1
|
Rees KA, McCamy KM, Danao CI, Winzer-Serhan UH. Augmented hippocampal up-regulation of immune modulators following a peripheral immune challenge in a hemizygous mouse model of the 15q13.3 microdeletion. Cytokine 2025; 191:156951. [PMID: 40300236 DOI: 10.1016/j.cyto.2025.156951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
The strongest known genetic risk factor for generalized epilepsy is the human hemizygous 15q13.3 microdeletion (MD). This 1.5 Mb MD encompasses six genes, including CHRNA7 encoding the alpha7 subunit that forms the homo-pentameric nicotinic acetylcholine receptor, a known regulator of the immune system. In the CNS, hyper activation of neuroimmune responses contributes to increased seizure susceptibility. In a mouse model with a hemizygous deletion of the orthologous region (Df(h15q13)/+) (Het), we previously demonstrated increased hippocampal expression of inflammatory cytokines compared to wildtype (WT) mice following a mild peripheral immune challenge. To further characterize neuroimmune responses, hippocampal mRNA expression of the chemokines CXCL2 and CXCL10, and the Gap junction protein connexin 43 (GJA1), all of which are implicated in neuronal hyperexcitability, were determined along with additional immune related targets. Three hours after a lipopolysaccharide (LPS, 0.1 mg/kg) or polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg) injection (i.p.), hippocampi were collected, mRNA extracted, and cDNA prepared for qPCR. The results demonstrate extensive upregulation of CXCL2 and CXCL10 expression by LPS and Poly(I:C) (up to 200-fold CXCL2, up to 600-fold CXCL10) (p < 0.0001) with genotype x treatment interactions for CXCL2 by LPS (p < 0.007). Responses to treatment were far smaller in magnitude for all other targets. LPS and Poly(I:C) induced statistically similar increases for Toll-like receptor (TLR)2, TLR4, HMGB1, and C3, but Poly(I:C) had stronger effects on GJA1, TLR3, C1qA and MARCO expression. Remarkably, TLR3 was the only target with significant downregulation of expression after Poly(I:C) (p < 0.0001). In addition, genotype x treatment interactions were detected for TLR3, TLR4, HMGB1, and C1qA (p < 0.02). Thus, a peripheral immune challenge caused extensive increases for CXCL2 and CXCL10, and the genotype-treatment interactions that was seen for several targets, underscored the augmented neuroinflammatory response in mice carrying the MD. Of note is the dramatic upregulation of CXCL10 by low dose Poly(I:C). CXCL10 causes hyperexcitability via neuronal CXCR3 activation. Thus, even an asymptomatic viral infection may increase seizure susceptibility. In summary, a peripheral immune challenge causes strong upregulation of hippocampal inflammatory mediators implicated in neuronal excitability which is particularly detrimental for individuals with high seizure susceptibility, such as carriers of the 15q13.3 MD.
Collapse
Affiliation(s)
- Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Conner I Danao
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
2
|
Jian Y, Xu H, Wang Z, Zhang Z, Zhang X. Histone modification-based functional characterization and genetic association of polymorphisms in LRRC6 and MTMR10 within CRC susceptibility regions 8q24 and 15q13.3. Gene 2025; 943:149286. [PMID: 39875006 DOI: 10.1016/j.gene.2025.149286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified susceptibility loci for colorectal cancer (CRC), but the underlying mechanisms remain unclear. This study investigates functional genetic variants in promoter regions of Leucine Rich Repeat Containing 6 (LRRC6) at 8q24 and Myotubularin Related Protein 10 (MTMR10) at 15q13.3 and their association with CRC susceptibility. METHODS Bioinformatics and ChIP-seq data for H3K4me3 were used to identify SNPs in CRC risk regions 8q24 and 15q13.3 that might affect transcription factor binding, gene expression, or prognosis. These variants were validated in a case-control study of 840 CRC patients and 840 healthy controls from China. SNP functionality was evaluated using luciferase assays. RESULTS Two significant SNPs, LRRC6 rs79600483 (8q24) and MTMR10 rs3743231 (15q13.3), were identified. Expression analysis revealed higher LRRC6 mRNA levels in CRC tissues, correlating with improved survival, while lower MTMR10 expression was linked to better outcomes. Case-control analysis showed that the LRRC6 rs79600483 GG genotype (OR = 2.43, 95 % CI = 1.04-5.67, P = 0.040) and AG genotype (OR = 1.26, 95 % CI = 1.01-1.57, P = 0.045), and the MTMR10 rs3743231 CC genotype (OR = 2.83, 95 % CI = 1.55-5.19, P = 0.001), significantly increased CRC risk. Luciferase assays demonstrated that the G allele of LRRC6 rs79600483 and C allele of MTMR10 rs3743231 increased promoter activity. CONCLUSIONS Polymorphisms in LRRC6 and MTMR10 genes contribute to CRC susceptibility by modulating gene expression and transcription. These findings enhance understanding of CRC genetic susceptibility and may guide future therapeutic strategies.
Collapse
Affiliation(s)
- Ying Jian
- School of Public Health, North China University of Science and Technology, Tangshan, China; College of Life Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China.
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China.
| | - Zhongqi Wang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China.
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China.
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China; College of Life Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China.
| |
Collapse
|
3
|
Tamada K, Takumi T. Neurodevelopmental impact of CNV models in ASD: Recent advances and future directions. Curr Opin Neurobiol 2025; 92:103001. [PMID: 40090136 DOI: 10.1016/j.conb.2025.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/18/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication impairments and restricted, repetitive behaviors. ASD exhibits a strong genetic basis, with rare and common genetic variants contributing to its etiology. Copy number variations (CNVs), deletions or duplications of chromosomal segments, have emerged as key contributors to ASD risk. Rare CNVs often demonstrate large effect sizes and can directly cause ASD, while common variants collectively exert subtle influences. Recent advances have identified numerous ASD-associated CNVs, including recurrent loci such as 1q21.1, 2p16.3, 7q11.23, 15q11.2, 15q11-q13, 16p11.2 and 22q11.2. Mouse models carrying these CNVs have provided profound insights into the underlying neurobiological mechanisms. Recent studies integrating transcriptomic, proteomic, and functional imaging approaches have revealed alterations in synaptic function, neuronal differentiation, myelination, metabolic pathways, and circuit connectivity. Notably, investigations leveraging conditional knockout models, high magnetic field MRI, and single-cell analyses highlight disruptions in excitatory-inhibitory balance, white matter integrity, and dynamic gene regulatory networks. Parallel human-based approaches, including iPSC-derived neurons, cerebral organoids, and large-scale single-nucleus sequencing, are combined with animal model data. These integrative strategies promise to refine our understanding of ASD's genetic architecture, bridging the gap between fundamental discoveries in model organisms and clinically relevant biomarkers, subtypes, and therapeutic targets in humans. This review summarizes key findings from recent CNV mouse model studies and highlights emerging technologies applied to human ASD samples. Finally, we outline prospects for translating findings from mouse studies to humans. By illuminating both unique and convergent genetic mechanisms, these advances offer a critical framework for unraveling etiological complexity in ASD.
Collapse
Affiliation(s)
- Kota Tamada
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| |
Collapse
|
4
|
Qiu Z, Guo J, Chen B, Fang J. Psychosis of Epilepsy: An Update on Clinical Classification and Mechanism. Biomolecules 2025; 15:56. [PMID: 39858450 PMCID: PMC11762389 DOI: 10.3390/biom15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Epilepsy is a prevalent chronic neurological disorder that can significantly impact patients' lives. The incidence and risk of psychosis in individuals with epilepsy are notably higher than in the general population, adversely affecting both the management and rehabilitation of epilepsy and further diminishing patients' quality of life. This review provides an overview of the classification and clinical features of psychosis of epilepsy, with the aim of offering insights and references for the clinical diagnosis and treatment of various types of psychosis of epilepsy. Additionally, we examine the potential pathophysiological mechanisms underlying the psychosis of epilepsy from three perspectives: neuroimaging, neurobiology, and genetics. The alterations in brain structure and function, neurotransmitters, neuroinflammatory mediators, and genetic factors discussed in this review may offer insights into the onset and progression of psychotic symptoms in epilepsy patients and are anticipated to inform the identification of novel therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | - Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; (Z.Q.); (J.G.); (B.C.)
| |
Collapse
|
5
|
Biswal SR, Kumar A, Muthuswamy S, Kumar S. Genetic components of microdeletion syndromes and their role in determining schizophrenia traits. Mol Biol Rep 2024; 51:804. [PMID: 39001960 DOI: 10.1007/s11033-024-09731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
6
|
Akouchekian M, Alizadeh R, Beiranvandi F, Dehghan Manshadi M, Taherizadeh F, Hakim Shooshtari M. Evaluation of DNA repair capacity in parents of pediatric patients diagnosed with autism spectrum disorder using the comet assay procedure. IBRO Neurosci Rep 2023; 15:304-309. [PMID: 37885831 PMCID: PMC10598524 DOI: 10.1016/j.ibneur.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Background Autism Spectrum Disorder (ASD) is characterized by impairments in social communication, limited repetitive behaviors, impaired language development, and interest or activity patterns, which include a group complex neurodevelopmental syndrome with diverse phenotypes that reveal considerable etiological and clinical heterogeneity and are also considered one of the most heritable disorders (over 90%). Genetic, epigenetic, and environmental factors play a role in the development of ASD. Aim This study was designed to investigate the extent of DNA damage in parents of autistic children by treating peripheral blood mononuclear cells (PBMCs) with bleomycin and hydrogen peroxide (H2O2). Methods Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll method and treated with a specific concentration of bleomycin and H2O2 for 30 min and 5 min, respectively. Then, the degree of DNA damage was analyzed by the alkaline comet assay or single cell gel electrophoresis (SCGE), an effective way to measure DNA fragmentation in eukaryotic cells. Results Our findings revealed that there is a significant difference in the increase of DNA damage in parents with affected children compared to the control group, which can indicate the inability of the DNA molecule repair system. Furthermore, our study showed a significant association between fathers' occupational difficulties (exposed to the influence of environmental factors), as well as family marriage, and suffering from ASD in offspring. Conclusion Our results suggested that the influence of environmental factors on parents of autistic children may affect the development of autistic disorder in their offspring. Subsequently, based on our results, investigating the effect of environmental factors on the amount of DNA damage in parents with affected children requires more studies.
Collapse
Affiliation(s)
- Mansoureh Akouchekian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Alizadeh
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Beiranvandi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taherizadeh
- Department of Information and Communication, Faculty 3, Hanover University of Applied Sciences and Arts, Hanover, Germany
| | - Mitra Hakim Shooshtari
- Mental Health Research Center, Tehran Institute of Psychiatry – School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Impaired OTUD7A-dependent Ankyrin regulation mediates neuronal dysfunction in mouse and human models of the 15q13.3 microdeletion syndrome. Mol Psychiatry 2023; 28:1747-1769. [PMID: 36604605 DOI: 10.1038/s41380-022-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Copy number variations (CNVs) are associated with psychiatric and neurodevelopmental disorders (NDDs), and most, including the recurrent 15q13.3 microdeletion disorder, have unknown disease mechanisms. We used a heterozygous 15q13.3 microdeletion mouse model and patient iPSC-derived neurons to reveal developmental defects in neuronal maturation and network activity. To identify the underlying molecular dysfunction, we developed a neuron-specific proximity-labeling proteomics (BioID2) pipeline, combined with patient mutations, to target the 15q13.3 CNV genetic driver OTUD7A. OTUD7A is an emerging independent NDD risk gene with no known function in the brain, but has putative deubiquitinase function. The OTUD7A protein-protein interaction network included synaptic, axonal, and cytoskeletal proteins and was enriched for ASD and epilepsy risk genes (Ank3, Ank2, SPTAN1, SPTBN1). The interactions between OTUD7A and Ankyrin-G (Ank3) and Ankyrin-B (Ank2) were disrupted by an epilepsy-associated OTUD7A L233F variant. Further investigation of Ankyrin-G in mouse and human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed protein instability, increased polyubiquitination, and decreased levels in the axon initial segment, while structured illumination microscopy identified reduced Ankyrin-G nanodomains in dendritic spines. Functional analysis of human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed shared and distinct impairments to axonal growth and intrinsic excitability. Importantly, restoring OTUD7A or Ankyrin-G expression in 15q13.3 microdeletion neurons led to a reversal of abnormalities. These data reveal a critical OTUD7A-Ankyrin pathway in neuronal development, which is impaired in the 15q13.3 microdeletion syndrome, leading to neuronal dysfunction. Furthermore, our study highlights the utility of targeting CNV genes using cell type-specific proteomics to identify shared and unexplored disease mechanisms across NDDs.
Collapse
|
8
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
10
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Chehbani F, Tomaiuolo P, Picinelli C, Baccarin M, Castronovo P, Scattoni ML, Gaddour N, Persico AM. Yield of array-CGH analysis in Tunisian children with autism spectrum disorder. Mol Genet Genomic Med 2022; 10:e1939. [PMID: 35762097 PMCID: PMC9356560 DOI: 10.1002/mgg3.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic underpinnings. Microarray-based comparative genomic hybridization (aCGH) technology has been proposed as a first-level test in the genetic diagnosis of ASD and of neurodevelopmental disorders in general. METHODS We performed aCGH on 98 Tunisian children (83 boys and 15 girls) diagnosed with ASD according to DSM-IV criteria. RESULTS "Pathogenic" or "likely pathogenic" copy number variants (CNVs) were detected in 11 (11.2%) patients, CNVs of "uncertain clinical significance" in 26 (26.5%), "likely benign" or "benign" CNVs were found in 37 (37.8%) and 24 (24.5%) patients, respectively. Gene set enrichment analysis involving genes spanning rare "pathogenic," "likely pathogenic," or "uncertain clinical significance" CNVs, as well as SFARI database "autism genes" in common CNVs, detected eight neuronal Gene Ontology classes among the top 10 most significant, including synapse, neuron differentiation, synaptic signaling, neurogenesis, and others. Similar results were obtained performing g: Profiler analysis. Neither transcriptional regulation nor immune pathways reached significance. CONCLUSIONS aCGH confirms its sizable diagnostic yield in a novel sample of autistic children from North Africa. Recruitment of additional families is under way, to verify whether genetic contributions to ASD in the Tunisian population, differently from other ethnic groups, may involve primarily neuronal genes, more than transcriptional regulation and immune-related pathways.
Collapse
Affiliation(s)
- Fethia Chehbani
- Department of Psychiatry, Research Laboratory “Vulnerability to Psychotic Disorders LR 05 ES 10”Monastir University HospitalMonastirTunisia
- Faculty of PharmacyUniversity of MonastirMonastirTunisia
| | | | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
- Department of GeneticsSynlab Suisse SABioggioSwitzerland
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | | | - Naoufel Gaddour
- Unit of Child PsychiatryMonastir University HospitalMonastirTunisia
| | - Antonio M. Persico
- Child & Adolescent Neuropsychiatry ProgramModena University Hospital & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
12
|
Gupta C, Chandrashekar P, Jin T, He C, Khullar S, Chang Q, Wang D. Bringing machine learning to research on intellectual and developmental disabilities: taking inspiration from neurological diseases. J Neurodev Disord 2022; 14:28. [PMID: 35501679 PMCID: PMC9059371 DOI: 10.1186/s11689-022-09438-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
Abstract
Intellectual and Developmental Disabilities (IDDs), such as Down syndrome, Fragile X syndrome, Rett syndrome, and autism spectrum disorder, usually manifest at birth or early childhood. IDDs are characterized by significant impairment in intellectual and adaptive functioning, and both genetic and environmental factors underpin IDD biology. Molecular and genetic stratification of IDDs remain challenging mainly due to overlapping factors and comorbidity. Advances in high throughput sequencing, imaging, and tools to record behavioral data at scale have greatly enhanced our understanding of the molecular, cellular, structural, and environmental basis of some IDDs. Fueled by the "big data" revolution, artificial intelligence (AI) and machine learning (ML) technologies have brought a whole new paradigm shift in computational biology. Evidently, the ML-driven approach to clinical diagnoses has the potential to augment classical methods that use symptoms and external observations, hoping to push the personalized treatment plan forward. Therefore, integrative analyses and applications of ML technology have a direct bearing on discoveries in IDDs. The application of ML to IDDs can potentially improve screening and early diagnosis, advance our understanding of the complexity of comorbidity, and accelerate the identification of biomarkers for clinical research and drug development. For more than five decades, the IDDRC network has supported a nexus of investigators at centers across the USA, all striving to understand the interplay between various factors underlying IDDs. In this review, we introduced fast-increasing multi-modal data types, highlighted example studies that employed ML technologies to illuminate factors and biological mechanisms underlying IDDs, as well as recent advances in ML technologies and their applications to IDDs and other neurological diseases. We discussed various molecular, clinical, and environmental data collection modes, including genetic, imaging, phenotypical, and behavioral data types, along with multiple repositories that store and share such data. Furthermore, we outlined some fundamental concepts of machine learning algorithms and presented our opinion on specific gaps that will need to be filled to accomplish, for example, reliable implementation of ML-based diagnosis technology in IDD clinics. We anticipate that this review will guide researchers to formulate AI and ML-based approaches to investigate IDDs and related conditions.
Collapse
Affiliation(s)
- Chirag Gupta
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Pramod Chandrashekar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ting Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chenfeng He
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Hirai S, Miwa H, Tanaka T, Toriumi K, Kunii Y, Shimbo H, Sakamoto T, Hino M, Izumi R, Nagaoka A, Yabe H, Nakamachi T, Shioda S, Dan T, Miyata T, Nishito Y, Suzuki K, Miyashita M, Tomoda T, Hikida T, Horiuchi J, Itokawa M, Arai M, Okado H. High-sucrose diets contribute to brain angiopathy with impaired glucose uptake and psychosis-related higher brain dysfunctions in mice. SCIENCE ADVANCES 2021; 7:eabl6077. [PMID: 34757783 PMCID: PMC8580307 DOI: 10.1126/sciadv.abl6077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 05/30/2023]
Abstract
Metabolic dysfunction is thought to contribute to the severity of psychiatric disorders; however, it has been unclear whether current high–simple sugar diets contribute to pathogenesis of these diseases. Here, we demonstrate that a high-sucrose diet during adolescence induces psychosis-related behavioral endophenotypes, including hyperactivity, poor working memory, impaired sensory gating, and disrupted interneuron function in mice deficient for glyoxalase-1 (GLO1), an enzyme involved in detoxification of sucrose metabolites. Furthermore, the high-sucrose diet induced microcapillary impairments and reduced brain glucose uptake in brains of Glo1-deficient mice. Aspirin protected against this angiopathy, enhancing brain glucose uptake and preventing abnormal behavioral phenotypes. Similar vascular damage to our model mice was found in the brains of randomly collected schizophrenia and bipolar disorder patients, suggesting that psychiatric disorders are associated with angiopathy in the brain caused by various environmental stresses, including metabolic stress.
Collapse
Affiliation(s)
- Shinobu Hirai
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hideki Miwa
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Molecular Neuropsychopharmacology Section, Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Tomoko Tanaka
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroko Shimbo
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Shonan University of Medical Sciences, Yokohama 244-0806, Japan
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Haruo Okado
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
14
|
Gordon A, Forsingdal A, Klewe IV, Nielsen J, Didriksen M, Werge T, Geschwind DH. Transcriptomic networks implicate neuronal energetic abnormalities in three mouse models harboring autism and schizophrenia-associated mutations. Mol Psychiatry 2021; 26:1520-1534. [PMID: 31705054 DOI: 10.1038/s41380-019-0576-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Genetic risk for psychiatric illness is complex, so identification of shared molecular pathways where distinct forms of genetic risk might coincide is of substantial interest. A growing body of genetic and genomic studies suggest that such shared molecular pathways exist across disorders with different clinical presentations, such as schizophrenia and autism spectrum disorder (ASD). But how this relates to specific genetic risk factors is unknown. Further, whether some of the molecular changes identified in brain relate to potentially confounding antemortem or postmortem factors are difficult to prove. We analyzed the transcriptome from the cortex and hippocampus of three mouse lines modeling human copy number variants (CNVs) associated with schizophrenia and ASD: Df(h15q13)/+, Df(h22q11)/+, and Df(h1q21)/+ which carry the 15q13.3 deletion, 22q11.2 deletion, and 1q21.1 deletion, respectively. Although we found very little overlap of differential expression at the level of individual genes, gene network analysis identified two cortical and two hippocampal modules of co-expressed genes that were dysregulated across all three mouse models. One cortical module was associated with neuronal energetics and firing rate, and overlapped with changes identified in postmortem human brain from SCZ and ASD patients. These data highlight aspects of convergent gene expression in mouse models harboring major risk alleles, and strengthen the connection between changes in neuronal energetics and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark.,Institute of Biological Psychiatry, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
| | | | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Lundbeck Foundation GeoGenetics Centre, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark.
| | - Daniel H Geschwind
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA. .,Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Hori T, Ikuta S, Hattori S, Takao K, Miyakawa T, Koike C. Mice with mutations in Trpm1, a gene in the locus of 15q13.3 microdeletion syndrome, display pronounced hyperactivity and decreased anxiety-like behavior. Mol Brain 2021; 14:61. [PMID: 33785025 PMCID: PMC8008678 DOI: 10.1186/s13041-021-00749-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.
Collapse
Affiliation(s)
- Tesshu Hori
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, Japan
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shohei Ikuta
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoko Hattori
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Toyama, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Chieko Koike
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Center for Systems Vision Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
16
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Molecular, physiological and behavioral characterization of the heterozygous Df[h15q13]/+ mouse model associated with the human 15q13.3 microdeletion syndrome. Brain Res 2020; 1746:147024. [PMID: 32712126 DOI: 10.1016/j.brainres.2020.147024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022]
Abstract
The human 15q13.3 microdeletion syndrome (DS) is caused by a heterozygous microdeletion (MD) affecting six genes: FAN1; MTMR10; TRPM1; KLF13; OTUD7A; and CHRNA7. Carriers are at risk for intellectual disability, epilepsy, autism spectrum disorder, and schizophrenia. Here we used the Df[h15q13]/+ mouse model with an orthologous deletion to further characterize molecular, neurophysiological, and behavioral parameters that are relevant to the 15q13.3 DS. First, we verified the expression and distribution of the α7 nicotinic acetylcholine receptor (nAChR), a gene product of the CHRNA7, in cortical and subcortical areas. Results revealed similar mRNA distribution pattern in wildtype (WT) and heterozygous (Het) mice, with about half the number of α7 nAChR binding sites in mutants. Hippocampal recordings showed similar input/output responses of field excitatory post-synaptic potentials and theta-burst induced long-term potentiation in WT and Het mice. Het males exhibited impaired spatial learning acquisition in the Barnes Maze. Indicative of increased seizure susceptibility, Het mice developed secondary seizures after 6-Hz corneal stimulation, and had significantly increased sensitivity to the chemoconvulsant pentylenetetrazol resulting in increased spiking in hippocampal EEG recordings. Basal mRNA expression of brain derived neurotrophic factor and activity regulated immediate early genes (c-fos, Arc, Erg-1 and Npas4) during adolescence, a critical period of brain maturation, was unaffected by genotype. Thus, the MD did not show gross neuroanatomical, molecular, and neurophysiological abnormalities despite deficits in spatial learning and increased susceptibility to seizures. Altogether, our results verify the phenotypic profile of the heterozygous Df[h15q13]/+ mouse model and underscore its translational relevance for human 15q13.3 DS.
Collapse
|
18
|
Ma C, Li X, Chen J, Li Z, Guan J, Li Y, Yin S, Shi Y. Association Analysis Between Common Variants of the TRPM1 Gene and Three Mental Disorders in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:649-657. [PMID: 33001715 PMCID: PMC7585623 DOI: 10.1089/gtmb.2019.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Our study was designed to determine if the TRPM1 gene is associated with any of three mental disorders. The project included a cross disorder meta-analysis and association analysis including 141701 cases and 175248 controls. Materials and Methods: We genotyped eight tag single nucleotide polymorphisms (SNPs) in 1248 unrelated schizophrenia (SCZ) patients, 1056 major depressive disorder patients, 1344 bipolar disorder patients, and 1248 normal controls. We then performed a meta-analysis of 10 GWASs to identify common genetic factors among these three mental disorders. Finally, we performed a meta-analysis of six GWASs to explore the role of rs10162727 in SCZ. Result: Although two haplotypes of the TRPM1 gene, rs1035706-rs10162727 and rs10162727-rs3784599, were identified in the control group, as well as all three disease groups, none of the eight tag SNP associations remained significant after correction for multiple tests. In this cross-disorder meta-analysis of the three diseases, none of the tag SNPs were confirmed to be common among the diseases. In addition, in the meta-analysis conducted for the rs10162727 locus in SCZ, there was no significant association (p-value = 0.84, odds ratio = 1.02 [95% CI = 0.87-1.19]). Conclusion: In the Han Chinese population, no significant evidence was found linking variants of the TRPM1 gene with any of the mental disorders examined.
Collapse
Affiliation(s)
- Chuanchuan Ma
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Xiuli Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jianhua Chen
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
| | - Jian Guan
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yigang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Lei G, Liu F, Liu P, Jiao T, Yang L, Chu Z, Deng LS, Li Y, Dang YH. Does genetic mouse model of constitutive Hint1 deficiency exhibit schizophrenia-like behaviors? Schizophr Res 2020; 222:304-318. [PMID: 32439293 DOI: 10.1016/j.schres.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.
Collapse
Affiliation(s)
- Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Tong Jiao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Liu Yang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zheng Chu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Li-Sha Deng
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
20
|
Campbell PD, Granato M. Zebrafish as a tool to study schizophrenia-associated copy number variants. Dis Model Mech 2020; 13:dmm043877. [PMID: 32433025 PMCID: PMC7197721 DOI: 10.1242/dmm.043877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia remains one of the most debilitating human neurodevelopmental disorders, with few effective treatments and striking consequences felt by individuals, communities and society as a whole. As such, there remains a critical need for further investigation into the mechanistic underpinnings of schizophrenia so that novel therapeutic targets can be identified. Because schizophrenia is a highly heritable disorder, genetic risk factors remain an attractive avenue for this research. Given their clear molecular genetic consequences, recurrent microdeletions and duplications, or copy number variants (CNVs), represent one of the most tractable genetic entry points to elucidating these mechanisms. To date, eight CNVs have been shown to significantly increase the risk of schizophrenia. Although rodent models of these CNVs that exhibit behavioral phenotypes have been generated, the underlying molecular mechanisms remain largely elusive. Over the past decades, the zebrafish has emerged as a powerful vertebrate model that has led to fundamental discoveries in developmental neurobiology and behavioral genetics. Here, we review the attributes that make zebrafish exceptionally well suited to investigating individual and combinatorial gene contributions to CNV-mediated brain dysfunction in schizophrenia. With highly conserved genetics and neural substrates, an ever-expanding molecular genetic and imaging toolkit, and ability to perform high-throughput and high-content genetic and pharmacologic screens, zebrafish is poised to generate deep insights into the molecular genetic mechanisms of schizophrenia-associated neurodevelopmental and behavioral deficits, and to facilitate the identification of therapeutic targets.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Pavone P, Ruggieri M, Marino SD, Corsello G, Pappalardo X, Polizzi A, Parano E, Romano C, Marino S, Praticò AD, Falsaperla R. Chromosome 15q BP3 to BP5 deletion is a likely locus for speech delay and language impairment: Report on a four-member family and an unrelated boy. Mol Genet Genomic Med 2020; 8:e1109. [PMID: 31991071 PMCID: PMC7196468 DOI: 10.1002/mgg3.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Deletions in chromosome 15q13 have been reported both in healthy people and individuals with a wide range of behavioral and neuropsychiatric disturbances. Six main breakpoint (BP) subregions (BP1-BP6) are mapped to the 15q13 region and three further embedded BP regions (BP3-BP5). The deletion at BP4-BP5 is the rearrangement most frequently observed compared to other known deletions in BP3-BP5 and BP3-BP4 regions. Deletions of each of these three regions have previously been implicated in a variable range of clinical phenotypes, including minor dysmorphism, developmental delay/intellectual disability, epilepsy, autism spectrum disorders, behavioral disturbances, and speech disorders. Of note, no overt clinical difference among each group of BP region deletions has been recorded so far. METHODS We report on a four-member family plus an additional unrelated boy affected by a BP3-BP5 deletion that presented with typical clinical signs including speech delay and language impairment. A review of the clinical features associated with the three main groups of BP regions (BP4-BP5, BP3-BP5, and BP3-BP4) deletions is reported. RESULTS Array-CGH analysis revealed in the mother (case 1) and in her three children (cases 2, 3, and 4), as well as in the unrelated boy (case 5), the following rearrangement: arr (hg19) 15q13.1-q13.3 (29.213.402-32.510.863) x1. CONCLUSION This report, along with other recent observations, suggests the hypothesis that the BP region comprised between BP3 and BP5 in chromosome 15q13 is involved in several brain human dysfunctions, including impairment of the language development and, its deletion, may be directly or indirectly responsible for the speech delay and language deficit in the affected individuals.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Clinical PediatricsUniversity Hospital “Policlinico‐Vittorio Emanuele”University of CataniaCataniaItaly
- Unit of Rare Diseases of the Nervous System in ChildhoodDepartment of Clinical and Experimental MedicineSection of Pediatrics and Child NeuropsychiatryUniversity of CataniaCataniaItaly
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in ChildhoodDepartment of Clinical and Experimental MedicineSection of Pediatrics and Child NeuropsychiatryUniversity of CataniaCataniaItaly
| | - Simona D. Marino
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| | - Giovanni Corsello
- Units of Pediatrics and Neonatal Intensive CareDepartment of Health Promotion of Maternal‐Infantile Care and of Excellence Internal and Specialist Medicine “G. D'Alessandro” [PROMISE]University of PalermoPalermoItaly
| | - Xena Pappalardo
- National Council of ResearchInstitute for Research and Biomedical Innovation (IRIB)Unit of CataniaCataniaItaly
| | - Agata Polizzi
- Chair of PediatricsDepartment of Educational SciencesUniversity of CataniaCataniaItaly
| | - Enrico Parano
- National Council of ResearchInstitute for Research and Biomedical Innovation (IRIB)Unit of CataniaCataniaItaly
| | - Catia Romano
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| | - Silvia Marino
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| | - Andrea Domenico Praticò
- Unit of Rare Diseases of the Nervous System in ChildhoodDepartment of Clinical and Experimental MedicineSection of Pediatrics and Child NeuropsychiatryUniversity of CataniaCataniaItaly
| | - Raffaele Falsaperla
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| |
Collapse
|
22
|
Separable neural mechanisms for the pleiotropic association of copy number variants with neuropsychiatric traits. Transl Psychiatry 2020; 10:93. [PMID: 32170065 PMCID: PMC7069945 DOI: 10.1038/s41398-020-0771-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
22q11.2, 15q13.3, and 1q21.1 microdeletions attract considerable interest by conferring high risk for a range of neuropsychiatric disorders, including schizophrenia and autism. A fundamental open question is whether divergent or convergent neural mechanisms mediate this genetic pleiotropic association with the same behavioral phenotypes. We use a combination of rodent microdeletion models with high-field neuroimaging to perform a comparative whole-brain characterization of functional and structural mechanisms linked to high-risk states. Resting-state functional and structural magnetic resonance imaging data were acquired on mice carrying heterozygous microdeletions in 22q11.2 (N = 12), 15q13.3 (N = 11), and 1q21.1 (N = 11) loci. We performed network-based statistic, graph, and morphometric analyses. The three microdeletions did not share significant systems-level features. Instead, morphometric analyses revealed microcephaly in 1q21.1 and macrocephaly in 15q13.3 deletions, whereas cerebellar volume was specifically reduced in 22q11.2 deletion. In function, 22q11.2 deletion mice showed widespread cortical hypoconnectivity, accompanied by opposing hyperconnectivity in dopaminergic pathways, which was confirmed by graph analysis. 1q21.1 exhibited distinct changes in posterior midbrain morphology and function, especially in periaqueductal gray, whereas 15q13.3 demonstrated alterations in auditory/striatal system. The combination of cortical hypoconnectivity and dopaminergic hyperconnectivity and reduced cerebellum in 22q11.2 deletion mirrors key neurodevelopmental features of schizophrenia, whereas changes in midbrain and auditory/striatal morphology and topology in 1q21.1 and 15q13.3 rather indicate focal processes possibly linked to the emergence of abnormal salience perception and hallucinations. In addition to insights into pathophysiological processes in these microdeletions, our results establish the general point that microdeletions might increase risk for overlapping neuropsychiatric phenotypes through separable neural mechanisms.
Collapse
|
23
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Sardaar S, Qi B, Dionne-Laporte A, Rouleau GA, Rabbany R, Trakadis YJ. Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia. BMC Psychiatry 2020; 20:92. [PMID: 32111185 PMCID: PMC7049199 DOI: 10.1186/s12888-020-02503-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. METHODS In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes). RESULTS In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ. CONCLUSIONS Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.
Collapse
Affiliation(s)
- Sameer Sardaar
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Bill Qi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Alexandre Dionne-Laporte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Reihaneh Rabbany
- School of Computer Science, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, QC, Canada
| | - Yannis J Trakadis
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medical Genetics, McGill University Health Center Room A04.3140, Montreal Children's Hospital,1001 Boul. Décarie, H4A 3J1, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Garret P, Ebstein F, Delplancq G, Dozieres-Puyravel B, Boughalem A, Auvin S, Duffourd Y, Klafack S, Zieba BA, Mahmoudi S, Singh KK, Duplomb L, Thauvin-Robinet C, Costa JM, Krüger E, Trost D, Verloes A, Faivre L, Vitobello A. Report of the first patient with a homozygous OTUD7A variant responsible for epileptic encephalopathy and related proteasome dysfunction. Clin Genet 2020; 97:567-575. [PMID: 31997314 DOI: 10.1111/cge.13709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Heterozygous microdeletions of chromosome 15q13.3 (MIM: 612001) show incomplete penetrance and are associated with a highly variable phenotype that may include intellectual disability, epilepsy, facial dysmorphism and digit anomalies. Rare patients carrying homozygous deletions show more severe phenotypes including epileptic encephalopathy, hypotonia and poor growth. For years, CHRNA7 (MIM: 118511), was considered the candidate gene that could account for this syndrome. However, recent studies in mouse models have shown that OTUD7A/CEZANNE2 (MIM: 612024), which encodes for an ovarian tumor (OTU) deubiquitinase, should be considered the critical gene responsible for brain dysfunction. In this study, a patient presenting with severe global developmental delay, language impairment and epileptic encephalopathy was referred to our genetics center. Trio exome sequencing (tES) analysis identified a homozygous OTUD7A missense variant (NM_130901.2:c.697C>T), predicted to alter an ultraconserved amino acid, p.(Leu233Phe), lying within the OTU catalytic domain. Its subsequent segregation analysis revealed that the parents, presenting with learning disability, and brother were heterozygous carriers. Biochemical assays demonstrated that proteasome complex formation and function were significantly reduced in patient-derived fibroblasts and in OTUD7A knockout HAP1 cell line. We provide evidence that biallelic pathogenic OTUD7A variation is linked to early-onset epileptic encephalopathy and proteasome dysfunction.
Collapse
Affiliation(s)
- Philippine Garret
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Laboratoire CERBA, Saint-Ouen l'Aumône, France
| | - Frédéric Ebstein
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | - Geoffroy Delplancq
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | | | - Stéphane Auvin
- AP-HP, Hôpital Robert Debré, Service de Neurologie pédiatrique, Paris, France.,UMR1141 INSERM, Université Paris Diderot, Paris, France
| | - Yannis Duffourd
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sandro Klafack
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | - Barbara A Zieba
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | - Sana Mahmoudi
- Service de Pédiatrie, Centre Hospitalier René-Dubos, Pontoise, France
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Laurence Duplomb
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares "déficience intellectuelle", centre de génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | - Elke Krüger
- Universitätsmedizin Greifswald, Institut für Medizinische Biochemie und Molekularbiologie, Greifswald, Germany
| | | | - Alain Verloes
- UMR1141 INSERM, Université Paris Diderot, Paris, France.,Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", centre de génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
26
|
Sriretnakumar V, Zai CC, Wasim S, Barsanti-Innes B, Kennedy JL, So J. Copy number variant syndromes are frequent in schizophrenia: Progressing towards a CNV-schizophrenia model. Schizophr Res 2019; 209:171-178. [PMID: 31080157 DOI: 10.1016/j.schres.2019.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The genetic underpinnings of schizophrenia (SCZ) remain unclear. SCZ genetic studies thus far have only identified numerous single nucleotide polymorphisms with small effect sizes and a handful of copy number variants (CNVs). This study investigates the prevalence of well-characterized CNV syndromes and candidate CNVs within a cohort of 348 SCZ patients, and explores correlations to their phenotypic findings. There was an enrichment of syndromic CNVs in the cohort, as well as brain-related and immune pathway genes within the detected CNVs. SCZ patients with brain-related CNVs had increased CNV burden, neurodevelopmental features, and types of hallucinations. Based on these results, we propose a CNV-SCZ model wherein specific phenotypic profiles should be prioritized for CNV screening within the SCZ patient population.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - Syed Wasim
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network & Mount Sinai Hospital, 60 Murray Street, Toronto M5T 3L9, Canada
| | - Brianna Barsanti-Innes
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - James L Kennedy
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada
| | - Joyce So
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College Street, Toronto M5T 1R8, Canada; The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network & Mount Sinai Hospital, 60 Murray Street, Toronto M5T 3L9, Canada.
| |
Collapse
|
27
|
Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev 2019; 110:60-76. [PMID: 31059731 DOI: 10.1016/j.neubiorev.2019.04.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Several genetic causes of ASD have been identified and this has enabled researchers to construct mouse models. Mouse behavioral tests reveal impaired social interaction and communication, as well as increased repetitive behavior and behavioral inflexibility in these mice, which correspond to core behavioral deficits observed in individuals with ASD. However, the connection between these behavioral abnormalities and the underlying dysregulation in neuronal circuits and synaptic function is poorly understood. Moreover, different components of the ASD phenotype may be linked to dysfunction in different brain regions, making it even more challenging to chart the pathophysiological mechanisms involved in ASD. Here we summarize the research on mouse models of ASD and their contribution to understanding pathophysiological mechanisms. Specifically, we emphasize abnormal serotonin production and regulation, as well as the disruption in circadian rhythms and sleep that are observed in a subset of ASD, and propose that spatiotemporal disturbances in brainstem development may be a primary cause of ASD that propagates towards the cerebral cortex.
Collapse
Affiliation(s)
- Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | - Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Patrick F Bolton
- Institute of Psychiatry, King's College London, London, SE5 8AF, UK
| |
Collapse
|
28
|
Interactive effects between hemizygous 15q13.3 microdeletion and peripubertal stress on adult behavioral functions. Neuropsychopharmacology 2019; 44:703-710. [PMID: 30188511 PMCID: PMC6372643 DOI: 10.1038/s41386-018-0189-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 01/20/2023]
Abstract
15q13.3 microdeletion is one of several gene copy number variants (CNVs) conferring increased risk of psychiatric and neurological disorders. This microdeletion gives rise to a variable spectrum of pathological phenotypes, ranging from asymptomatic to severe clinical outcomes. The reasons for these varying phenotypic outcomes remain unknown. Using a mouse model of hemizygous deletion of the orthologous region of 15q13.3, the present study examined whether exposure to stressful life events might interact with hemizygous 15q13.3 microdeletion in the development of behavioral dysfunctions. We show that hemizygous 15q13.3 microdeletion alone induces only limited effects on adult behaviors, but when combined with psychological stress in pubescence (postnatal days 30-40), it impairs sensorimotor gating and increases the sensitivity to the psychostimulant drug, amphetamine, at adult age. Stress exposure in adolescence (postnatal days 50-60) did not induce similar interactions with 15q13.3 microdeletion, but led to impaired emotional learning and memory and social behavior regardless of the genetic background. The present study provides the first evidence for interactive effects between hemizygous 15q13.3 microdeletion and exposure to stressful life events, and at the same time, it emphasizes an important influence of the precise timing of postnatal stress exposure in these interactions. Our findings suggest that hemizygous 15q13.3 microdeletion can act as a "disease primer" that increases the carrier's vulnerability to the detrimental effects of peripubertal stress exposure on adult behaviors.
Collapse
|
29
|
Forsingdal A, Jørgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J. Can Animal Models of Copy Number Variants That Predispose to Schizophrenia Elucidate Underlying Biology? Biol Psychiatry 2019; 85:13-24. [PMID: 30144930 DOI: 10.1016/j.biopsych.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The diagnosis of schizophrenia rests on clinical criteria that cannot be assessed in animal models. Together with absence of a clear underlying pathology and understanding of what causes schizophrenia, this has hindered development of informative animal models. However, recent large-scale genomic studies have identified copy number variants (CNVs) that confer high risk of schizophrenia and have opened a new avenue for generation of relevant animal models. Eight recurrent CNVs have reproducibly been shown to increase the risk of schizophrenia by severalfold: 22q11.2(del), 15q13.3(del), 1q21(del), 1q21(dup), NRXN1(del), 3q29(del), 7q11.23(dup), and 16p11.2(dup). Five of these CNVs have been modeled in animals, mainly mice, but also rats, flies, and zebrafish, and have been shown to recapitulate behavioral and electrophysiological aspects of schizophrenia. Here, we provide an overview of the schizophrenia-related phenotypes found in animal models of schizophrenia high-risk CNVs. We also discuss strengths and limitations of the CNV models, and how they can advance our biological understanding of mechanisms that can lead to schizophrenia and can be used to develop new and better treatments for schizophrenia.
Collapse
Affiliation(s)
- Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Trine Nygaard Jørgensen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Didriksen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde.
| |
Collapse
|
30
|
Abstract
Variably expressive copy-number variants (CNVs) are characterized by extensive phenotypic heterogeneity of neuropsychiatric phenotypes. Approaches to identify single causative genes for these phenotypes within each CNV have not been successful. Here, we posit using multiple lines of evidence, including pathogenicity metrics, functional assays of model organisms, and gene expression data, that multiple genes within each CNV region are likely responsible for the observed phenotypes. We propose that candidate genes within each region likely interact with each other through shared pathways to modulate the individual gene phenotypes, emphasizing the genetic complexity of CNV-associated neuropsychiatric features.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
31
|
Hiroi N. Critical reappraisal of mechanistic links of copy number variants to dimensional constructs of neuropsychiatric disorders in mouse models. Psychiatry Clin Neurosci 2018; 72:301-321. [PMID: 29369447 PMCID: PMC5935536 DOI: 10.1111/pcn.12641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
Copy number variants are deletions and duplications of a few thousand to million base pairs and are associated with extraordinarily high levels of autism spectrum disorder, schizophrenia, intellectual disability, or attention-deficit hyperactivity disorder. The unprecedented levels of robust and reproducible penetrance of copy number variants make them one of the most promising and reliable entry points to delve into the mechanistic bases of many mental disorders. However, the precise mechanistic bases of these associations still remain elusive in humans due to the many genes encoded in each copy number variant and the diverse associated phenotypic features. Genetically engineered mice have provided a technical means to ascertain precise genetic mechanisms of association between copy number variants and dimensional aspects of mental illnesses. Molecular, cellular, and neuronal phenotypes can be detected as potential mechanistic substrates for various behavioral constructs of mental illnesses. However, mouse models come with many technical pitfalls. Genetic background is not well controlled in many mouse models, leading to rather obvious interpretative issues. Dose alterations of many copy number variants and single genes within copy number variants result in some molecular, cellular, and neuronal phenotypes without a behavioral phenotype or with a behavioral phenotype opposite to what is seen in humans. In this review, I discuss technical and interpretative pitfalls of mouse models of copy number variants and highlight well-controlled studies to suggest potential neuronal mechanisms of dimensional aspects of mental illnesses. Mouse models of copy number variants represent toeholds to achieve a better understanding of the mechanistic bases of dimensions of neuropsychiatric disorders and thus for development of mechanism-based therapeutic options in humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
32
|
Yin J, Chen W, Chao ES, Soriano S, Wang L, Wang W, Cummock SE, Tao H, Pang K, Liu Z, Pereira FA, Samaco RC, Zoghbi HY, Xue M, Schaaf CP. Otud7a Knockout Mice Recapitulate Many Neurological Features of 15q13.3 Microdeletion Syndrome. Am J Hum Genet 2018; 102:296-308. [PMID: 29395075 DOI: 10.1016/j.ajhg.2018.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022] Open
Abstract
15q13.3 microdeletion syndrome is characterized by a wide spectrum of neurodevelopmental disorders, including developmental delay, intellectual disability, epilepsy, language impairment, abnormal behaviors, neuropsychiatric disorders, and hypotonia. This syndrome is caused by a deletion on chromosome 15q, which typically encompasses six genes. Here, through studies on OTU deubiquitinase 7A (Otud7a) knockout mice, we identify OTUD7A as a critical gene responsible for many of the cardinal phenotypes associated with 15q13.3 microdeletion syndrome. Otud7a-null mice show reduced body weight, developmental delay, abnormal electroencephalography patterns and seizures, reduced ultrasonic vocalizations, decreased grip strength, impaired motor learning/motor coordination, and reduced acoustic startle. We show that OTUD7A localizes to dendritic spines and that Otud7a-null mice have decreased dendritic spine density compared to their wild-type littermates. Furthermore, frequency of miniature excitatory postsynaptic currents (mEPSCs) is reduced in the frontal cortex of Otud7a-null mice, suggesting a role of Otud7a in regulation of dendritic spine density and glutamatergic synaptic transmission. Taken together, our results suggest decreased OTUD7A dosage as a major contributor to the neurodevelopmental phenotypes associated with 15q13.3 microdeletion syndrome, through the misregulation of dendritic spine density and activity.
Collapse
|
33
|
Uddin M, Unda BK, Kwan V, Holzapfel NT, White SH, Chalil L, Woodbury-Smith M, Ho KS, Harward E, Murtaza N, Dave B, Pellecchia G, D’Abate L, Nalpathamkalam T, Lamoureux S, Wei J, Speevak M, Stavropoulos J, Hope KJ, Doble BW, Nielsen J, Wassman ER, Scherer SW, Singh KK. OTUD7A Regulates Neurodevelopmental Phenotypes in the 15q13.3 Microdeletion Syndrome. Am J Hum Genet 2018; 102:278-295. [PMID: 29395074 PMCID: PMC5985537 DOI: 10.1016/j.ajhg.2018.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.
Collapse
|
34
|
Gillentine MA, Yin J, Bajic A, Zhang P, Cummock S, Kim JJ, Schaaf CP. Functional Consequences of CHRNA7 Copy-Number Alterations in Induced Pluripotent Stem Cells and Neural Progenitor Cells. Am J Hum Genet 2017; 101:874-887. [PMID: 29129316 DOI: 10.1016/j.ajhg.2017.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Copy-number variants (CNVs) of chromosome 15q13.3 manifest clinically as neuropsychiatric disorders with variable expressivity. CHRNA7, encoding for the α7 nicotinic acetylcholine receptor (nAChR), has been suggested as a candidate gene for the phenotypes observed. Here, we used induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) derived from individuals with heterozygous 15q13.3 deletions and heterozygous 15q13.3 duplications to investigate the CHRNA7-dependent molecular consequences of the respective CNVs. Unexpectedly, both deletions and duplications lead to decreased α7 nAChR-associated calcium flux. For deletions, this decrease in α7 nAChR-dependent calcium flux is expected due to haploinsufficiency of CHRNA7. For duplications, we found that increased expression of CHRNA7 mRNA is associated with higher expression of nAChR-specific and resident ER chaperones, indicating increased ER stress. This is likely a consequence of inefficient chaperoning and accumulation of α7 subunits in the ER, as opposed to being incorporated into functional α7 nAChRs at the cell membrane. Here, we showed that α7 nAChR-dependent calcium signal cascades are downregulated in both 15q13.3 deletion and duplication NPCs. While it may seem surprising that genomic changes in opposite direction have consequences on downstream pathways that are in similar direction, it aligns with clinical data, which suggest that both individuals with deletions and duplications of 15q13.3 manifest neuropsychiatric disease and cognitive deficits.
Collapse
|
35
|
Wilfert AB, Sulovari A, Turner TN, Coe BP, Eichler EE. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med 2017; 9:101. [PMID: 29179772 PMCID: PMC5704398 DOI: 10.1186/s13073-017-0498-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Next-generation sequencing (NGS) is now more accessible to clinicians and researchers. As a result, our understanding of the genetics of neurodevelopmental disorders (NDDs) has rapidly advanced over the past few years. NGS has led to the discovery of new NDD genes with an excess of recurrent de novo mutations (DNMs) when compared to controls. Development of large-scale databases of normal and disease variation has given rise to metrics exploring the relative tolerance of individual genes to human mutation. Genetic etiology and diagnosis rates have improved, which have led to the discovery of new pathways and tissue types relevant to NDDs. In this review, we highlight several key findings based on the discovery of recurrent DNMs ranging from copy number variants to point mutations. We explore biases and patterns of DNM enrichment and the role of mosaicism and secondary mutations in variable expressivity. We discuss the benefit of whole-genome sequencing (WGS) over whole-exome sequencing (WES) to understand more complex, multifactorial cases of NDD and explain how this improved understanding aids diagnosis and management of these disorders. Comprehensive assessment of the DNM landscape across the genome using WGS and other technologies will lead to the development of novel functional and bioinformatics approaches to interpret DNMs and drive new insights into NDD biology.
Collapse
Affiliation(s)
- Amy B Wilfert
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Tychele N Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
36
|
Yoshimura RF, Tran MB, Hogenkamp DJ, Ayala NL, Johnstone T, Dunnigan AJ, Gee TK, Gee KW. Allosteric modulation of nicotinic and GABA A receptor subtypes differentially modify autism-like behaviors in the BTBR mouse model. Neuropharmacology 2017; 126:38-47. [PMID: 28842344 DOI: 10.1016/j.neuropharm.2017.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is associated with two core symptoms (social communication deficits and stereotyped repetitive behaviors) in addition to a number of comorbidities. There are no FDA-approved drugs for the core symptoms and the changes that underlie these behaviors are not fully understood. One hypothesis is an imbalance of the excitation (E)/inhibition (I) ratio with excessive E and diminished I occurring in specific neuronal circuits. Data suggests that both gamma-aminobutyric acidA (GABAA) and α7 nicotinic acetylcholine receptors (nAChRs) significantly impact E/I. BTBR T+tf/J (BTBR) mice are a model that display an autism-like phenotype with impaired social interaction and stereotyped behavior. A β2/3-subunit containing GABAA receptor (GABAAR) subtype selective positive allosteric modulator (PAM), 2-261, and an α7 nAChR subtype selective PAM, AVL-3288, were tested in social approach and repetitive self-grooming paradigms. 2-261 was active in the social approach but not the self-grooming paradigm, whereas AVL-3288 was active in both. Neither compound impaired locomotor activity. Modulating α7 nAChRs alone may be sufficient to correct these behavioral and cognitive deficits. GABAergic and nicotinic compounds are already in various stages of clinical testing for treatment of the core symptoms and comorbidities associated with ASD. Our findings and those of others suggest that compounds that have selective activities at GABAAR subtypes and the α7 nAChR may address not only the core symptoms, but many of the associated comorbidities as well and warrant further investigation in other models of ASD.
Collapse
Affiliation(s)
- Ryan F Yoshimura
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Minhtam B Tran
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Derk J Hogenkamp
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Narielle L Ayala
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Timothy Johnstone
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Andrew J Dunnigan
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Timothy K Gee
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Kelvin W Gee
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States.
| |
Collapse
|
37
|
Dynamic changes in murine forebrain miR-211 expression associate with cholinergic imbalances and epileptiform activity. Proc Natl Acad Sci U S A 2017; 114:E4996-E5005. [PMID: 28584127 DOI: 10.1073/pnas.1701201114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy.
Collapse
|
38
|
Krystal JH, Anticevic A, Yang GJ, Dragoi G, Driesen NR, Wang XJ, Murray JD. Impaired Tuning of Neural Ensembles and the Pathophysiology of Schizophrenia: A Translational and Computational Neuroscience Perspective. Biol Psychiatry 2017; 81:874-885. [PMID: 28434616 PMCID: PMC5407407 DOI: 10.1016/j.biopsych.2017.01.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
The functional optimization of neural ensembles is central to human higher cognitive functions. When the functions through which neural activity is tuned fail to develop or break down, symptoms and cognitive impairments arise. This review considers ways in which disturbances in the balance of excitation and inhibition might develop and be expressed in cortical networks in association with schizophrenia. This presentation is framed within a developmental perspective that begins with disturbances in glutamate synaptic development in utero. It considers developmental correlates and consequences, including compensatory mechanisms that increase intrinsic excitability or reduce inhibitory tone. It also considers the possibility that these homeostatic increases in excitability have potential negative functional and structural consequences. These negative functional consequences of disinhibition may include reduced working memory-related cortical activity associated with the downslope of the "inverted-U" input-output curve, impaired spatial tuning of neural activity and impaired sparse coding of information, and deficits in the temporal tuning of neural activity and its implication for neural codes. The review concludes by considering the functional significance of noisy activity for neural network function. The presentation draws on computational neuroscience and pharmacologic and genetic studies in animals and humans, particularly those involving N-methyl-D-aspartate glutamate receptor antagonists, to illustrate principles of network regulation that give rise to features of neural dysfunction associated with schizophrenia. While this presentation focuses on schizophrenia, the general principles outlined in the review may have broad implications for considering disturbances in the regulation of neural ensembles in psychiatric disorders.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA,Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Psychology, Yale University
| | - Genevieve J. Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - George Dragoi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Naomi R. Driesen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA
| | | | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
39
|
Chang H, Li L, Peng T, Li M, Gao L, Xiao X. Replication analyses of four chromosomal deletions with schizophrenia via independent large-scale meta-analyses. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1161-1169. [PMID: 27727512 DOI: 10.1002/ajmg.b.32502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/27/2016] [Indexed: 01/01/2023]
Abstract
Recent studies suggest that copy number variations (CNVs) are also involved in the genetic risk of schizophrenia. Using a Cochran-Mantel-Haenszel (CMH) adjusted meta-analysis in 18,497 schizophrenia patients and 25,522 healthy controls from 14 independent samples, we conducted replication analyses of four chromosomal deletions at 1q21.1, 15q11.2, 15q13.3, and 22q11.2 Loci for their associations with schizophrenia. Only CNVs larger than 100 kb that had >50% reciprocal overlap with the canonical deletion chromosomal regions were considered. We successfully replicate the significant associations at 1q21.1 (P value = 3.101 × 10-7 , odds ratio (OR) = 6.91), 15q13.3 (P value = 4.771 × 10-4 , OR = 7.83), and 22q11.2 (P value = 1.725 × 10-5 , OR = 9.21) deletions, although the effect sizes are relatively smaller than the original studies, which is not unexpected and adds further support for the involvement of these genetic lesions in the risk of schizophrenia. The 15q11.2 deletion, which shows higher frequency in healthy populations than the other three CNV loci, though is not significant in the present meta-analysis (P value = 0.1545, OR = 1.42), it shows the same direction of effects with previous studies. These results further confirm the genetic connections between rare CNVs and schizophrenia, and suggest the importance of adequate sample size in replication analyses for such risk loci with low frequency in general populations. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Lingyi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Tao Peng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Lei Gao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Science, Shandong University of Technology, Zibo, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|