1
|
Shao M, Zhao C, Pan Z, Yang X, Gao C, Kam GHC, Zhou H, Lee SMY. Oxyphylla A exerts antiparkinsonian effects by ameliorating 6-OHDA-induced mitochondrial dysfunction and dyskinesia in vitro and in vivo. Chem Biol Interact 2024; 403:111224. [PMID: 39233265 DOI: 10.1016/j.cbi.2024.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Parkinson's disease (PD) poses a formidable challenge in neurology, marked by progressive neuronal loss in the substantia nigra. Despite extensive investigations, understanding PD's pathophysiology remains elusive, with no effective therapeutic intervention identified to alter its course. Oxyphylla A (OPA), a natural compound extracted from Alpinia oxyphylla, exhibits promise in experimental models of various neurodegenerative disorders (ND), notably through novel mechanisms like α-synuclein degradation. The purpose of this investigation was to explore the neuroprotective potential of OPA on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PD models, with a focus on mitochondrial functions. Additionally, potential OPA targets for neuroprotection were explored. PC12 cells and C57BL/6 mice were lesioned with 6-OHDA as PD models. Impaired mitochondrial membrane potential (Δψm) was assessed using JC-1 staining. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were also detected to evaluate mitochondrial function and glucose metabolism in PC12 cells. Behavioral analysis and immunohistochemistry were performed to evaluate pathological lesions in the mouse brain. Moreover, bioinformatics tools predicted OPA targets. OPA restored cellular energy metabolism and mitochondrial biogenesis, preserving Δψm in 6-OHDA-induced neuronal damage. Pre-treatment mitigated loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and striatal dopaminergic fibers, restoring dopamine levels and ameliorating motor deficits in PD mice. Mechanistically, OPA may activate PKA/Akt/GSK-3β and CREB/PGC-1α/NRF-1/TFAM signaling cascades. Bioinformatics analysis identified potential OPA targets, including CTNNB1, ESR1, MAPK1, MAPK14, and SRC. OPA, derived from Alpinia oxyphylla, exhibited promising neuroprotective activity against PD through addressing mitochondrial dysfunction, suggesting its potential as a multi-targeted therapeutic for PD.
Collapse
Affiliation(s)
- Min Shao
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhijian Pan
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xuanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gloria Hio-Cheng Kam
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hefeng Zhou
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
2
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
3
|
Szeőcs D, Vida B, Petővári G, Póliska S, Janka E, Sipos A, Uray K, Sebestyén A, Krasznai Z, Bai P. Cell-free ascites from ovarian cancer patients induces Warburg metabolism and cell proliferation through TGFβ-ERK signaling. GeroScience 2024; 46:3581-3597. [PMID: 38196068 PMCID: PMC11226691 DOI: 10.1007/s11357-023-01056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024] Open
Abstract
Ascites plays a key role in supporting the metastatic potential of ovarian cancer cells. Shear stress and carry-over of cancer cells by ascites flow support carcinogenesis and metastasis formation. In addition, soluble factors may participate in the procarcinogenic effects of ascites in ovarian cancer. This study aimed to determine the biological effects of cell-free ascites on carcinogenesis in ovarian cancer cells. Cell-free ascites from ovarian cancer patients (ASC) non-selectively induced cell proliferation in multiple models of ovarian cancer and untransformed primary human dermal fibroblasts. Furthermore, ASC induced a Warburg-type rearrangement of cellular metabolism in A2780 ovarian cancer cells characterized by increases in cellular oxygen consumption and glycolytic flux; increases in glycolytic flux were dominant. ASC induced mitochondrial uncoupling and fundamentally reduced fatty acid oxidation. Ascites-elicited effects were uniform among ascites specimens. ASC-elicited transcriptomic changes in A2780 ovarian cancer cells included induction of the TGFβ-ERK/MEK pathway, which plays a key role in inducing cell proliferation and oncometabolism. ASC-induced gene expression changes, as well as the overexpression of members of the TGFβ signaling system, were associated with poor survival in ovarian cancer patients. We provided evidence that the activation of the autocrine/paracrine of TGFβ signaling system may be present in bladder urothelial carcinoma and stomach adenocarcinoma. Database analysis suggests that the TGFβ system may feed forward bladder urothelial carcinoma and stomach adenocarcinoma. Soluble components of ASC support the progression of ovarian cancer. These results suggest that reducing ascites production may play an essential role in the treatment of ovarian cancer by inhibiting the progression and reducing the severity of the disease.
Collapse
Affiliation(s)
- Dóra Szeőcs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
| | - Beáta Vida
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Gábor Petővári
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary, 4032
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
| | - Anna Sebestyén
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zoárd Krasznai
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032.
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary, 4032.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary, 4032.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032.
| |
Collapse
|
4
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
5
|
Vinnai BÁ, Arianti R, Győry F, Bacso Z, Fésüs L, Kristóf E. Extracellular thiamine concentration influences thermogenic competency of differentiating neck area-derived human adipocytes. Front Nutr 2023; 10:1207394. [PMID: 37781121 PMCID: PMC10534038 DOI: 10.3389/fnut.2023.1207394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Brown adipose tissue (BAT) dissipates energy in the form of heat majorly via the mitochondrial uncoupling protein 1 (UCP1). The activation of BAT, which is enriched in the neck area and contains brown and beige adipocytes in humans, was considered as a potential therapeutic target to treat obesity. Therefore, finding novel agents that can stimulate the differentiation and recruitment of brown or beige thermogenic adipocytes are important subjects for investigation. The current study investigated how the availability of extracellular thiamine (vitamin B1), an essential cofactor of mitochondrial enzyme complexes that catalyze key steps in the catabolism of nutrients, affects the expression of thermogenic marker genes and proteins and subsequent functional parameters during ex vivo adipocyte differentiation. Methods We differentiated primary human adipogenic progenitors that were cultivated from subcutaneous (SC) or deep neck (DN) adipose tissues in the presence of gradually increasing thiamine concentrations during their 14-day differentiation program. mRNA and protein expression of thermogenic genes were analyzed by RT-qPCR and western blot, respectively. Cellular respiration including stimulated maximal and proton-leak respiration was measured by Seahorse analysis. Results Higher thiamine levels resulted in increased expression of thiamine transporter 1 and 2 both at mRNA and protein levels in human neck area-derived adipocytes. Gradually increasing concentrations of thiamine led to increased basal, cAMP-stimulated, and proton-leak respiration along with elevated mitochondrial biogenesis of the differentiated adipocytes. The extracellular thiamine availability during adipogenesis determined the expression levels of UCP1, PGC1a, CKMT2, and other browning-related genes and proteins in primary SC and DN-derived adipocytes in a concentration-dependent manner. Providing abundant amounts of thiamine further increased the thermogenic competency of the adipocytes. Discussion Case studies in humans reported that thiamine deficiency was found in patients with type 2 diabetes and obesity. Our study raises the possibility of a novel strategy with long-term thiamine supplementation, which can enhance the thermogenic competency of differentiating neck area-derived adipocytes for preventing or combating obesity.
Collapse
Affiliation(s)
- Boglárka Ágnes Vinnai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalanbaru, Indonesia
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Bacso
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Sarlon J, Partonen T, Lang UE. Potential links between brown adipose tissue, circadian dysregulation, and suicide risk. Front Neurosci 2023; 17:1196029. [PMID: 37360180 PMCID: PMC10288144 DOI: 10.3389/fnins.2023.1196029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Circadian desynchronizations are associated with psychiatric disorders as well as with higher suicidal risk. Brown adipose tissue (BAT) is important in the regulation of body temperature and contributes to the homeostasis of the metabolic, cardiovascular, skeletal muscle or central nervous system. BAT is under neuronal, hormonal and immune control and secrets batokines: i.e., autocrine, paracrine and endocrine active substances. Moreover, BAT is involved in circadian system. Light, ambient temperature as well as exogen substances interact with BAT. Thus, a dysregulation of BAT can indirectly worsen psychiatric conditions and the risk of suicide, as one of previously suggested explanations for the seasonality of suicide rate. Furthermore, overactivation of BAT is associated with lower body weight and lower level of blood lipids. Reduced body mass index (BMI) or decrease in BMI respectively, as well as lower triglyceride concentrations were found to correlate with higher risk of suicide, however the findings are inconclusive. Hyperactivation or dysregulation of BAT in relation to the circadian system as a possible common factor is discussed. Interestingly, substances with proven efficacy in reducing suicidal risk, like clozapine or lithium, interact with BAT. The effects of clozapine on fat tissue are stronger and might differ qualitatively from other antipsychotics; however, the significance remains unclear. We suggest that BAT is involved in the brain/environment homeostasis and deserves attention from a psychiatric point of view. Better understanding of circadian disruptions and its mechanisms can contribute to personalized diagnostic and therapy as well as better assessment of suicide risk.
Collapse
Affiliation(s)
- Jan Sarlon
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Undine E. Lang
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Arianti R, Ágnes Vinnai B, Győry F, Guba A, Csősz É, Kristóf E, Fésüs L. Availability of abundant thiamine determines efficiency of thermogenic activation in human neck area derived adipocytes. J Nutr Biochem 2023:109385. [PMID: 37230255 DOI: 10.1016/j.jnutbio.2023.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Brown/beige adipocytes express uncoupling protein-1 (UCP1) that enables them to dissipate energy as heat. Systematic activation of this process can alleviate obesity. Human brown adipose tissues are interspersed in distinct anatomical regions including deep neck. We found that UCP1 enriched adipocytes differentiated from precursors of this depot highly expressed ThTr2 transporter of thiamine and consumed thiamine during thermogenic activation of these adipocytes by cAMP which mimics adrenergic stimulation. Inhibition of ThTr2 led to lower thiamine consumption with decreased proton leak respiration reflecting reduced uncoupling. In the absence of thiamine, cAMP-induced uncoupling was diminished but restored by thiamine addition reaching the highest levels at thiamine concentrations larger than present in human blood plasma. Thiamine is converted to thiamine pyrophosphate (TPP) in cells; the addition of TPP to permeabilized adipocytes increased uncoupling fueled by TPP-dependent pyruvate dehydrogenase. ThTr2 inhibition also hampered cAMP-dependent induction of UCP1, PGC1a, and other browning marker genes, and thermogenic induction of these genes was potentiated by thiamine in a concentration dependent manner. Our study reveals the importance of amply supplied thiamine during thermogenic activation in human adipocytes which provides TPP for TPP-dependent enzymes not fully saturated with this cofactor and by potentiating the induction of thermogenic genes.
Collapse
Affiliation(s)
- Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Boglárka Ágnes Vinnai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Andrea Guba
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary.
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary.
| |
Collapse
|
8
|
Soares MA, Costa ALA, Silva NLC, Martins AF, Matias DO, Araujo OMO, Lopes RT, Takiya CM, Miranda ALP, Miranda-Alves L, Tributino JLM. Atypical antipsychotics olanzapine and clozapine increase bone loss in female rats with experimental periodontitis. J Periodontal Res 2023; 58:283-295. [PMID: 36575324 DOI: 10.1111/jre.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis is a highly prevalent disease in psychiatric patients, including those undergoing symptomatic treatment with second-generation antipsychotics. Some of these drugs, such as clozapine (CLO) and olanzapine (OLA), have prominent metabolic effects such as weight gain, hyperglycemia, and dyslipidemia, which are risk factors for periodontitis. In addition to the metabolic effects, there are reports of changes in salivary flow, gingival bleeding, and caries. In this context, we aimed to evaluate if the metabolic effects of OLA and CLO alter periodontal parameters in an animal model of periodontitis without the environmental and psychosocial biases inherent to human diseases. METHODS In the first set of experiments, male and female adult Wistar rats received oral administration of CLO, OLA, or vehicle for 45 days. They were evaluated for body mass composition and weight gain, blood glucose parameters (fasting and glucose tolerance and insulin resistance tests), and lipid profile (HDL, total cholesterol, and triglycerides). In a second set of experiments, the same measurements were performed in female rats exposed to the antipsychotics for 45 days and ligature-induced periodontitis on the 30th day of treatment. Macroscopic measurements of exposed roots, microtomography in the furcation region of the first molar, and histological evaluation of the region between the first and second molars were evaluated to assess bone loss. Additionally, gingival measurements of myeloperoxidase activity and pro-inflammatory cytokine TNF-α were made. RESULTS Only females exposed to OLA had more significant weight gain than controls. They also exhibited differences in glucose metabolism. Ligature-induced periodontitis produced intense bone retraction without changing the density of the remaining structures. The bone loss was even higher in rats with periodontitis treated with OLA or CLO and was accompanied by a local increase in TNF-α caused by CLO. These animals, however, did not exhibit the same metabolic impairments observed for animals without periodontitis. CONCLUSION The use of clozapine and olanzapine may be a risk factor for periodontal disease, independent of systemic metabolic alterations.
Collapse
Affiliation(s)
- Mariana Alves Soares
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz A Costa
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália L C Silva
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline França Martins
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiane Oliveira Matias
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Olga M O Araujo
- Laboratório de Instrumentação Nuclear (LIN), Programa de Engenharia Nuclear (PEN), Instituto Alberto Luiz de Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE-UFRJ), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratório de Instrumentação Nuclear (LIN), Programa de Engenharia Nuclear (PEN), Instituto Alberto Luiz de Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE-UFRJ), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Patologia Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luisa P Miranda
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L M Tributino
- Laboratório de Farmacologia Molecular (LFM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Rabiee R, Hosseini Hooshiar S, Ghaderi A, Jafarnejad S. Schizophrenia, Curcumin and Minimizing Side Effects of Antipsychotic Drugs: Possible Mechanisms. Neurochem Res 2023; 48:713-724. [PMID: 36357748 DOI: 10.1007/s11064-022-03798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Schizophrenia is a mental disorder characterized by episodes of psychosis; major symptoms include hallucinations, delusions, and disorganized thinking. More recent theories focus on particular disorders of interneurons, dysfunctions in the immune system, abnormalities in the formation of myelin, and augmented oxidative stress that lead to alterations in brain structure. Decreased dopaminergic activity and increased phospholipid metabolism in the prefrontal cortex might be involved in schizophrenia. Antipsychotic drugs used to treat schizophrenia have many side effects. Alternative therapy such as curcumin (CUR) can reduce the severity of symptoms without significant side effects. CUR has important therapeutic properties such as antioxidant, anti-mutagenic, anti-inflammatory, and antimicrobial functions and protection of the nervous system. Also, the ability of CUR to pass the blood-brain barrier raises new hopes for neuroprotection. CUR can improve and prevent further probable neurological and behavioral disorders in patients with schizophrenia. It decreases the side effects of neuroleptics and retains lipid homeostasis. CUR increases the level of brain-derived neurotrophic factor and improves hyperkinetic movement disorders. CUR may act as an added counteraction mechanism to retain cell integrity and defense against free radical injury. Thus it appears to have therapeutic potential for improvement of schizophrenia. In this study, we review several properties of CUR and its ability to improve schizophrenia and minimize the side effects of antipsychotic drugs, and we explore the underlying mechanisms by which CUR affects schizophrenia and its symptoms.
Collapse
Affiliation(s)
- Reyhaneh Rabiee
- Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine and Clinical Research Development Unit, Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
11
|
Kunst RF, Langlais AL, Barlow D, Houseknecht KL, Motyl KJ. Housing Temperature Influences Atypical Antipsychotic Drug-Induced Bone Loss in Female C57BL/6J Mice. JBMR Plus 2021; 5:e10541. [PMID: 34693191 PMCID: PMC8520062 DOI: 10.1002/jbm4.10541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotic (AA) drugs, such as risperidone, are associated with endocrine and metabolic side effects, including impaired bone mineral density (BMD) acquisition and increased fracture risk. We have previously shown that risperidone causes bone loss through the sympathetic nervous system and that bone loss is associated with elevated markers of thermogenesis in brown and white adipose tissue. Because rodents are normally housed in sub‐thermoneutral conditions, we wanted to test whether increasing housing temperature would protect against bone loss from risperidone. Four weeks of risperidone treatment in female C57BL/6J mice at thermoneutral (28°C) housing attenuated risperidone‐induced trabecular bone loss and led to a low‐turnover bone phenotype, with indices of both bone formation and resorption suppressed in mice with risperidone treatment at thermoneutrality, whereas indices of bone resorption were elevated by risperidone at room temperature. Protection against trabecular bone loss was not absolute, however, and additional evidence of cortical bone loss emerged in risperidone‐treated mice at thermoneutrality. Taken together, these findings suggest thermal challenge may be in part responsible for bone loss with risperidone treatment and that housing temperature should be considered when assessing bone outcomes of treatments that impact thermogenic pathways. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Roni F Kunst
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA
| | - Audrie L Langlais
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine Orono ME USA
| | - Deborah Barlow
- College of Osteopathic Medicine, University of New England Biddeford ME USA
| | | | - Katherine J Motyl
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine Orono ME USA.,Tufts University School of Medicine, Tufts University Boston MA USA
| |
Collapse
|
12
|
BMP7 Increases UCP1-Dependent and Independent Thermogenesis with a Unique Gene Expression Program in Human Neck Area Derived Adipocytes. Pharmaceuticals (Basel) 2021; 14:ph14111078. [PMID: 34832860 PMCID: PMC8625022 DOI: 10.3390/ph14111078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
White adipocytes contribute to energy storage, accumulating lipid droplets, whereas brown and beige adipocytes mainly function in dissipating energy as heat primarily via the action of uncoupling protein 1 (UCP1). Bone morphogenic protein 7 (BMP7) was shown to drive brown adipocyte differentiation in murine interscapular adipose tissue. Here, we performed global RNA-sequencing and functional assays on adipocytes obtained from subcutaneous (SC) and deep-neck (DN) depots of human neck and differentiated with or without BMP7. We found that BMP7 did not influence differentiation but upregulated browning markers, including UCP1 mRNA and protein in SC and DN derived adipocytes. BMP7 also enhanced mitochondrial DNA content, levels of oxidative phosphorylation complex subunits, along with PGC1α and p-CREB upregulation, and fragmentation of mitochondria. Furthermore, both UCP1-dependent proton leak and UCP1-independent, creatine-driven substrate cycle coupled thermogenesis were augmented upon BMP7 addition. The gene expression analysis also shed light on the possible role of genes unrelated to thermogenesis thus far, including ACAN, CRYAB, and ID1, which were among the highest upregulated ones by BMP7 treatment in both types of adipocytes. Together, our study shows that BMP7 strongly upregulates thermogenesis in human neck area derived adipocytes, along with genes, which might have a supporting role in energy expenditure.
Collapse
|
13
|
Arianti R, Vinnai BÁ, Tóth BB, Shaw A, Csősz É, Vámos A, Győry F, Fischer-Posovszky P, Wabitsch M, Kristóf E, Fésüs L. ASC-1 transporter-dependent amino acid uptake is required for the efficient thermogenic response of human adipocytes to adrenergic stimulation. FEBS Lett 2021; 595:2085-2098. [PMID: 34197627 DOI: 10.1002/1873-3468.14155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/09/2022]
Abstract
Brown and beige adipocytes dissipate energy by uncoupling protein 1 (UCP1)-dependent and UCP1-independent thermogenesis, which may be utilized to develop treatments against obesity. We have found that mRNA and protein expression of the alanine/serine/cysteine transporter-1 (ASC-1) was induced during adipocyte differentiation of human brown-prone deep neck and beige-competent subcutaneous neck progenitors, and SGBS preadipocytes. cAMP stimulation of differentiated adipocytes led to elevated uptake of serine, cysteine, and glycine, in parallel with increased oxygen consumption, augmented UCP1-dependent proton leak, increased creatine-driven substrate cycle-coupled respiration, and upregulation of thermogenesis marker genes and several respiratory complex subunits; these outcomes were impeded in the presence of the specific ASC-1 inhibitor, BMS-466442. Our data suggest that ASC-1-dependent consumption of serine, cysteine, and glycine is required for efficient thermogenic stimulation of human adipocytes.
Collapse
Affiliation(s)
- Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Hungary
| | - Boglárka Ágnes Vinnai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Beáta B Tóth
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Abhirup Shaw
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Attila Vámos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Germany
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
14
|
Huang TL, Lin CC, Su H, Shiea J. Isobaric tags for relative and absolute quantitation in identifying proteins for clozapine treatment response in patients with schizophrenia: A preliminary study. TAIWANESE JOURNAL OF PSYCHIATRY 2021. [DOI: 10.4103/tpsy.tpsy_27_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Effect on Body Weight and Adipose Tissue by Cariprazine: A Head-to-Head Comparison Study to Olanzapine and Aripiprazole in Rats. Sci Pharm 2020. [DOI: 10.3390/scipharm88040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cariprazine (Car) is a recently approved second generation antipsychotic (SGA) with unique pharmacodynamic profile, being a partial agonist at both dopamine D2/3 receptor subtypes, with almost 10 times greater affinity towards D3. SGAs are known to increase body weight, alter serum lipids, and stimulate adipogenesis but so far, limited information about the adverse effects is available with this drug. In order to study this new SGA with such a unique mechanism of action, we compared Car to substances that are considered references and are well characterized: olanzapine (Ola) and aripiprazole (Ari). We studied the effects on body weight and also assessed the adipogenesis in rats. The drugs were self-administered in two different doses to female, adult, Wistar rats for six weeks. Weekly body weight change, vacuole size of adipocytes, Sterol Regulatory Element Binding Protein-1 (SREBP-1) and Uncoupling Protein-1 (UCP-1) expression were measured from the visceral adipose tissue (AT). The adipocyte’s vacuole size, and UCP-1 expression were increased while body weight gain was diminished by Car. by increasing UCP-1 might stimulate the thermogenesis, that could potentially explain the weight gain lowering effect through enhanced lipolysis.
Collapse
|
16
|
Liu X, Feng X, Deng C, Liu L, Zeng Y, Hu CH. Brown adipose tissue activity is modulated in olanzapine-treated young rats by simvastatin. BMC Pharmacol Toxicol 2020; 21:48. [PMID: 32605639 PMCID: PMC7325271 DOI: 10.1186/s40360-020-00427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated. Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O + S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O + S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O + S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O + B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients. Graphical abstract ![]()
Collapse
Affiliation(s)
- Xuemei Liu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China.,Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing, 400715, PR China
| | - Xiyu Feng
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China
| | - Chao Deng
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Lu Liu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China.,North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yanping Zeng
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, PR China. .,Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing, 400715, PR China.
| |
Collapse
|
17
|
FTO Intronic SNP Strongly Influences Human Neck Adipocyte Browning Determined by Tissue and PPARγ Specific Regulation: A Transcriptome Analysis. Cells 2020; 9:cells9040987. [PMID: 32316277 PMCID: PMC7227023 DOI: 10.3390/cells9040987] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Brown adipocytes, abundant in deep-neck (DN) area in humans, are thermogenic with anti-obesity potential. FTO pro-obesity rs1421085 T-to-C single-nucleotide polymorphism (SNP) shifts differentiation program towards white adipocytes in subcutaneous fat. Human adipose-derived stromal cells were obtained from subcutaneous neck (SC) and DN fat of nine donors, of which 3-3 carried risk-free (T/T), heterozygous or obesity-risk (C/C) FTO genotypes. They were differentiated to white and brown (long-term Peroxisome proliferator-activated receptor gamma (PPARγ) stimulation) adipocytes; then, global RNA sequencing was performed and differentially expressed genes (DEGs) were compared. DN and SC progenitors had similar adipocyte differentiation potential but differed in DEGs. DN adipocytes displayed higher browning features according to ProFAT or BATLAS scores and characteristic DEG patterns revealing associated pathways which were highly expressed (thermogenesis, interferon, cytokine, and retinoic acid, with UCP1 and BMP4 as prominent network stabilizers) or downregulated (particularly extracellular matrix remodeling) compared to SC ones. Part of DEGs in either DN or SC browning was PPARγ-dependent. Presence of the FTO obesity-risk allele suppressed the expression of mitochondrial and thermogenesis genes with a striking resemblance between affected pathways and those appearing in ProFAT and BATLAS, underlining the importance of metabolic and mitochondrial pathways in thermogenesis. Among overlapping regulatory influences that determine browning and thermogenic potential of neck adipocytes, FTO genetic background has a thus far not recognized prominence.
Collapse
|
18
|
Adomshick V, Pu Y, Veiga-Lopez A. Automated lipid droplet quantification system for phenotypic analysis of adipocytes using CellProfiler. Toxicol Mech Methods 2020; 30:378-387. [PMID: 32208812 DOI: 10.1080/15376516.2020.1747124] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipogenic differentiation is the process by which preadipocytes become mature adipocytes, cells that store energy and regulate metabolic homeostasis. During differentiation, neutral lipids that accumulate in adipocytes can be detected using stains and used as an index of cell differentiation. However, imaging tools for evaluating intracellular lipid droplets remain at their infancy. Nutrition, stress, or chemical exposure can dysregulate adipogenic differentiation and lipid metabolism. Therefore, the aims of this study were to develop an accurate, standardized approach to quantify lipid droplet size of mature adipocytes and a clustering approach to analyze the total lipid content per adipocyte. For the lipid droplet analysis, we used two approaches, the free online computer software of reference, ImageJ, and another free online computer software, CellProfiler. For ImageJ, we used an already developed macro designed to identify particles and quantify their area, and for CellProfiler, we developed a new analysis pipeline. Our results show that CellProfiler is able to accurately identify a greater number of lipid droplets compared to ImageJ. A clustering analysis is also possible using CellProfiler which allows for the quantification of total lipid content per individual adipocyte to provide insight into single-cell responsiveness to adipogenic stimuli. CellProfiler streamlines the lipid droplet phenotypic analysis of adipocytes compared to more traditional analysis methods. In conclusion, this novel image analysis tool can provide a more precise evaluation of lipid droplet and adipogenesis dysregulation, a critical need in the understanding of metabolic disorders.
Collapse
Affiliation(s)
- Victoria Adomshick
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
19
|
Burghardt KJ, Khoury AS, Msallaty Z, Yi Z, Seyoum B. Antipsychotic Medications and DNA Methylation in Schizophrenia and Bipolar Disorder: A Systematic Review. Pharmacotherapy 2020; 40:331-342. [PMID: 32058614 DOI: 10.1002/phar.2375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pharmacoepigenetics of antipsychotic treatment in severe mental illness is a growing area of research that aims to understand the interface between antipsychotic treatment and genetic regulation. Pharmacoepigenetics may some day assist in identifying treatment response mechanisms or become one of the components in the implementation of precision medicine. To understand the current evidence regarding the effects of antipsychotics on DNA methylation a systematic review with qualitative synthesis was performed through Pubmed, Embase and Psychinfo from earliest data to June 2019. Studies were included if they analyzed DNA methylation in an antipsychotic-treated population of patients with schizophrenia or bipolar disorder. Data extraction occurred via a standardized format and study quality was assessed. Twenty-nine studies were identified for inclusion. Study design, antipsychotic type, sample source, and methods of DNA methylation measurement varied across all studies. Eighteen studies analyzed methylation in patients with schizophrenia, four studies in patients with bipolar disorder, and seven studies in a combined sample of schizophrenia and bipolar disorder. Twenty-two studies used observational samples whereas the remainder used prospectively treated samples. Six studies assessed global methylation, five assessed epigenome-wide, and 15 performed a candidate epigenetic study. Two studies analyzed both global and gene-specific methylation, whereas one study performed a simultaneous epigenome-wide and gene-specific study. Only three genes were analyzed in more than one gene-specific study and the findings were discordant. The state of the pharmacoepigenetic literature on antipsychotic use is still in its early stages and uniform reporting of methylation site information is needed. Future work should concentrate on using prospective sampling with appropriate control groups and begin to replicate many of the novel associations that have been reported.
Collapse
Affiliation(s)
- Kyle J Burghardt
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Audrey S Khoury
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Zaher Msallaty
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Zhengping Yi
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Berhane Seyoum
- Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
20
|
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev 2020; 34:321-340. [PMID: 32029456 PMCID: PMC7050491 DOI: 10.1101/gad.334284.119] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, Szanto et al. summarize the metabolic regulatory roles of PARP enzymes and their associated pathologies. Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Collapse
|
21
|
Ferreira V, Grajales D, Valverde ÁM. Adipose tissue as a target for second-generation (atypical) antipsychotics: A molecular view. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158534. [PMID: 31672575 DOI: 10.1016/j.bbalip.2019.158534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a neuropsychiatric disorder that chronically affects 21 million people worldwide. Second-generation antipsychotics (SGAs) are the cornerstone in the management of schizophrenia. However, despite their efficacy in counteracting both positive and negative symptomatology of schizophrenia, recent clinical observations have described an increase in the prevalence of metabolic disturbances in patients treated with SGAs, including abnormal weight gain, hyperglycemia and dyslipidemia. While the molecular mechanisms responsible for these side-effects remain poorly understood, increasing evidence points to a link between SGAs and adipose tissue depots of white, brown and beige adipocytes. In this review, we survey the present knowledge in this area, with a particular focus on the molecular aspects of adipocyte biology including differentiation, lipid metabolism, thermogenic function and the browning/beiging process.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
22
|
Klepac K, Yang J, Hildebrand S, Pfeifer A. RGS2: A multifunctional signaling hub that balances brown adipose tissue function and differentiation. Mol Metab 2019; 30:173-183. [PMID: 31767169 PMCID: PMC6807268 DOI: 10.1016/j.molmet.2019.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
Objective Recruitment of brown adipose tissue (BAT) is a potential new strategy for increasing energy expenditure (EE) to treat obesity. G protein–coupled receptors (GPCRs) represent promising targets to activate BAT, as they are the major regulators of BAT biological function. To identify new regulators of GPCR signaling in BAT, we studied the role of Regulator of G protein Signaling 2 (RGS2) in brown adipocytes and BAT. Methods We combined pharmacological and genetic tools to investigate the role of RGS2 in BAT in vitro and in vivo. Adipocyte progenitors were isolated from wild-type (WT) and RGS2 knockout (RGS2−/−) BAT and differentiated to brown adipocytes. This approach was complemented with knockdown of RGS2 using lentiviral shRNAs (shRGS2). Adipogenesis was analyzed by Oil Red O staining and by determining the expression of adipogenic and thermogenic markers. Pharmacological modulators and fluorescence staining of F-acting stress fibers were employed to identify the underlying signaling pathways. In vivo, the activity of BAT was assessed by ex vivo lipolysis and by measuring whole-body EE by indirect calorimetry in metabolic cages. Results RGS2 is highly expressed in BAT, and treatment with cGMP—an important enhancer of brown adipocyte differentiation—further increased RGS2 expression. Loss of RGS2 strongly suppressed adipogenesis and the expression of thermogenic genes in brown adipocytes. Mechanistically, we found increased Gq/Rho/Rho kinase (ROCK) signaling in the absence of RGS2. Surprisingly, in vivo analysis revealed elevated BAT activity in RGS2-deficient mice that was caused by enhanced Gs/cAMP signaling. Conclusion Overall, RGS2 regulates two major signaling pathways in BAT: Gq and Gs. On the one hand, RGS2 promotes brown adipogenesis by counteracting the inhibitory action of Gq/Rho/ROCK signaling. On the other hand, RGS2 decreases the activity of BAT through the inhibition of Gs signaling and cAMP production. Thus, RGS2 might represent a stress modulator that protects BAT from overstimulation. RGS2 regulates brown adipose tissue (BAT) by inhibiting two major G protein-coupled receptor (GPCR) pathways – Gq and Gs. Deletion of RGS2 impairs the differentiation of murine brown adipocytes due to elevated Gq/Rho/ROCK signaling. In vivo, RGS2 knock-out mice show an increase in BAT lipolysis and whole-body energy expenditure.
Collapse
Affiliation(s)
- Katarina Klepac
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany; Research Training Group 1873, University of Bonn, 53127 Bonn, Germany.
| | - JuHee Yang
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany; Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany; Research Training Group 1873, University of Bonn, 53127 Bonn, Germany; PharmaCenter, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
23
|
Olaparib induces browning of in vitro cultures of human primary white adipocytes. Biochem Pharmacol 2019; 167:76-85. [PMID: 31251940 DOI: 10.1016/j.bcp.2019.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial biogenesis is a key feature of energy expenditure and organismal energy balance. Genetic deletion of PARP1 or PARP2 was shown to induce mitochondrial biogenesis and energy expenditure. In line with that, PARP inhibitors were shown to induce energy expenditure in skeletal muscle. We aimed to investigate whether pharmacological inhibition of PARPs induces brown or beige adipocyte differentiation. SVF fraction of human pericardial adipose tissue was isolated and human adipose-derived mesenchymal stem cells (hADMSCs) were differentiated to white and beige adipocytes. A subset of hADMSCs were differentiated to white adipocytes in the presence of Olaparib, a potent PARP inhibitor currently in clinical use, to induce browning. Olaparib induced morphological changes (smaller lipid droplets) in white adipocytes that is a feature of brown/beige adipocytes. Furthermore, Olaparib induced mitochondrial biogenesis in white adipocytes and enhanced UCP1 expression. We showed that Olaparib treatment inhibited nuclear and cytosolic PAR formation, induced NAD+/NADH ratio and consequently boosted SIRT1 and AMPK activity and the downstream transcriptional program leading to increases in OXPHOS. Olaparib treatment did not induce the expression of beige adipocyte markers in white adipocytes, suggesting the formation of brown or brown-like adipocytes. PARP1, PARP2 and tankyrases are key players in the formation of white adipose tissue. Hereby, we show that PARP inhibition induces the transdifferentiation of white adipocytes to brown-like adipocytes suggesting that PARP activity could be a determinant of the differentiation of these adipocyte lineages.
Collapse
|
24
|
Klusóczki Á, Veréb Z, Vámos A, Fischer-Posovszky P, Wabitsch M, Bacso Z, Fésüs L, Kristóf E. Differentiating SGBS adipocytes respond to PPARγ stimulation, irisin and BMP7 by functional browning and beige characteristics. Sci Rep 2019; 9:5823. [PMID: 30967578 PMCID: PMC6456729 DOI: 10.1038/s41598-019-42256-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Brown and beige adipocytes are enriched in mitochondria with uncoupling protein-1 (UCP1) to generate heat instead of ATP contributing to healthy energy balance. There are few human cellular models to reveal regulatory networks in adipocyte browning and key targets for enhancing thermogenesis in obesity. The Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte line has been a useful tool to study human adipocyte biology. Here we report that SGBS cells, which are comparable to subcutaneous adipose-derived stem cells, carry an FTO risk allele. Upon sustained PPARγ stimulation or irisin (a myokine released in response to exercise) treatment, SGBS cells differentiated into beige adipocytes exhibiting multilocular lipid droplets, high UCP1 content with induction of typical browning genes (Cidea, Elovl3) and the beige marker Tbx1. The autocrine mediator BMP7 led to moderate browning with the upregulation of the classical brown marker Zic1 instead of Tbx1. Thermogenesis potential resulted from PPARγ stimulation, irisin and BMP7 can be activated in UCP1-dependent and the beige specific, creatine phosphate cycle mediated way. The beige phenotype, maintained under long-term (28 days) conditions, was partially reversed by withdrawal of PPARγ ligand. Thus, SGBS cells can serve as a cellular model for both white and sustainable beige adipocyte differentiation and function.
Collapse
Affiliation(s)
- Ágnes Klusóczki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Attila Vámos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculties of Medicine and Pharmacology, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
25
|
Kristóf E, Klusóczki Á, Veress R, Shaw A, Combi ZS, Varga K, Győry F, Balajthy Z, Bai P, Bacso Z, Fésüs L. Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 2019; 377:47-55. [PMID: 30794803 DOI: 10.1016/j.yexcr.2019.02.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
Brown and beige adipocytes contribute significantly to the regulation of whole body energy expenditure and systemic metabolic homeostasis not exclusively by thermogenesis through mitochondrial uncoupling. Several studies have provided evidence in rodents that brown and beige adipocytes produce a set of adipokines ("batokines") which regulate local tissue homeostasis and have beneficial effects on physiological functions of the entire body. We observed elevated secretion of Interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1, but not tumor necrosis factor alpha (TNFα) or IL-1β pro-inflammatory cytokines, by ex vivo differentiating human beige adipocytes (induced by either PPARγ agonist or irisin) compared to white. Higher levels of IL-6, IL-8 and MCP-1 were released from human deep neck adipose tissue biopsies (enriched in browning cells) than from subcutaneous ones. IL-6 was produced in a sustained manner and mostly by the adipocytes and not by the undifferentiated progenitors. Continuous blocking of IL-6 receptor by specific antibody during beige differentiation resulted in downregulation of brown marker genes and increased morphological changes that are characteristic of white adipocytes. The data suggest that beige adipocytes adjust their production of IL-6 to reach an optimal level for differentiation in the medium enhancing browning in an autocrine manner.
Collapse
Affiliation(s)
- Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Ágnes Klusóczki
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Roland Veress
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Abhirup Shaw
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zsolt Sándor Combi
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Klára Varga
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Ferenc Győry
- Department of Surgery, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zoltán Balajthy
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Péter Bai
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Faculties of Medicine and Pharmacy, Debrecen, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; MTA-DE Stem Cells, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary.
| |
Collapse
|
26
|
Grigoraş A, Amalinei C, Balan RA, Giuşcă SE, Avădănei ER, Lozneanu L, Căruntu ID. Adipocytes spectrum - From homeostasia to obesity and its associated pathology. Ann Anat 2018; 219:102-120. [PMID: 30049662 DOI: 10.1016/j.aanat.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
Firstly identified by anatomists, the fat tissue is nowadays an area of intense research due to increased global prevalence of obesity and its associated diseases. Histologically, there are four types of fat tissue cells which are currently recognized (white, brown, beige, and perivascular adipocytes). Therefore, in this study we are reviewing the most recent data regarding the origin, structure, and molecular mechanisms involved in the development of adipocytes. White adipocytes can store triglycerides as a consequence of lipogenesis, under the regulation of growth hormone or leptin and adiponectin, and release fatty acids resulted from lipolysis, under the regulation of the sympathetic nervous system, glucocorticoids, TNF-α, insulin, and natriuretic peptides. Brown adipocytes possess a mitochondrial transmembrane protein thermogenin or UCP1 which allows heat generation. Recently, thermogenic, UCP positive adipocytes have been identified in the subcutaneous white adipose tissue and have been named beige adipocytes. The nature of these cells is still controversial, as current theories are suggesting their origin either by transdifferentiation of white adipocytes, or by differentiation from an own precursor cell. Perivascular adipocytes surround most of the arteries, exhibiting a supportive role and being involved in the maintenance of intravascular temperature. Thoracic perivascular adipocytes resemble brown adipocytes, while abdominal ones are more similar to white adipocytes and, consequently, are involved in obesity-induced inflammatory reactions. The factors involved in the regulation of adipose stem cells differentiation may represent potential pathways to inhibit or to divert adipogenesis. Several molecules, such as pro-adipogenic factors (FGF21, BMP7, BMP8b, and Cox-2), cell surface proteins or receptors (Asc-1, PAT2, P2RX5), and hypothalamic receptors (MC4R) have been identified as the most promising targets for the development of future therapies. Further investigations are necessary to complete the knowledge about adipose tissue and the development of a new generation of therapeutic tools based on molecular targets.
Collapse
Affiliation(s)
- Adriana Grigoraş
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Raluca Anca Balan
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Simona Eliza Giuşcă
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Roxana Avădănei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Irina-Draga Căruntu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| |
Collapse
|
27
|
Liu Z, Cui C, Xu P, Dang R, Cai H, Liao D, Yang M, Feng Q, Yan X, Jiang P. Curcumin Activates AMPK Pathway and Regulates Lipid Metabolism in Rats Following Prolonged Clozapine Exposure. Front Neurosci 2017; 11:558. [PMID: 29046626 PMCID: PMC5632657 DOI: 10.3389/fnins.2017.00558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Clozapine (CLO) remains an ultimate option for patients with treatment resistant schizophrenia. However, the atypical antipsychotic is often associated with serious metabolic side effects, such as dyslipidemia. Hepatic sterol regulatory element-binding proteins (SREBPs) are central in the allosteric control of a variety of lipid biosynthetic pathways. There is emerging evidence that CLO can activate SREBP pathway and enhance downstream lipogenesis, whereas curcumin (CUR), a major active compound of Curcuma longa, contains hypolipidemic properties. Therefore, in the present study, we examined the protective effects of CUR against CLO-induced lipid disturbance and analyzed the expression of key components in hepatic lipid metabolism. Our data showed that 4-week treatment of CLO (15 mg/kg/day) markedly elevated serum lipid levels and resulted in hepatic lipid accumulation, whereas co-treatment of CUR (80 mg/kg/day) alleviated the CLO-induced dyslipidemia. We further demonstrated that CUR appears to be a novel AMP-activated protein kinase (AMPK) agonist, which enhanced AMPK phosphorylation and mitigated CLO-induced SREBP overexpression. Additionally, CUR also modulated the downstream SREBP-targeted genes involved in fatty acid synthesis and cholesterol metabolism, including fatty acid synthase (FAS) and HMG-CoA reductase (HMGCR). In summary, our study suggests that the suppressed AMPK activity and thereby enhanced SREBP-dependent lipid synthesis could be associated with the antipsychotic-stimulated dyslipidemia, whereas CUR may maintain lipid homeostasis by directly binding to AMPK, indicating that adjunctive use of CUR could be a promising preventive strategy for the drug-induced lipogenesis.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Hualin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingyan Feng
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|