1
|
Youssef O, Loukola A, Zidi-Mouaffak YHS, Tamlander M, Ruotsalainen S, Kilpeläinen E, Mars N, Ripatti S, Palotie A, Donner K, Carpén O. High-Resolution Genotyping of Formalin-Fixed Tissue Accurately Estimates Polygenic Risk Scores in Human Diseases. J Transl Med 2024; 104:100325. [PMID: 38220043 DOI: 10.1016/j.labinv.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, University of Helsinki, Helsinki, Finland; Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anu Loukola
- Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Yossra H S Zidi-Mouaffak
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
2
|
Nagraj V, Scholz M, Jessa S, Ge J, Woerner AE, Huang M, Budowle B, Turner SD. vcferr: Development, validation, and application of a single nucleotide polymorphism genotyping error simulation framework. F1000Res 2022; 11:775. [PMID: 38779458 PMCID: PMC11109540 DOI: 10.12688/f1000research.122840.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 05/25/2024] Open
Abstract
Motivation: Genotyping error can impact downstream single nucleotide polymorphism (SNP)-based analyses. Simulating various modes and levels of error can help investigators better understand potential biases caused by miscalled genotypes. Methods: We have developed and validated vcferr, a tool to probabilistically simulate genotyping error and missingness in variant call format (VCF) files. We demonstrate how vcferr could be used to address a research question by introducing varying levels of error of different type into a sample in a simulated pedigree, and assessed how kinship analysis degrades as a function of the kind and type of error. Software availability: vcferr is available for installation via PyPi (https://pypi.org/project/vcferr/) or conda (https://anaconda.org/bioconda/vcferr). The software is released under the MIT license with source code available on GitHub (https://github.com/signaturescience/vcferr).
Collapse
Affiliation(s)
- V.P. Nagraj
- Signature Science LLC., Austin, TX, 78759, USA
| | | | | | - Jianye Ge
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - August E. Woerner
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Meng Huang
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Bruce Budowle
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | | |
Collapse
|
3
|
Van Poznak C, Reynolds EL, Estilo CL, Hu M, Schneider BP, Hertz DL, Gersch C, Thibert J, Thomas D, Banerjee M, Rae JM, Hayes DF. Osteonecrosis of the jaw risk factors in bisphosphonate-treated patients with metastatic cancer. Oral Dis 2022; 28:193-201. [PMID: 33274559 PMCID: PMC8284838 DOI: 10.1111/odi.13746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND A case-control study was performed to define clinical and genetic risk factors associated with osteonecrosis of the jaw in patients with metastatic cancer treated with bisphosphonates. METHODS Clinical data and tissues were collected from patients treated with bisphosphonates for metastatic bone disease who were diagnosed with osteonecrosis of the jaw (cases) and matched controls. Clinical data included patient, behavioral, disease, and treatment information. Genetic polymorphisms in CYP2C8 (rs1934951) and other candidate genes were genotyped. Odds ratios from conditional logistic regression models were examined to identify clinical and genetic characteristics associated with case or control status. RESULTS The study population consisted of 76 cases and 126 controls. In the final multivariable clinical model, patients with osteonecrosis of the jaw were less likely to have received pamidronate than zoledronic acid (odds ratio = 0.18, 95% Confidence interval: 0.03-0.97, p = .047) and more likely to have been exposed to bevacizumab (OR = 5.15, 95% CI: 1.67-15.95, p = .005). The exploratory genetic analyses suggested a protective effect for VEGFC rs2333496 and risk effects for VEGFC rs7664413 and PPARG rs1152003. CONCLUSIONS We observed patients with ONJ were more likely to have been exposed to bevacizumab and zoledronic and identified potential genetic predictors that require validation prior to clinical translation.
Collapse
Affiliation(s)
- Catherine Van Poznak
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan
| | | | - Cherry L. Estilo
- Dental Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Mimi Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center
| | - Bryan Paul Schneider
- Divisions of Hematology/Oncology and Clinical Pharmacology, Department of Medicine with a secondary appointment in the Department of Medical and Molecular Genetics, Indiana University
| | - Daniel L. Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy
| | - Christina Gersch
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan
| | | | | | | | - James M. Rae
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan
| | - Daniel F. Hayes
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan
| |
Collapse
|
4
|
Alsulaim AY, Azam F, Sebastian T, Mahdi Hassan F, AbdulAzeez S, Borgio JF, Alzahrani FM. The association between two genetic polymorphisms in ITGB3 and increase risk of venous thromboembolism in cancer patients in Eastern Province of Saudi Arabia. Saudi J Biol Sci 2022; 29:183-189. [PMID: 35002407 PMCID: PMC8716864 DOI: 10.1016/j.sjbs.2021.08.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/14/2022] Open
Abstract
Venous thromboembolism (VTE) is one of the major complications in most cancer patients leading to poor prognosis and short survival. Several common clinical risk factors coexist in cancer patients are used as risk predictive biomarkers to help in the management and prevention of VTE. These include cancer site and stage, chemotherapy regimen and elevated biological markers. However, Genetic polymorphisms in genes controlling coagulation and fibrinolysis are significantly associated with VTE if detected, then they might be more sensitive individual predictive biomarkers for VTE risk assessment. This study was conducted to evaluate the association between ITGB3 rs3809865 and rs5918 with VTE risk as well as monitor the effect of VTE on overall survival of these cancer patients. In this retrospective case-control study, 195 cancer patients' formalin-fixed paraffin embedded tissue (FFPE) samples were collected (controls n = 157, case n = 38) using the stored data through Jan 2010 to Sep 2018 from King Fahad Specialist Hospital in Dammam. Samples were genotyped using TaqMan genotyping assay, then logistic regression analysis and Chi-square were used to predict the association between risk factors and VTE. Survival Comparison was tested by the log-rank test. Genetic polymorphisms in ITGB3 (rs3809865 and rs5918) found not to be associated with VTE increasing risk in cancer patients (p>0.05). While the advanced stage was potentially increasing the risk of VTE events (OR 5.1 CI 2.01-12.9p = 0.001). Patients with VTE showed a poor overall survival reflected by the median survival rate of only three years compared to seven years for cancer patients without VTE. This study highlighted the potential influence of VTE on prognosis and survival of cancer patients and raised the importance of exploring risk predictive biomarkers in our population. This will improve the risk prediction biomarkers leading to implementing safe and effective thrombosis prophylaxis strategies.
Collapse
Affiliation(s)
- Asma Y. Alsulaim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Azam
- Consultant Medical Oncologist, King Fahad specialist Hospital, Dammam, Saudi Arabia
| | - Tunny Sebastian
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Fathelrahman Mahdi Hassan
- Department of Hematology and Immunohematology, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal M. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Youssef O, Almangush A, Zidi YHS, Loukola A, Carpén O. Nonmalignant Formalin-Fixed Paraffin-Embedded Tissues as a Source to Study Germline Variants and Cancer Predisposition: A Systematic Review. Biopreserv Biobank 2020; 18:337-345. [PMID: 32551987 DOI: 10.1089/bio.2020.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Archived formalin-fixed paraffin-embedded (FFPE) specimens from nonmalignant tissues derived from cancer patients are a vast and potentially valuable resource for high-quality genotyping analyses and could have a role in establishing inherited cancer risk. Methods: We systematically searched PubMed, Ovid MEDLINE, and Scopus databases for all articles that compared genotyping performance of DNA from nonmalignant FFPE tissue with blood DNA derived from cancer patients irrespective of tumor type. Two independent researchers screened the retrieved studies, removed duplicates, excluded irrelevant studies, and extracted genotyping data from the eligible studies. These studies included, but were not limited to, genotyping technique, reported call rate, and concordance. Results: Thirteen studies were reviewed, in which DNA from nonmalignant FFPE tissues derived from cancer patients was successfully purified and genotyped. All these studies used different approaches for genotyping of DNA from nonmalignant FFPE tissues to amplify single nucleotide polymorphisms (SNPs) and to estimate of loss of heterozygosity. The concordance between genotypes from nonmalignant FFPE tissues and blood derived from cancer patients was observed to be high, whereas the call rate of the tested SNPs was not reported in all included studies. Conclusion: This review illustrates that DNA from nonmalignant FFPE tissues derived from cancer patients can serve as an alternative and reliable source for assessment of germline DNA for various purposes, including assessment of cancer predisposition.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Yossra H S Zidi
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Loukola
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Helsinki Biobank, HUS Helsinki University Hospital, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki Biobank, HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Marcath LA, Kidwell KM, Vangipuram K, Gersch CL, Rae JM, Burness ML, Griggs JJ, Van Poznak C, Hayes DF, Smith EML, Henry NL, Beutler AS, Hertz DL. Genetic variation in EPHA contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Br J Clin Pharmacol 2020; 86:880-890. [PMID: 31823378 DOI: 10.1111/bcp.14192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Chemotherapy-induced peripheral neuropathy (PN) is a treatment limiting toxicity of paclitaxel. We evaluated if EPHA genetic variation (EPHA4, EPHA5, EPHA6, and EPHA8) is associated with PN sensitivity by accounting for variability in systemic paclitaxel exposure (time above threshold). METHODS Germline DNA from 60 patients with breast cancer was sequenced. PN was measured using the 8-item sensory subscale (CIPN8) of the patient-reported CIPN20. Associations for 3 genetic models were tested by incorporating genetics into previously published PN prediction models integrating measured paclitaxel exposure and cumulative treatment. Significant associations were then tested for association with PN-related treatment disruption. RESULTS EPHA5 rs7349683 (minor allele frequency = 0.32) was associated with increased PN sensitivity (β-coefficient = 0.39, 95% confidence interval 0.11-0.67, p = 0.007). Setting a maximum tolerable threshold of CIPN8 = 30, optimal paclitaxel exposure target is shorter for rs7349683 homozygous (11.6 h) than heterozygous (12.6 h) or wild-type (13.6 h) patients. Total number of missense variants (median = 0, range 0-2) was associated with decreased PN sensitivity (β-coefficient: -0.42, 95% confidence interval -0.72 to -0.12, P = .006). No association with treatment disruption was detected for the total number of missense variants or rs7349683. CONCLUSION Isolating toxicity sensitivity by accounting for exposure is a novel approach, and rs7349683 represents a promising marker for PN sensitivity that may be used to individualize paclitaxel treatment.
Collapse
Affiliation(s)
- Lauren A Marcath
- Department of Pharmacotherapy, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, USA
| | - Kelley M Kidwell
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | | | - James M Rae
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Monika L Burness
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer J Griggs
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine Van Poznak
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ellen M Lavoie Smith
- Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI, USA
| | - N Lynn Henry
- Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andreas S Beutler
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Pasternak AL, Kidwell KM, Dempsey JM, Gersch CL, Pesch A, Sun Y, Rae JM, Hertz DL, Park JM. Impact of CYP3A5 phenotype on tacrolimus concentrations after sublingual and oral administration in lung transplant. Pharmacogenomics 2019; 20:421-432. [PMID: 30983501 DOI: 10.2217/pgs-2019-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: This study evaluated the impact of CYP3A5 genotype and other patient characteristics on sublingual (SL) tacrolimus exposure and compared the relationship with oral administration. Patients & methods: Tacrolimus concentrations were retrospectively collected for adult lung transplant recipients, who were genotyped for CYP3A5*3, CYP3A4*22, CYP3A7*1C, and POR*28. Regression analyses were performed to determine covariates that impacted the SL and oral tacrolimus concentration/dose ratios. Results: An interaction of CYP3A5 genotype and CYP3A inhibitor increased the SL concentration/dose, while cystic fibrosis decreased the SL concentration/dose. The oral concentration/dose was independently associated with these covariates and was increased by serum creatinine and number of tacrolimus doses. Conclusion: This study suggests personalized dosing strategies for tacrolimus likely need to consider characteristics beyond CYP3A5 genotype.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Jacqueline M Dempsey
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrea Pesch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yihan Sun
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Chen Y, Marotti JD, Jenson EG, Onega TL, Johnson KC, Christensen BC. Concordance of DNA methylation profiles between breast core biopsy and surgical excision specimens containing ductal carcinoma in situ (DCIS). Exp Mol Pathol 2017; 103:78-83. [PMID: 28711544 DOI: 10.1016/j.yexmp.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/12/2023]
Abstract
The utility and reliability of assessing molecular biomarkers for translational applications on pre-operative core biopsy specimens assume consistency of molecular profiles with larger surgical specimens. Whether DNA methylation in ductal carcinoma in situ (DCIS), measured in core biopsy and surgical specimens are similar, remains unclear. Here, we compared genome-scale DNA methylation measured in matched core biopsy and surgical specimens from DCIS, including specific DNA methylation biomarkers of subsequent invasive cancer. DNA was extracted from guided 2mm cores of formalin fixed paraffin embedded (FFPE) specimens, bisulfite-modified, and measured on the Illumina HumanMethylation450 BeadChip. DNA methylation profiles of core biopsies exhibited high concordance with matched surgical specimens. Within-subject variability in DNA methylation was significantly lower than between-subject variability (all P<2.20E-16). In 641 CpGs whose methylation was related with increased hazard of invasive breast cancer, lower within-subject than between-subject variability was observed in 92.3% of the study participants (P<0.05). Between patient-matched core biopsy and surgical specimens, <0.6% of CpGs measured had changes in median DNA methylation >15%, and a pathway analysis of these CpGs indicated enrichment for genes related with wound healing. Our results indicate that DNA methylation measured in core biopsies are representative of the matched surgical specimens and suggest that DCIS biomarkers measured in core biopsies can inform clinical decision-making.
Collapse
Affiliation(s)
- Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | - Jonathan D Marotti
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Erik G Jenson
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Tracy L Onega
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kevin C Johnson
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
9
|
Genotyping concordance in DNA extracted from formalin-fixed paraffin embedded (FFPE) breast tumor and whole blood for pharmacogenetic analyses. Mol Oncol 2015; 9:1868-76. [PMID: 26276228 DOI: 10.1016/j.molonc.2015.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer pharmacogenetic studies use archival tumor samples as a DNA source when germline DNA is unavailable. Genotyping DNA from formalin-fixed paraffin embedded tumors (FFPE-T) may be inaccurate due to FFPE storage, genetic aberrations, and/or insufficient DNA extraction. Our objective was to assess the extent and source of genotyping inaccuracy from FFPE-T DNA and demonstrate analytical validity of FFPE-T genotyping of candidate single nucleotide polymorphisms (SNPs) for pharmacogenetic analyses. METHODS Cancer pharmacogenetics SNPs were genotyped by Sequenom MassARRAYs in DNA harvested from matched FFPE-T, FFPE lymph node (FFPE-LN), and whole blood leukocyte samples obtained from breast cancer patients. No- and discordant-call rates were calculated for each tissue type and SNP. Analytical validity was defined as any SNP with <5% discordance between FFPE-T and blood and <10% discordance plus no-calls. RESULTS Matched samples from 114 patients were genotyped for 247 SNPs. No-call rate in FFPE-T was greater than FFPE-LN and blood (4.3% vs. 3.0% vs. 0.5%, p < 0.001). Discordant-call rate between FFPE-T and blood was very low, but greater than that between FFPE-LN and blood (1.1% vs. 0.3%, p < 0.001). Samples with heterozygous genotypes were more likely to be no- or discordantly-called in either tissue (p < 0.001). Analytical validity of FFPE-T genotyping was demonstrated for 218 (88%) SNPs. CONCLUSIONS No- and discordant-call rates were below concerning thresholds, confirming that most SNPs can be accurately genotyped from FFPE-T on our Sequenom platform. FFPE-T is a viable DNA source for prospective-retrospective pharmacogenetic analyses of clinical trial cohorts.
Collapse
|
10
|
Miles G, Rae J, Ramalingam SS, Pfeifer J. Genetic Testing and Tissue Banking for Personalized Oncology: Analytical and Institutional Factors. Semin Oncol 2015; 42:713-23. [PMID: 26433552 DOI: 10.1053/j.seminoncol.2015.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Personalized oncology, or more aptly precision oncogenomics, refers to the identification and implementation of clinically actionable targets tailored to an individual patient's cancer genomic information. Banking of human tissue and other biospecimens establishes a framework to extract and collect the data essential to our understanding of disease pathogenesis and treatment. Cancer cooperative groups in the United States have led the way in establishing robust biospecimen collection mechanisms to facilitate translational research, and combined with technological advances in molecular testing, tissue banking has expanded from its traditional base in academic research and is assuming an increasingly pivotal role in directing the clinical care of cancer patients. Comprehensive screening of tumors by DNA sequencing and the ability to mine and interpret these large data sets from well-organized tissue banks have defined molecular subtypes of cancer. Such stratification by genomic criteria has revolutionized our perspectives on cancer diagnosis and treatment, offering insight into prognosis, progression, and susceptibility or resistance to known therapeutic agents. In turn, this has enabled clinicians to offer treatments tailored to patients that can greatly improve their chances of survival. Unique challenges and opportunities accompany the rapidly evolving interplay between tissue banking and genomic sequencing, and are the driving forces underlying the revolution in precision medicine. Molecular testing and precision medicine clinical trials are now becoming the major thrust behind the cooperative groups' clinical research efforts.
Collapse
Affiliation(s)
- George Miles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| | - James Rae
- Department of Internal Medicine & Pharmacology, University of Michigan, Ann Arbor, MI
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory School of Medicine, Winship Cancer Institute, Atlanta, GA
| | - John Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
DNA and RNA analysis of blood and muscle from bodies with variable postmortem intervals. Forensic Sci Med Pathol 2014; 10:322-8. [DOI: 10.1007/s12024-014-9567-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|
12
|
Lopez-Rivera E, Jayaraman P, Parikh F, Davies MA, Ekmekcioglu S, Izadmehr S, Milton DR, Chipuk JE, Grimm EA, Estrada Y, Aguirre-Ghiso J, Sikora AG. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res 2014; 74:1067-78. [PMID: 24398473 DOI: 10.1158/0008-5472.can-13-0588] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Melanoma is one of the cancers of fastest-rising incidence in the world. Inducible nitric oxide synthase (iNOS) is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K-AKT-mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p70 ribosomal S6 kinase (p-P70S6K), p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of tuberous sclerosis complex (TSC) 2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Ras homolog enriched in brain (Rheb), a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of the mTOR pathway members. Exogenously supplied NO was also sufficient to reverse the mTOR pathway inhibition by the B-Raf inhibitor vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers.
Collapse
Affiliation(s)
- Esther Lopez-Rivera
- Authors' Affiliations: Departments of Otolaryngology, Dermatology, Immunology, and Oncological Sciences; Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, The Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai; The Tisch Cancer Institute; Department of Genetics and Genomic Sciences, One Gustave L. Levy Place, New York, New York; and Departments of Melanoma Medical Oncology and Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst 2012; 486:341-5. [PMID: 22395644 DOI: 10.1038/nature11116] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/02/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Adjuvant tamoxifen therapy is effective for postmenopausal women with endocrine-responsive breast cancer. Cytochrome P450 2D6 (CYP2D6) enzyme metabolizes tamoxifen to clinically active metabolites, and CYP2D6 polymorphisms may adversely affect tamoxifen efficacy. In this study, we investigated the clinical relevance of CYP2D6 polymorphisms. METHODS We obtained tumor tissues and isolated DNA from 4861 of 8010 postmenopausal women with hormone receptor-positive breast cancer who enrolled in the randomized, phase III double-blind Breast International Group (BIG) 1-98 trial between March 1998 and May 2003 and received tamoxifen and/or letrozole treatment. Extracted DNA was used for genotyping nine CYP2D6 single-nucleotide polymorphisms using polymerase chain reaction-based methods. Genotype combinations were used to categorize CYP2D6 metabolism phenotypes as poor, intermediate, and extensive metabolizers (PM, IM, and EM, respectively; n = 4393 patients). Associations of CYP2D6 metabolism phenotypes with breast cancer-free interval (referred to as recurrence) and treatment-induced hot flushes according to randomized endocrine treatment and previous chemotherapy were assessed. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). All statistical tests were two-sided. RESULTS No association between CYP2D6 metabolism phenotypes and breast cancer-free interval was observed among patients who received tamoxifen monotherapy without previous chemotherapy (P = .35). PM or IM phenotype had a non-statistically significantly reduced risk of breast cancer recurrence compared with EM phenotype (PM or IM vs EM, HR of recurrence = 0.86, 95% CI = 0.60 to 1.24). CYP2D6 metabolism phenotype was associated with tamoxifen-induced hot flushes (P = .020). Both PM and IM phenotypes had an increased risk of tamoxifen-induced hot flushes compared with EM phenotype (PM vs EM, HR of hot flushes = 1.24, 95% CI = 0.96 to 1.59; IM vs EM, HR of hot flushes = 1.23, 95% CI = 1.05 to 1.43). CONCLUSIONS CYP2D6 phenotypes of reduced enzyme activity were not associated with worse disease control but were associated with increased hot flushes, contrary to the hypothesis. The results of this study do not support using the presence or absence of hot flushes or the pharmacogenetic testing of CYP2D6 to determine whether to treat postmenopausal breast cancer patients with tamoxifen.
Collapse
|
14
|
Rae JM, Drury S, Hayes DF, Stearns V, Thibert JN, Haynes BP, Salter J, Sestak I, Cuzick J, Dowsett M. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 2012; 104:452-60. [PMID: 22395643 DOI: 10.1093/jnci/djs126] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adjuvant tamoxifen therapy substantially decreases the risk of recurrence and mortality in women with hormone (estrogen and/or progesterone) receptor-positive breast cancer. Previous studies have suggested that metabolic conversion of tamoxifen to endoxifen by cytochrome P450 2D6 (CYP2D6) is required for patient benefit from tamoxifen therapy. METHODS Tumor specimens from a subset of postmenopausal patients with hormone receptor-positive early-stage (stages I, II, and IIIA) breast cancer, who were enrolled in the randomized double-blind Arimidex, Tamoxifen, Alone or in Combination (ATAC) clinical trial, were genotyped for variants in CYP2D6 (N = 1203 patients: anastrozole [trade name: Arimidex] group, n = 615 patients; tamoxifen group, n = 588 patients) and UDP-glucuronosyltransferase-2B7 (UGT2B7), whose gene product inactivates endoxifen (N = 1209 patients; anastrozole group, n = 606 patients; tamoxifen group, n = 603 patients). Genotyping was performed using polymerase chain reaction-based TaqMan assays. Based on the genotypes for CYP2D6, patients were classified as poor metabolizer (PM), intermediate metabolizer (IM), or extensive metabolizer (EM) phenotypes. We evaluated the association of CYP2D6 and UGT2B7 genotype with distant recurrence (primary endpoint) and any recurrence (secondary endpoint) by estimating the hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) using Cox proportional hazards models. All statistical tests were two-sided. RESULTS After a median follow-up of 10 years, no statistically significant associations were observed between CYP2D6 genotype and recurrence in tamoxifen-treated patients (PM vs EM: HR for distant recurrence = 1.25, 95% CI = 0.55 to 3.15, P = .64; HR for any recurrence = 0.99, 95% CI = 0.48 to 2.08, P = .99). A near-null association was observed between UGT2B7 genotype and recurrence in tamoxifen-treated patients. No associations were observed between CYP2D6 and UGT2B7 genotypes and recurrence in anastrozole-treated patients. CONCLUSION The results do not support the hypothesis that CYP2D6 genotype predicts clinical benefit of adjuvant tamoxifen treatment among postmenopausal breast cancer patients.
Collapse
Affiliation(s)
- James M Rae
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R, Dell'orto P, Biasi MO, Thürlimann B, Lyng MB, Ditzel HJ, Neven P, Debled M, Maibach R, Price KN, Gelber RD, Coates AS, Goldhirsch A, Rae JM, Viale G. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst 2012; 104:441-51. [PMID: 22395644 DOI: 10.1093/jnci/djs125] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adjuvant tamoxifen therapy is effective for postmenopausal women with endocrine-responsive breast cancer. Cytochrome P450 2D6 (CYP2D6) enzyme metabolizes tamoxifen to clinically active metabolites, and CYP2D6 polymorphisms may adversely affect tamoxifen efficacy. In this study, we investigated the clinical relevance of CYP2D6 polymorphisms. METHODS We obtained tumor tissues and isolated DNA from 4861 of 8010 postmenopausal women with hormone receptor-positive breast cancer who enrolled in the randomized, phase III double-blind Breast International Group (BIG) 1-98 trial between March 1998 and May 2003 and received tamoxifen and/or letrozole treatment. Extracted DNA was used for genotyping nine CYP2D6 single-nucleotide polymorphisms using polymerase chain reaction-based methods. Genotype combinations were used to categorize CYP2D6 metabolism phenotypes as poor, intermediate, and extensive metabolizers (PM, IM, and EM, respectively; n = 4393 patients). Associations of CYP2D6 metabolism phenotypes with breast cancer-free interval (referred to as recurrence) and treatment-induced hot flushes according to randomized endocrine treatment and previous chemotherapy were assessed. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). All statistical tests were two-sided. RESULTS No association between CYP2D6 metabolism phenotypes and breast cancer-free interval was observed among patients who received tamoxifen monotherapy without previous chemotherapy (P = .35). PM or IM phenotype had a non-statistically significantly reduced risk of breast cancer recurrence compared with EM phenotype (PM or IM vs EM, HR of recurrence = 0.86, 95% CI = 0.60 to 1.24). CYP2D6 metabolism phenotype was associated with tamoxifen-induced hot flushes (P = .020). Both PM and IM phenotypes had an increased risk of tamoxifen-induced hot flushes compared with EM phenotype (PM vs EM, HR of hot flushes = 1.24, 95% CI = 0.96 to 1.59; IM vs EM, HR of hot flushes = 1.23, 95% CI = 1.05 to 1.43). CONCLUSIONS CYP2D6 phenotypes of reduced enzyme activity were not associated with worse disease control but were associated with increased hot flushes, contrary to the hypothesis. The results of this study do not support using the presence or absence of hot flushes or the pharmacogenetic testing of CYP2D6 to determine whether to treat postmenopausal breast cancer patients with tamoxifen.
Collapse
Affiliation(s)
- Meredith M Regan
- IBCSG Statistical Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cannon-Albright LA, Cooper KG, Georgelas A, Bernard PS. High quality and quantity Genome-wide germline genotypes from FFPE normal tissue. BMC Res Notes 2011; 4:159. [PMID: 21615924 PMCID: PMC3123588 DOI: 10.1186/1756-0500-4-159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/26/2011] [Indexed: 11/28/2022] Open
Abstract
Background Although collections of formalin fixed paraffin embedded (FFPE) samples exist, sometimes representing decades of stored samples, they have not typically been utilized to their full potential. Normal tissue from such samples would be extremely valuable for generation of genotype data for individuals who cannot otherwise provide a DNA sample. Findings We extracted DNA from normal tissue identified in FFPE tissue blocks from prostate surgery and obtained complete genome wide genotype data for over 500,000 SNP markers for these samples, and for DNA extracted from whole blood for 2 of the cases, for comparison. Four of the five FFPE samples of varying age and amount of tissue had identifiable normal tissue. We obtained good quality genotype data for between 89 and 99% of all SNP markers for the 4 samples from FFPE. Concordance rates of over 99% were observed for the 2 samples with DNA from both FFPE and from whole blood. Conclusions DNA extracted from normal FFPE tissue provides excellent quality and quantity genome-wide genotyping data representing germline DNA, sufficient for both linkage and association analyses. This allows genetic analysis of informative individuals who are no longer available for sampling in genetic studies.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|