit, Aarhus University Hospital, Risskov, Denmark ,grid.266100.30000 0001 2107 4242Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, CA USA
| | - Merete Nordentoft
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.466916.a0000 0004 0631 4836Danish Research Institute for Suicide Prevention, Mental Health Centre Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XResearch Unit, Mental Health Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Esben Agerbo
- grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722National Centre for Register-based Research (NCRR) and Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Nkpaa KW, Awogbindin IO, Amadi BA, Abolaji AO, Adedara IA, Wegwu MO, Farombi EO. Ethanol Exacerbates Manganese-Induced Neurobehavioral Deficits, Striatal Oxidative Stress, and Apoptosis Via Regulation of p53, Caspase-3, and Bax/Bcl-2 Ratio-Dependent Pathway. Biol Trace Elem Res 2019; 191:135-148. [PMID: 30488170 DOI: 10.1007/s12011-018-1587-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
This study investigated the effects of ethanol (EtOH) on manganese (Mn)-induced striatal toxicity in rat by evaluating the neurobehavioral changes, biochemical and molecular events in rats exposed to Mn alone at 30 mg/kg, or their combination with EtOH at 1.25- and 5-g/kg body weight for 35 consecutive days. Locomotive and exploratory profiles were assessed using a video tracking software (ANY-Maze software) during a 5-min trial in a novel environment. Subsequently, acetylcholinesterase (AChE) activity, oxidative stress markers, histological morphology, and expression of apoptotic proteins (p53 and Bax and caspase-3) and anti-apoptotic protein (Bcl-2) were assessed in the striatum. Results showed that Mn, EtOH, and their combination induced locomotor and motor deficits. Track plot analysis indicated that EtOH exacerbated the Mn-induced reduction in exploratory profiles of exposed rats. Similarly, exposure of rats to Mn, EtOH, or combination of Mn and EtOH resulted in decreased activities of anti-oxidant enzymes, diminished level of reduced glutathione, downregulated Bcl-2 expression, increased AChE activity, enhanced hydrogen peroxide and lipid peroxidation levels, and upregulated expressions of p53, Bax, and caspase-3. Moreover, potentiation of Mn-induced striatal toxicity by EtOH co-exposure was dose dependent. Taken together, it seems that EtOH exacerbates Mn-induced neurobehavioral deficits, oxidative stress, and apoptosis induction via the regulation of p53, caspase-3, and Bax/Bcl-2 ratio-dependent pathway in rat striatum.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria.
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin A Amadi
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Wegwu
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria.
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
13
|
Commonality in dysregulated expression of gene sets in cortical brains of individuals with autism, schizophrenia, and bipolar disorder. Transl Psychiatry 2019; 9:152. [PMID: 31127088 PMCID: PMC6534650 DOI: 10.1038/s41398-019-0488-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Individuals affected with different neuropsychiatric disorders such as autism (AUT), schizophrenia (SCZ) and bipolar disorder (BPD), may share similar clinical manifestations, suggesting shared genetic influences and common biological mechanisms underlying these disorders. Using brain transcriptome data gathered from postmortem donors affected with AUT, SCZ and BPD, it is now possible to identify shared dysregulated gene sets, i.e., those abnormally expressed in brains of neuropsychiatric patients, compared to non-psychiatric controls. Here, we apply a novel aberrant gene expression analysis method, coupled with consensus co-expression network analysis, to identify gene sets with shared dysregulated expression in cortical brains of individuals affected with AUT, SCZ and BPD. We identify eight gene sets with dysregulated expression shared by AUT, SCZ and BPD, 23 by AUT and SCZ, four by AUT and BPD, and two by SCZ and BPD. The identified genes are enriched with functions relevant to amino acid transport, synapse, neurotransmitter release, oxidative stress, nitric oxide synthase biosynthesis, immune response, protein folding, lysophosphatidic acid-mediated signaling and glycolysis. Our method has been proven to be effective in discovering and revealing multigene sets with dysregulated expression shared by different neuropsychiatric disorders. Our findings provide new insights into the common molecular mechanisms underlying the pathogenesis and progression of AUT, SCZ and BPD, contributing to the study of etiological overlap between these neuropsychiatric disorders.
Collapse
|
14
|
Aluja A, Balada F, Blanco E, Fibla J, Blanch A. Twenty candidate genes predicting neuroticism and sensation seeking personality traits: A multivariate analysis association approach. PERSONALITY AND INDIVIDUAL DIFFERENCES 2019. [DOI: 10.1016/j.paid.2018.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Real-Time Imaging Reveals Augmentation of Glutamate-Induced Ca 2+ Transients by the NO-cGMP Pathway in Cerebellar Granule Neurons. Int J Mol Sci 2018; 19:ijms19082185. [PMID: 30049956 PMCID: PMC6121606 DOI: 10.3390/ijms19082185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 01/11/2023] Open
Abstract
Dysfunctions of NO-cGMP signaling have been implicated in various neurological disorders. We have studied the potential crosstalk of cGMP and Ca2+ signaling in cerebellar granule neurons (CGNs) by simultaneous real-time imaging of these second messengers in living cells. The NO donor DEA/NO evoked cGMP signals in the granule cell layer of acute cerebellar slices from transgenic mice expressing a cGMP sensor protein. cGMP and Ca2+ dynamics were visualized in individual CGNs in primary cultures prepared from 7-day-old cGMP sensor mice. DEA/NO increased the intracellular cGMP concentration and augmented glutamate-induced Ca2+ transients. These effects of DEA/NO were absent in CGNs isolated from knockout mice lacking NO-sensitive guanylyl cyclase. Furthermore, application of the cGMP analogues 8-Br-cGMP and 8-pCPT-cGMP, which activate cGMP effector proteins such as cyclic nucleotide-gated cation channels and cGMP-dependent protein kinases (cGKs), also potentiated glutamate-induced Ca2+ transients. Western blot analysis failed to detect cGK type I or II in our primary CGNs. The addition of phosphodiesterase (PDE) inhibitors during cGMP imaging showed that CGNs degrade cGMP mainly via Zaprinast-sensitive PDEs, most likely PDE5 and/or PDE10, but not via PDE1, 2, or 3. In sum, these data delineate a cGK-independent NO-cGMP signaling cascade that increases glutamate-induced Ca2+ signaling in CGNs. This cGMP–Ca2+ crosstalk likely affects neurotransmitter-stimulated functions of CGNs.
Collapse
|
16
|
Basil P, Li Q, Gui H, Hui TCK, Ling VHM, Wong CCY, Mill J, McAlonan GM, Sham PC. Prenatal immune activation alters the adult neural epigenome but can be partly stabilised by a n-3 polyunsaturated fatty acid diet. Transl Psychiatry 2018; 8:125. [PMID: 29967385 PMCID: PMC6028639 DOI: 10.1038/s41398-018-0167-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/01/2018] [Accepted: 04/21/2018] [Indexed: 02/08/2023] Open
Abstract
An unstable epigenome is implicated in the pathophysiology of neurodevelopmental disorders such as schizophrenia and autism. This is important because the epigenome is potentially modifiable. We have previously reported that adult offspring exposed to maternal immune activation (MIA) prenatally have significant global DNA hypomethylation in the hypothalamus. However, what genes had altered methylation state, their functional effects on gene expression and whether these changes can be moderated, have not been addressed. In this study, we used next-generation sequencing (NGS) for methylome profiling in a MIA rodent model of neurodevelopmental disorders. We assessed whether differentially methylated regions (DMRs) affected the chromatin state by mapping known DNase I hypersensitivity sites (DHSs), and selected overlapping genes to confirm a functional effect of MIA on gene expression using qPCR. Finally, we tested whether methylation differences elicited by MIA could be limited by post-natal dietary (omega) n-3 polyunsaturated fatty acid (PUFA) supplementation. These experiments were conducted using hypothalamic brain tissue from 12-week-old offspring of mice injected with viral analogue PolyI:C on gestation day 9 of pregnancy or saline on gestation day 9. Half of the animals from each group were fed a diet enriched with n-3 PUFA from weaning (MIA group, n = 12 units, n = 39 mice; Control group, n = 12 units, n = 38 mice). The results confirmed our previous finding that adult offspring exposed to MIA prenatally had significant global DNA hypomethylation. Furthermore, genes linked to synaptic plasticity were over-represented among differentially methylated genes following MIA. More than 80% of MIA-induced hypomethylated sites, including those affecting chromatin state and MECP2 binding, were stabilised by the n-3 PUFA intervention. MIA resulted in increased expression of two of the 'top five' genes identified from an integrated analysis of DMRs, DHSs and MECP2 binding sites, namely Abat (t = 2.46, p < 0.02) and Gnas9 (t = 2.96, p < 0.01), although these changes were not stabilised by dietary intervention. Thus, prenatal MIA exposure impacts upon the epigenomic regulation of gene pathways linked to neurodevelopmental conditions; and many of the changes can be attenuated by a low-cost dietary intervention.
Collapse
Affiliation(s)
- Paul Basil
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,0000 0001 2160 926Xgrid.39382.33Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Qi Li
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Hongsheng Gui
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Tomy C. K. Hui
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Vicki H. M. Ling
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Chloe C. Y. Wong
- 0000 0001 2322 6764grid.13097.3cMRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Jonathan Mill
- 0000 0001 2322 6764grid.13097.3cMRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK ,0000 0004 1936 8024grid.8391.3University of Exeter Medical School, Exeter University, St Luke’s Campus, Magdalen Street, Exeter, EX1 2LU UK
| | - Grainne M. McAlonan
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Centre for Genomic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
17
|
Varga NÁ, Pentelényi K, Balicza P, Gézsi A, Reményi V, Hársfalvi V, Bencsik R, Illés A, Prekop C, Molnár MJ. Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion. Behav Brain Funct 2018; 14:4. [PMID: 29458409 PMCID: PMC5819172 DOI: 10.1186/s12993-018-0135-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background The etiology of autism spectrum disorders (ASD) is very heterogeneous. Mitochondrial dysfunction has been described in ASD; however, primary mitochondrial disease has been genetically proven in a small subset of patients. The main goal of the present study was to investigate correlations between mitochondrial DNA (mtDNA) changes and alterations of genes associated with mtDNA maintenance or ASD. Methods Sixty patients with ASD and sixty healthy individuals were screened for common mtDNA mutations. Next generation sequencing was performed on patients with major mtDNA deletions (mtdel-ASD) using two gene panels to investigate nuclear genes that are associated with ASD or are responsible for mtDNA maintenance. Cohorts of healthy controls, ASD patients without mtDNA alterations, and patients with mitochondrial disorders (non-ASD) harbouring mtDNA deletions served as comparison groups. Results MtDNA deletions were confirmed in 16.6% (10/60) of patients with ASD (mtdel-ASD). In 90% of this mtdel-ASD children we found rare SNVs in ASD-associated genes (one of those was pathogenic). In the intergenomic panel of this cohort one likely pathogenic variant was present. In patients with mitochondrial disease in genes responsible for mtDNA maintenance pathogenic mutations and variants of uncertain significance (VUS) were detected more frequently than those found in patients from the mtdel-ASD or other comparison groups. In healthy controls and in patients without a mtDNA deletion, only VUS were detected in both panel. Conclusions MtDNA alterations are more common in patients with ASD than in control individuals. MtDNA deletions are not isolated genetic alterations found in ASD; they coexist either with other ASD-associated genetic risk factors or with alterations in genes responsible for intergenomic communication. These findings indicate that mitochondrial dysfunction is not rare in ASD. The occurring mtDNA deletions in ASD may be mostly a consequence of the alterations of the causative culprit genes for autism or genes responsible for mtDNA maintenance, or because of the harmful effect of environmental factors. Electronic supplementary material The online version of this article (10.1186/s12993-018-0135-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noémi Ágnes Varga
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Klára Pentelényi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Péter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - András Gézsi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Viktória Reményi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Vivien Hársfalvi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Renáta Bencsik
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Anett Illés
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary
| | - Csilla Prekop
- Vadaskert Foundation for Children's Mental Health, Lipótmezei Str. 1-5, Budapest, 1021, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő Str. 25-29, Budapest, 1083, Hungary.
| |
Collapse
|
18
|
Suzuki K, Kimura H. TAK-063, a novel PDE10A inhibitor with balanced activation of direct and indirect pathways, provides a unique opportunity for the treatment of schizophrenia. CNS Neurosci Ther 2018; 24:604-614. [PMID: 29318783 DOI: 10.1111/cns.12798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 01/04/2023] Open
Abstract
The basal ganglia regulates motor, cognitive, and emotional behaviors. Dysfunction of dopamine system in this area is implicated in the pathophysiology of schizophrenia characterized by positive symptoms, negative symptoms, and cognitive deficits. Medium spiny neurons (MSNs) are principal output neurons of striatum in the basal ganglia. Similar to current antipsychotics with dopamine D2 receptor antagonism or partial agonism, phosphodiesterase 10A (PDE10A) inhibitors activate indirect pathway MSNs, leading to the expectation of therapeutic potential for the treatment of psychosis. PDE10A inhibitors also activate direct pathway MSNs which may be associated with cognitive functions. These pathways have competing effects on antipsychotic-like activities and extrapyramidal symptoms in rodents. Therefore, careful consideration of activation pattern of these pathways by a PDE10A inhibitor is critical to produce potent efficacy and superior safety profiles. In this review, we outline the pharmacological profile of TAK-063, a novel PDE10A selective inhibitor. Our study revealed that off-rates of PDE10A inhibitors may characterize their pharmacological profiles via regulation of each MSN pathway. TAK-063, with a faster off-rate property, could provide a unique opportunity as a novel therapeutic approach to treatment of psychosis and cognitive deficits in schizophrenia. TAK-063 also has a therapeutic potential in other basal ganglia disorders.
Collapse
Affiliation(s)
- Kazunori Suzuki
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
19
|
Castro L, Yapo C, Vincent P. [Physiopathology of cAMP/PKA signaling in neurons]. Biol Aujourdhui 2017; 210:191-203. [PMID: 28327278 DOI: 10.1051/jbio/2017005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases.
Collapse
|
20
|
MacMullen CM, Fallahi M, Davis RL. Novel PDE10A transcript diversity in the human striatum: Insights into gene complexity, conservation and regulation. Gene 2017; 606:17-24. [DOI: 10.1016/j.gene.2016.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/18/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
|
21
|
Pacifico R, Davis RL. Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder. Mol Psychiatry 2017; 22:441-449. [PMID: 27350034 DOI: 10.1038/mp.2016.94] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a highly heritable and heterogeneous mental illness whose manifestations often include impulsive and risk-taking behavior. This particular phenotype suggests that abnormal striatal function could be involved in BD etiology, yet most transcriptomic studies of this disorder have concentrated on cortical brain regions. We believe we report the first transcriptome sequencing of the postmortem human dorsal striatum comparing bipolar (18) and control (17) subjects. Fourteen genes were detected as differentially expressed at a 5% false discovery rate, including a few immune response genes such as NLRC5, S100A12, LILRA4 and FCGBP, as well as an assortment of non-protein coding genes. Functional pathway analysis found an enrichment of upregulated genes across many immune/inflammation pathways and an enrichment of downregulated genes among oxidative phosphorylation pathways. Co-expression network analysis revealed 20 modules of highly interconnected genes; two of the modules were significantly enriched for BD susceptibility single-nucleotide polymorphisms deriving from a large genome-wide association study data set. Remarkably, the module with the highest genetic association signal for BD, which contained many genes from signaling pathways, was also enriched in markers characteristic of gene expression in dorsal striatum medium spiny neurons-unlike most other modules, which showed no such regional and neuronal specificity. These findings draw a link between BD etiology at the gene level and a specific brain region, and highlight striatal signaling pathways as potential targets for the development of novel treatments to manage BD.
Collapse
Affiliation(s)
- R Pacifico
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, USA
| | - R L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, USA
| |
Collapse
|
22
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
23
|
Fazio P, Schain M, Mrzljak L, Amini N, Nag S, Al-Tawil N, Fitzer-Attas CJ, Bronzova J, Landwehrmeyer B, Sampaio C, Halldin C, Varrone A. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D 2/3 receptors and sub-cortical volumes in the human basal ganglia: A PET study with 18F-MNI-659 and 11C-raclopride with correction for partial volume effect. Neuroimage 2017; 152:330-339. [PMID: 28254508 DOI: 10.1016/j.neuroimage.2017.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022] Open
Abstract
Phosphodiesterase 10A enzyme (PDE10A) is an important striatal target that has been shown to be affected in patients with neurodegenerative disorders, particularly Huntington´s disease (HD). PDE10A is expressed on striatal neurones in basal ganglia where other known molecular targets are enriched such as dopamine D2/3 receptors (D2/3 R). The aim of this study was to examine the availability of PDE10A enzyme in relation with age and gender and to compare those changes with those related to D2/3 R and volumes in different regions of the basal ganglia. As a secondary objective we examined the relative distribution of D2/3 R and PDE10A enzyme in the striatum and globus pallidus. Forty control subjects (20F/20M; age: 44±11y, age range 27-69) from an ongoing positron emission tomography (PET) study in HD gene expansion carriers were included. Subjects were examined with PET using the high-resolution research tomograph (HRRT) and with 3T magnetic resonance imaging (MRI). The PDE10A radioligand 18F-MNI-659 and D2/3 R radioligand 11C-raclopride were used. The outcome measure was the binding potential (BPND) estimated with the two-tissue compartment model (18F-MNI-659) and the simplified reference tissue model (11C-raclopride) using the cerebellum as reference region. The PET data were corrected for partial volume effects. In the striatum, PDE10A availability showed a significant age-related decline that was larger compared to the age-related decline of D2/3 R availability and to the age-related decline of volumes measured with MRI. In the globus pallidus, a less pronounced decline of PDE10A availability was observed, whereas D2/3 R availability and volumes seemed to be rather stable with aging. The distribution of the PDE10A enzyme was different from the distribution of D2/3 R, with higher availability in the globus pallidus. These results indicate that aging is associated with a considerable physiological reduction of the availability of PDE10A enzyme in the striatum. Moreover as result of the analysis, in the striatum for both the molecular targets, we observed a gender effect with higher BPND the female group.
Collapse
Affiliation(s)
- Patrik Fazio
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Martin Schain
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | | | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Sangram Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Andrea Varrone
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| |
Collapse
|
24
|
Amare AT, Schubert KO, Klingler-Hoffmann M, Cohen-Woods S, Baune BT. The genetic overlap between mood disorders and cardiometabolic diseases: a systematic review of genome wide and candidate gene studies. Transl Psychiatry 2017; 7:e1007. [PMID: 28117839 PMCID: PMC5545727 DOI: 10.1038/tp.2016.261] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Meta-analyses of genome-wide association studies (meta-GWASs) and candidate gene studies have identified genetic variants associated with cardiovascular diseases, metabolic diseases and mood disorders. Although previous efforts were successful for individual disease conditions (single disease), limited information exists on shared genetic risk between these disorders. This article presents a detailed review and analysis of cardiometabolic diseases risk (CMD-R) genes that are also associated with mood disorders. First, we reviewed meta-GWASs published until January 2016, for the diseases 'type 2 diabetes, coronary artery disease, hypertension' and/or for the risk factors 'blood pressure, obesity, plasma lipid levels, insulin and glucose related traits'. We then searched the literature for published associations of these CMD-R genes with mood disorders. We considered studies that reported a significant association of at least one of the CMD-R genes and 'depression' or 'depressive disorder' or 'depressive symptoms' or 'bipolar disorder' or 'lithium treatment response in bipolar disorder', or 'serotonin reuptake inhibitors treatment response in major depression'. Our review revealed 24 potential pleiotropic genes that are likely to be shared between mood disorders and CMD-Rs. These genes include MTHFR, CACNA1D, CACNB2, GNAS, ADRB1, NCAN, REST, FTO, POMC, BDNF, CREB, ITIH4, LEP, GSK3B, SLC18A1, TLR4, PPP1R1B, APOE, CRY2, HTR1A, ADRA2A, TCF7L2, MTNR1B and IGF1. A pathway analysis of these genes revealed significant pathways: corticotrophin-releasing hormone signaling, AMPK signaling, cAMP-mediated or G-protein coupled receptor signaling, axonal guidance signaling, serotonin or dopamine receptors signaling, dopamine-DARPP32 feedback in cAMP signaling, circadian rhythm signaling and leptin signaling. Our review provides insights into the shared biological mechanisms of mood disorders and cardiometabolic diseases.
Collapse
Affiliation(s)
- A T Amare
- Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - K O Schubert
- Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA, Australia,Northern Adelaide Local Health Network, Mental Health Services, Adelaide, SA, Australia
| | - M Klingler-Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - S Cohen-Woods
- School of Psychology, Faculty of Social and Behavioural Sciences, Flinders University, Adelaide, SA, Australia
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA, Australia,Discipline of Psychiatry, School of Medicine, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. E-mail:
| |
Collapse
|
25
|
A Novel Relationship for Schizophrenia, Bipolar, and Major Depressive Disorder. Part 8: a Hint from Chromosome 8 High Density Association Screen. Mol Neurobiol 2016; 54:5868-5882. [DOI: 10.1007/s12035-016-0102-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
|
26
|
Novel, primate-specific PDE10A isoform highlights gene expression complexity in human striatum with implications on the molecular pathology of bipolar disorder. Transl Psychiatry 2016; 6:e742. [PMID: 26905414 PMCID: PMC4872433 DOI: 10.1038/tp.2016.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 12/08/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder is a highly heritable neuropsychiatric disorder affecting nearly 2.5% of the population. Prior genetic studies identified a panel of common and rare single-nucleotide polymorphisms associated with the disease that map to the first intron of the PDE10A gene. RNA sequencing of striatal brain tissue from bipolar and healthy control subjects identified a novel transcript of PDE10A, named PDE10A19, that codes for a PDE10A isoform with a unique N terminus. Genomic sequences that can encode the novel N terminus were conserved in other primates but not rodents. The RNA transcript was expressed at equal or greater levels in the human striatum compared with the two annotated transcripts, PDE10A1 and PDE10A2. The PDE10A19 transcript was detected in polysomal fractions; western blotting experiments confirmed that the RNA transcript is translated into protein. Immunocytochemistry studies using transfected mouse striatal and cortical neurons demonstrated that the PDE10A19 protein distributes to the cytosol, like PDE10A1, and unlike PDE10A2, which is associated with plasma membranes. Immunoprecipitation and immunocytochemical experiments revealed that the PDE10A19 isoform interacts physically with PDE10A2 and, when expressed at elevated levels, interferes with the plasma membrane localization of PDE10A2. These studies illustrate the complexity of PDE10A gene expression in the human brain and highlight the need to unravel the gene's complex and complete coding capabilities along with its transcriptional and translational regulation to guide the development of therapeutic agents that target the protein for the treatment of neuropsychiatric illness.
Collapse
|
27
|
Walkinshaw E, Gai Y, Farkas C, Richter D, Nicholas E, Keleman K, Davis RL. Identification of genes that promote or inhibit olfactory memory formation in Drosophila. Genetics 2015; 199:1173-82. [PMID: 25644700 PMCID: PMC4391555 DOI: 10.1534/genetics.114.173575] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources.
Collapse
Affiliation(s)
- Erica Walkinshaw
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Yunchao Gai
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Caitlin Farkas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Daniel Richter
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | - Eric Nicholas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| | | | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33458
| |
Collapse
|
28
|
Raoux M, Vacher P, Papin J, Picard A, Kostrzewa E, Devin A, Gaitan J, Limon I, Kas MJ, Magnan C, Lang J. Multilevel control of glucose homeostasis by adenylyl cyclase 8. Diabetologia 2015; 58:749-57. [PMID: 25403481 DOI: 10.1007/s00125-014-3445-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an important role in glucose-induced signalling and glucose homeostasis. METHODS We used pharmacological and genetic approaches in beta cells to determine secretion and calcium metabolism. Furthermore, Adcy8 knockout mice were characterised. RESULTS In clonal beta cells, inhibitors of adenylyl cyclases or their downstream targets reduced the glucose-induced increase in cytosolic calcium and insulin secretion. This was reproduced by knock-down of ADCY8, but not of ADCY1. These agents also inhibited glucose-induced increase in cytosolic calcium and electrical activity in primary beta cells and similar effects were observed after ADCY8 knock-down. Moreover, insulin secretion was diminished in islets from Adcy8 knockout mice. These mice were glucose intolerant after oral or intraperitoneal administration of glucose whereas their levels of glucagon-like peptide-1 remained unaltered. Finally, we knocked down ADCY8 in the ventromedial hypothalamus to evaluate the need for ADCY8 in the central regulation of glucose homeostasis. Whereas mice fed a standard diet had normal glucose levels, high-fat diet exacerbated glucose intolerance and knock-down mice were incapable of raising their plasma insulin levels. Finally we confirmed that ADCY8 is expressed in human islets. CONCLUSIONS/INTERPRETATIONS Collectively, our findings demonstrate that ADCY8 is required for the physiological activation of glucose-induced signalling pathways in beta cells, for glucose tolerance and for hypothalamic adaptation to a high-fat diet via regulation of islet insulin secretion.
Collapse
Affiliation(s)
- Matthieu Raoux
- Université de Bordeaux, CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Batiment B14, Allée Geoffrey St Hilaire, CS90063, F-33615, Pessac, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Association of CREB1 gene polymorphism with drug seeking behaviour in eastern Indian addicts. Neurosci Lett 2014; 570:53-7. [PMID: 24704376 DOI: 10.1016/j.neulet.2014.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 11/23/2022]
Abstract
cAMP response element binding protein (CREB) is a major transcription factor which plays an important role in a wide array of cellular functions. CREB also has a significant function in developing substance abuse. A study was undertaken to identify the single nucleotide polymorphisms (SNP) at selective areas of CREB1 gene in heroin as well as in alcohol addicts in comparison with control population. One hundred and forty control subjects, 112 heroin and 102 alcoholics, all male and residing in Kolkata, a city in eastern India participated in the study. SNPs from several exonic regions of CREB1 gene were assessed to investigate possible associations with addiction. One SNP in exon 3, rs35349697, demonstrated a significant correlation with opioid addiction as well as with alcohol addiction. A novel SNP, also located in exon 3, was identified which showed epistatic interaction with rs35349697 to decrease susceptibility to narcotic addiction in the population. The study is the first report on the identification of a role of CREB1 gene polymorphism with addiction.
Collapse
|
30
|
Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part II: bipolar disorder. CNS Spectr 2013; 18:242-51. [PMID: 23472710 PMCID: PMC3936782 DOI: 10.1017/s1092852913000138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this second of two articles on second messenger/signal transduction cascades in major mood disorders, we will review the evidence in support of intracellular dysfunction and its rectification in the etiopathogenesis and treatment of bipolar disorder (BD). The importance of these cascades is highlighted by lithium's (the gold standard in BD psychopharmacology) ability to inhibit multiple critical loci in second messenger/signal transduction cascades including protein kinase C (involved in the IP3/PIP2 pathway) and GSK-3β (canonically identified in the Wnt/Fz/Dvl/GSK-3β cascade). As a result, and like major depressive disorder (MDD), more recent pathophysiological studies and rational therapeutic targets have been directed at these and other intracellular mediators. Even in the past decade, intracellular dysfunction in numerous neuroprotective/apoptotic cascades appears important in the pathophysiology and may be a future target for pharmacological interventions of BD.
Collapse
|