1
|
Umehara K, Parrott N, Günther A, Bogman K. Prospective DDI Risk Assessment of Vicasinabin with PBPK Modeling by Integrating In Vitro Data. Clin Pharmacol Ther 2025. [PMID: 40294080 DOI: 10.1002/cpt.3686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Vicasinabin is an oral cannabinoid receptor 2 (CB2) agonist showing anti-inflammatory effects and was developed for the treatment of chronic inflammatory diseases such as diabetic retinopathy. Vicasinabin is mainly metabolized by CYP3A4, with minor contributions from CYP2C19 and UGTs. The drug shows in vitro induction of CYP3A4, as well as inhibition of hepatic and renal transporters. Translation of in vitro data to a clinical drug-drug interaction (DDI) risk assessment has been challenging, with a potential role of CYP2C19 genotypes in the pharmacokinetics to be considered. A physiologically based pharmacokinetic (PBPK) model of vicasinabin based on a bottom-up approach predicted a moderate systemic exposure reduction for the selective CYP3A4 substrate midazolam. Neither the OATP1B1/P-gp/CYP3A4 inhibition effect on atorvastatin nor the OCT2/MATE1 inhibition effect on metformin was predicted to be of clinical relevance by PBPK modeling, as was confirmed by clinical DDI study data. After successful PBPK model prediction of itraconazole DDI using an in vitro fm,CYP3A4 of 0.6, the model was applied to simulate weak or moderate exposure changes of vicasinabin after co-administration with perpetrators for CYP3A4 and CYP2C19 (erythromycin, fluconazole, fluvoxamine, efavirenz, and rifampicin). A strong effect of induction due to rifampicin was also indicated. The CYP2C19 genotypes did not result in a significant impact on the victim DDI prediction for vicasinabin due to a low fm,CYP2C19 (∼0.2). The case study illustrated the usefulness of prospective PBPK predictions of clinical drug-drug interactions using in vitro data.
Collapse
Affiliation(s)
- Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Günther
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Katrijn Bogman
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
2
|
Messaoudi M, Pakstis AJ, Boussetta S, Ben Ammar Elgaaied A, Kidd KK, Cherni L. CYP2C gene polymorphisms in North African populations. Mol Biol Rep 2024; 51:1145. [PMID: 39532754 DOI: 10.1007/s11033-024-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cytochrome P450 is a superfamily of genes generating hemoproteins that metabolize foreign chemicals as well as endogenous compounds, such as steroids. The human CYP2C genes (CYP2C8, CYP2C9, CYP2C18, CYP2C19) cluster on chromosome 10 and metabolize many clinically useful drugs. CYP2C19 and CYP2C9 have been the most studied while CYP2C8 has been studied less frequently. CYP2C18 has been relatively ignored until recently but its importance has begun to be recognized. METHODS AND RESULTS We studied the genotypes of 7 pharmacogenetic markers in 3 CYP2C genes: CYP2C19 (rs12248560), CYP2C9 (rs4918758, rs1799853), and CYP2C8 (rs10509681, rs11572103, rs1058930, rs11572080), in one Libyan population and 7 Tunisian populations. Five of the 7 SNPs are in exons and have functional consequences while one intronic SNP is considered to be in close proximity to a regulatory region because of the many studies that report associations with metabolic effects. We carried out principal component analysis (PCA) on the North African populations and 83 other populations from the 1000 Genomes Project and Kidd Laboratory. The geographic clustering observed via PCA was more pronounced when considering multi-SNP haplotype frequencies. CONCLUSION This study reveals the intermediate position of North Africans between Europeans and Asians and the varied dissimilarities with other world regions. The genetic variation observed within and between geographic regions have implications for drug metabolism and adverse individual responses to medical treatments.
Collapse
Affiliation(s)
- Mohsen Messaoudi
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000, Monastir, Tunisia
| |
Collapse
|
3
|
Merali S, Salinger DH, Palmisano M, Sehnert AJ, Thanneer N, Back H, Seroogy JD, Gretler DD, Roy A, Perera V. Recommendation of mavacamten posology by model-based analyses in adults with obstructive hypertrophic cardiomyopathy. CPT Pharmacometrics Syst Pharmacol 2024; 13:1448-1461. [PMID: 38695527 PMCID: PMC11533099 DOI: 10.1002/psp4.13138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 11/05/2024] Open
Abstract
Mavacamten is the first cardiac myosin inhibitor approved by the US Food and Drug Administration for the treatment of adults with symptomatic obstructive hypertrophic cardiomyopathy (HCM). The phase III EXPLORER-HCM (NCT03470545) study used a dose-titration scheme based on mavacamten exposure and echocardiographic assessment of Valsalva left ventricular outflow tract gradient (VLVOTg) and left ventricular ejection fraction (LVEF). Using population pharmacokinetic/exposure-response modeling and simulations of virtual patients, this in silico study evaluated alternative dose-titration regimens for mavacamten, including regimens that were guided by echocardiographic measures only. Mavacamten exposure-response models for VLVOTg (efficacy) and LVEF (safety) were developed using patient data from five clinical studies and characterized using nonlinear mixed-effects models. Simulations of five echocardiography-guided regimens were performed in virtual cohorts constructed based on either expected or equal population distributions of cytochrome P450 2C19 (CYP2C19) metabolizer phenotypes. Each regimen aimed to maximize the proportions of patients who achieved a VLVOTg below 30 mm Hg while maintaining LVEF above 50% over 40 weeks and 104 weeks, respectively. The exposure-response models successfully characterized mavacamten efficacy and safety parameters. Overall, the simulated regimen with the optimal benefit-risk profile across CYP2C19 phenotypes had steps for down-titration at weeks 4 and 8 (for VLVOTg <20 mm Hg), and up-titration at week 12 (for VLVOTg ≥30 mm Hg and LVEF ≥55%), and every 12 weeks thereafter. This simulation-optimized regimen is recommended in the mavacamten US prescribing information.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Amit Roy
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | |
Collapse
|
4
|
Pereira NL, Cresci S, Angiolillo DJ, Batchelor W, Capers Q, Cavallari LH, Leifer D, Luzum JA, Roden DM, Stellos K, Turrise SL, Tuteja S. CYP2C19 Genetic Testing for Oral P2Y12 Inhibitor Therapy: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e129-e150. [PMID: 38899464 PMCID: PMC11300169 DOI: 10.1161/cir.0000000000001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
There is significant variability in the efficacy and safety of oral P2Y12 inhibitors, which are used to prevent ischemic outcomes in common diseases such as coronary and peripheral arterial disease and stroke. Clopidogrel, a prodrug, is the most used oral P2Y12 inhibitor and is activated primarily after being metabolized by a highly polymorphic hepatic cytochrome CYP2C219 enzyme. Loss-of-function genetic variants in CYP2C219 are common, can result in decreased active metabolite levels and increased on-treatment platelet aggregation, and are associated with increased ischemic events on clopidogrel therapy. Such patients can be identified by CYP2C19 genetic testing and can be treated with alternative therapy. Conversely, universal use of potent oral P2Y12 inhibitors such as ticagrelor or prasugrel, which are not dependent on CYP2C19 for activation, has been recommended but can result in increased bleeding. Recent clinical trials and meta-analyses have demonstrated that a precision medicine approach in which loss-of-function carriers are prescribed ticagrelor or prasugrel and noncarriers are prescribed clopidogrel results in reducing ischemic events without increasing bleeding risk. The evidence to date supports CYP2C19 genetic testing before oral P2Y12 inhibitors are prescribed in patients with acute coronary syndromes or percutaneous coronary intervention. Clinical implementation of such genetic testing will depend on among multiple factors: rapid availability of results or adoption of the concept of performing preemptive genetic testing, provision of easy-to-understand results with therapeutic recommendations, and seamless integration in the electronic health record.
Collapse
|
5
|
Medwid S, Kim RB. Implementation of pharmacogenomics: Where are we now? Br J Clin Pharmacol 2024; 90:1763-1781. [PMID: 36366858 DOI: 10.1111/bcp.15591] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pharmacogenomics (PGx), examining the effect of genetic variation on interpatient variation in drug disposition and response, has been widely studied for several decades. However, as cost, as well as turnaround time associated with PGx testing, has significantly improved, the use of PGx in the clinical setting has been gaining momentum. Nevertheless, challenges have emerged in the broader clinical implementation of PGx. In this review, we will outline current models of PGx delivery and methodologies of evaluation, and discuss clinically relevant PGx tests and associated medications. Additionally, we will describe our approach for the broad implementation of pre-emptive DPYD genotyping in patients taking fluoropyrimidines in Ontario, Canada, as an example of clinically actionable PGx testing with sufficient clinical evidence of patient benefit that can become a new standard of patient care. We will highlight challenges associated with PGx testing, including a lack of diversity in PGx studies as well as general limitations that impact the broad adoption of PGx testing. Lastly, we examine the future of PGx, discussing new clinical targets, methodologies and analysis approaches.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| | - Richard B Kim
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
6
|
Thompson EJ, Jeong A, Helfer VE, Shakhnovich V, Edginton A, Balevic SJ, James LP, Collier DN, Anand R, Gonzalez D. Physiologically-based pharmacokinetic modeling of pantoprazole to evaluate the role of CYP2C19 genetic variation and obesity in the pediatric population. CPT Pharmacometrics Syst Pharmacol 2024; 13:1394-1408. [PMID: 38837864 PMCID: PMC11330186 DOI: 10.1002/psp4.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Pantoprazole is a proton pump inhibitor indicated for the treatment of gastroesophageal reflux disease, a condition that disproportionately affects children with obesity. Appropriately dosing pantoprazole in children with obesity requires understanding the body size metric that best guides dosing, but pharmacokinetic (PK) trials using traditional techniques are limited by the need for larger sample sizes and frequent blood sampling. Physiologically-based PK (PBPK) models are an attractive alternative that can account for physiologic-, genetic-, and drug-specific changes without the need for extensive clinical trial data. In this study, we explored the effect of obesity on pantoprazole PK and evaluated label-suggested dosing in this population. An adult PBPK model for pantoprazole was developed using data from the literature and accounting for genetic variation in CYP2C19. The adult PBPK model was scaled to children without obesity using age-associated changes in anatomical and physiological parameters. Lastly, the pediatric PBPK model was expanded to children with obesity. Three pantoprazole dosing strategies were evaluated: 1 mg/kg total body weight, 1.2 mg/kg lean body weight, and US Food and Drug Administration-recommended weight-tiered dosing. Simulated concentration-time profiles from our model were compared with data from a prospective cohort study (PAN01; NCT02186652). Weight-tiered dosing resulted in the most (>90%) children with pantoprazole exposures in the reference range, regardless of obesity status or CYP2C19 phenotype, confirming results from previously published population PK models. PBPK models may allow for the efficient study of physiologic and developmental effects of obesity on PK in special populations where clinical trial data may be limited.
Collapse
Affiliation(s)
- Elizabeth J. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Angela Jeong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Victória E. Helfer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Valentina Shakhnovich
- University of Missouri‐Kansas City School of MedicineKansas CityMissouriUSA
- Divisions of Gastroenterology, Hepatology and Nutrition & Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas CityKansas CityMissouriUSA
- Ironwood PharmaceuticalsBostonMassachusettsUSA
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioCanada
| | - Stephen J. Balevic
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Laura P. James
- Department of PediatricsUniversity of Arkansas for Medical Sciences, Section of Clinical Pharmacology and Toxicology, Arkansas Children's HospitalLittle RockArkansasUSA
| | - David N. Collier
- Department of Pediatrics and Center for Health Disparities, Division of General PediatricsEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | - Daniel Gonzalez
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Division of Clinical Pharmacology, Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
7
|
Nakhonsri V, John S, Panumasmontol H, Jantorn M, Chanthot P, Hanpramukkun N, Meelarp S, Sukasem C, Tongsima S, Hasatsri S, Prawang A, Thaingtamtanha T, Vanwong N, Atasilp C, Chamnanphon M, Jinda P, Satapornpong P. The Diversity of CYP2C19 Polymorphisms in the Thai Population: Implications for Precision Medicine. Appl Clin Genet 2024; 17:95-105. [PMID: 38975048 PMCID: PMC11227332 DOI: 10.2147/tacg.s463965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction CYP2C19 plays a major role in the metabolism of various drugs. The most common genetic variants were the CYP2C19*2 and *3 alleles (rs4244285 and rs4986893, non-functional variants). In previous studies, we found that genetic polymorphisms in CYP2C19 variants influenced the active metabolites of clopidogrel and caused major adverse cardiovascular and cerebrovascular effects. However, the distribution of CYP2C19 varies among ethnic groups and according to adverse drug reactions. This study aimed to investigate the frequency of CYP2C19 genetic polymorphisms in the Thai population and analyze the differences in the frequency of CYP2C19 genetic polymorphisms between Thai and other populations. Methods This study enrolled 211 unrelated healthy Thai individuals in total. We performed a real-time polymerase chain reaction to genotype CYP2C19*2 (681G > A) and CYP2C19*3 (636G > A). Results In the Thai population, the CYP2C19*1 allele was the most prevalent at 70.14%, while the CYP2C19*2 and *3 alleles were found at frequencies of 25.36% and 4.50%, respectively. Conversely, the CYP2C19*3 allele was not detected in Caucasian, Hispanic, African, Italian, Macedonian, Tanzanian, or North Indian populations. The phenotypic profile of this gene revealed that the frequency of intermediate metabolizers (IMs) is nearly equal to that of extensive metabolizers (EMs), at 42.65% and 48.82% respectively, with genotypes *1/*2 (36.02%) and *1/*3 (6.63%). Likewise, poor metabolizers (PMs) with genotypes *2/*2 (6.16%), *2/*3 (2.37%), and *3/*3 (<1%) are more prevalent in our population as well. Conclusion The distribution of CYP2C19 genotype and phenotype influenced by non-functional alleles has potential as a pharmacogenomics biomarker for precision medicine and is dependent on an ethnic-specific genetic variation database.
Collapse
Affiliation(s)
- Vorthunju Nakhonsri
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Hathaichanok Panumasmontol
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Manassanan Jantorn
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Pongpipat Chanthot
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Nuntachai Hanpramukkun
- Division of Pharmaceutical Technology, Department of Industrial Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | | | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sukhontha Hasatsri
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Abhisit Prawang
- Division of Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Thanawat Thaingtamtanha
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, SYstems Neuroscience of Autism & PSychiatric Disorders (SYNAPS) Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chalirmporn Atasilp
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Monpat Chamnanphon
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Nakornnayok, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
8
|
Aly SM, Hennart B, Gaulier JM, Allorge D. Effect of CYP2D6, 2C19, and 3A4 Phenoconversion in Drug-Related Deaths. TOXICS 2024; 12:260. [PMID: 38668482 PMCID: PMC11054314 DOI: 10.3390/toxics12040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Molecular autopsy is a very important tool in forensic toxicology. However, many determinants, such as co-medication and physiological parameters, should be considered for optimal results. These determinants could cause phenoconversion (PC), a discrepancy between the real metabolic profile after phenoconversion and the phenotype determined by the genotype. This study's objective was to assess the PC of drug-metabolizing enzymes, namely CYP2D6, 2C19, and 3A4, in 45 post-mortem cases where medications that are substrates, inducers, or inhibitors of these enzymes were detected. It also intended to evaluate how PC affected the drug's metabolic ratio (MR) in four cases. Blood samples from 45 cases of drug-related deaths were analyzed to detect and determine drug and metabolite concentrations. Moreover, all the samples underwent genotyping utilizing the HaloPlex Target Enrichment System for CYP2D6, 2C19, and 3A4. The results of the present study revealed a statistically significant rate of PC for the three investigated enzymes, with a higher frequency of poor metabolizers after PC. A compatibility was seen between the results of the genomic evaluation after PC and the observed MRs of venlafaxine, citalopram, and fentanyl. This leads us to focus on the determinants causing PC that may be mainly induced by drug interactions. This complex phenomenon can have a significant impact on the analysis, interpretation of genotypes, and accurate conclusions in forensic toxicology. Nevertheless, more research with more cases in the future is needed to confirm these results.
Collapse
Affiliation(s)
- Sanaa M. Aly
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
| | - Benjamin Hennart
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Jean-Michel Gaulier
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Delphine Allorge
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| |
Collapse
|
9
|
Fang Y, He X, Peng A, Yang YQ, Xiang J. Association Study of Esomeprazole Pharmacokinetics and CYP2C19 Gene Polymorphisms. Clin Pharmacol Drug Dev 2024; 13:134-139. [PMID: 37772804 DOI: 10.1002/cpdd.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
To investigate the association between esomeprazole pharmacokinetics and CYP2C19 gene polymorphisms in a cohort of 95 healthy Chinese participants. A cohort of 95 participants was assembled and stratified into 2 distinct groups, receiving either 20 or 40 mg of esomeprazole through oral administration. The subjects encompassed 17 poor metabolizers, 47 intermediate metabolizers, and 31 rapid metabolizers, and their genotypes were ascertained using the polymerase chain reaction-restriction fragment length polymorphism technique. Esomeprazole plasma concentrations were quantified employing a high-performance liquid chromatography-ultraviolet method. Pharmacokinetic parameters were computed via Phoenix WinNonlin 6.1 software, while SPSS 26.0 facilitated statistical analysis to contrast the pharmacokinetics and the CYP2C19 genotypes. In the aftermath of administering 20 or 40 mg esomeprazole, marked differences were discerned between terminal elimination half-life, maximum concentration/dose, and area under the plasma concentration-time curve from time zero to infinity/dose of esomeprazole (P < .05), with the exception of time to maximum concentration. The findings of this investigation signify a significant association between esomeprazole metabolism and CYP2C19 gene polymorphisms. There were no unprecedented adverse events documented subsequent to the administration of 20 and 40 mg esomeprazole dosages. Esomeprazole has manifested promising safety and tolerability profiles in pertinent clinical trials.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Gastroenterology, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
| | - Xia He
- Department of Gastroenterology, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- Clinical Trial Center, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
| | - Ai Peng
- Department of Gastroenterology, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- Clinical Trial Center, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
| | - Yi Qi Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Wuhou, Chengdu, P.R. China
| | - Jin Xiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- Clinical Trial Center, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Wuhou, Chengdu, P.R. China
| |
Collapse
|
10
|
Hertz DL, Smith DM, Scott SA, Patel JN, Hicks JK. Response to the FDA Decision Regarding DPYD Testing Prior to Fluoropyrimidine Chemotherapy. Clin Pharmacol Ther 2023; 114:768-779. [PMID: 37350752 DOI: 10.1002/cpt.2978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Fluoropyrimidine (FP) chemotherapy is associated with severe, life-threatening toxicities, particularly among patients who carry deleterious germline variants in the DPYD gene. Pretreatment DPYD testing is standard of care throughout most of Europe; however, it has not been recommended in clinical practice guidelines in the United States. Due to increased risk of severe toxicity, a Citizen's Petition asked the US Food and Drug Administration (FDA) to update language in FP drug labels to recommend DPYD testing as part of a boxed warning and recommend FP dose reduction in patients carrying deleterious germline variants. In response, the FDA updated the capecitabine package insert to inform patients about the toxicity risk and test availability and consider DPYD testing. However, the FDA did not include a testing recommendation or requirement, or a boxed warning. Additionally, the FDA did not recommend FP dose adjustment in DPYD variant carriers. This review provides a critical assessment of the DPYD-FP pharmacogenetic association using the FDA's previously published Pharmacogenetic Pyramid, demonstrating that the evidence is compelling for recommending DPYD testing prior to FP treatment. Additionally, the FDA's stated concerns about recommending DPYD testing and DPYD-guided FP dose adjustment are addressed and discussed in the context of the FDA's other genetic testing and dose adjustment recommendations. We call on the FDA to follow our European counterparts in recommending DPYD testing and genotype-based dose adjustment to ensure patients with cancer receive safe and effective FP chemotherapy.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - D Max Smith
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- MedStar Health, Columbia, Maryland, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, California, USA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, California, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
11
|
Roberts B, Cooper Z, Lu S, Stanley S, Majda BT, Collins KRL, Gilkes L, Rodger J, Akkari PA, Hood SD. Utility of pharmacogenetic testing to optimise antidepressant pharmacotherapy in youth: a narrative literature review. Front Pharmacol 2023; 14:1267294. [PMID: 37795032 PMCID: PMC10545970 DOI: 10.3389/fphar.2023.1267294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals' genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current "one-size-fits-all" approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Collapse
Affiliation(s)
- Bradley Roberts
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Zahra Cooper
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stephanie Lu
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Susanne Stanley
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Khan R. L. Collins
- Western Australian Department of Health, North Metropolitan Health Service, Perth, WA, Australia
| | - Lucy Gilkes
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Divison of General Practice, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - P. Anthony Akkari
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, United States
| | - Sean D. Hood
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
12
|
Narasimhalu K, Mayerhofer E, Parodi L, Georgakis MK, De Silva DA, Rosand J, Anderson CD. The ABCD-GENE score influences vascular event rates in both users of clopidogrel and aspirin, as well as non-users of either drug in a population-based cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.06.23293732. [PMID: 37609315 PMCID: PMC10441502 DOI: 10.1101/2023.08.06.23293732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background and Objectives Clopidogrel is an antiplatelet used in both primary and secondary prevention of cardiovascular diseases. It is a prodrug, requiring CYP2C19 for its metabolism to the active metabolite. The ABCD-GENE score, combining clinical attributes (age, body mass index, chronic kidney disease, diabetes mellitus), with genetic information (presence of 1 or 2 loss of function (LOF) alleles in the CYP2C19 gene) has been shown to identify patients with higher risk of recurrent cardiovascular events in high-risk populations undergoing percutaneous coronary intervention. We aimed to determine if the ABCD-GENE score or LOF alleles were associated with an increased risk of vascular events among clopidogrel users in a general population. Methods We conducted a population based cohort study with UK Biobank's primary care prescription records to identify clopidogrel users. ABCD-GENE scores were calculated with closest available data from the first date of clopidogrel prescription. The number of LOF alleles present, and the clinical component ABCD, were separate exposures. The outcome of interest was a composite endpoint of vascular events comprised of myocardial infarction, ischemic stroke, and death due to either of these. We performed Cox proportional hazards models with clopidogrel as a time varying exposure to predict hazards of these outcomes. In order to determine the drug specificity of these exposures, the analyses were repeated in aspirin users, and in non-users of either aspirin or clopidogrel. Results Among 11,248 clopidogrel users, 3,365 (30%) developed a vascular event over a mean follow-up of 5.95±3.94 years. ABCD-GENE score ≥10 was associated with an increased risk of vascular events (HR 1.13, 95% CI 1.03-1.23). In aspirin users, and in non-users of either aspirin or clopidogrel, the ABCD-GENE score was also associated with increased risk of vascular events. In clopidogrel users, aspirin users, and non-users of either drug, the ABCD score was associated with increased risk of vascular events. The presence of two CYP2C19 LOF alleles was associated with an increased risk of vascular events in aspirin and non-users but not in clopidogrel users. Discussion In this population-based cohort study, the ABCD-GENE score was associated with an increased risk of vascular events in clopidogrel users, aspirin users, and in non-users of either drug. The clinical component, ABCD was also associated with an increased risk of vascular events in all three groups. This suggests that the ABCD-GENE score is not specific to clopidogrel users in identifying persons at high risk of vascular events in a general sample with low baseline CYP2C19 LOF allele frequency.
Collapse
Affiliation(s)
- Kaavya Narasimhalu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Ernst Mayerhofer
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Livia Parodi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Marios K Georgakis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Deidre Anne De Silva
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Rocca B, Patrono C. Precision antiplatelet therapy. Res Pract Thromb Haemost 2023; 7:100138. [PMID: 37215094 PMCID: PMC10193296 DOI: 10.1016/j.rpth.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
A State of the Art lecture titled "Personalizing Antiplatelet Therapy Based on Platelet Turnover and Metabolic Phenotype" was presented by Bianca Rocca at the International Society on Thrombosis and Haemostasis (ISTH) Congress in 2022. Increased variability in drug response may be associated with serious, mechanism-based and off-target side effects, especially in the case of drugs that do not routinely undergo therapeutic drug monitoring, such as antiplatelet drugs or direct oral anticoagulants. Precision pharmacology can be defined as the identification of a drug regimen that maximizes the benefit/risk balance at the level of an individual patient. Key tools for identifying relevant sources of variability and developing precision drug dosing are represented by genetic, biochemical, and pharmacological biomarkers recognized as a valid surrogate or strong predictor of major clinical complications. Pharmacodynamic, pharmacokinetic, and/or disease-related biomarkers are central to identifying the right population to be targeted, characterizing the sources of variability in drug response, guiding precision treatments that maximize benefits and minimize risks, and designing precision dosing trials. Another valuable tool for guiding precision pharmacology is represented by in silico pharmacokinetic/pharmacodynamic models and simulations instructed by real-world data of validated biomarkers. This review critically analyzes the tools for precision dosing and exemplifies conditions in which precision dosing can considerably optimize the efficacy and safety of antiplatelet drugs, namely aspirin and P2Y12 receptor blockers, used alone and in combination. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Bianca Rocca
- Section of Pharmacology, Catholic University School of Medicine and Fondazione Policlinico Universitario Agostino Gemelli and Istituto di Ricerca e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Patrono
- Section of Pharmacology, Catholic University School of Medicine and Fondazione Policlinico Universitario Agostino Gemelli and Istituto di Ricerca e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
14
|
Personalizing atomoxetine dosing in children with ADHD: what can we learn from current supporting evidence. Eur J Clin Pharmacol 2023; 79:349-370. [PMID: 36645468 DOI: 10.1007/s00228-022-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE There is marked heterogeneity in treatment response of atomoxetine in patients with attention deficit/hyperactivity disorder (ADHD), especially for the pediatric population. This review aims to evaluate current evidence to characterize the dose-exposure relationship, establish clinically relevant metrics for systemic exposure to atomoxetine, define a therapeutic exposure range, and to provide a dose-adaptation strategy before implementing personalized dosing for atomoxetine in children with ADHD. METHODS A comprehensive search was performed across electronic databases (PubMed and Embase) covering the period of January 1, 1985 to July 10, 2022, to summarize recent advances in the pharmacokinetics, pharmacogenomics/pharmacogenetics (PGx), therapeutic drug monitoring (TDM), physiologically based pharmacokinetics (PBPK), and population pharmacokinetics (PPK) of atomoxetine in children with ADHD. RESULTS Some factors affecting the pharmacokinetics of atomoxetine were summarized, including food, CYP2D6 and CYP2C19 phenotypes, and drug‒drug interactions (DDIs). The association between treatment response and genetic polymorphisms of genes encoding pharmacological targets, such as norepinephrine transporter (NET/SLC6A2) and dopamine β hydroxylase (DBH), was also discussed. Based on well-developed and validated assays for monitoring plasma concentrations of atomoxetine, the therapeutic reference range in pediatric patients with ADHD proposed by several studies was summarized. However, supporting evidence on the relationship between systemic atomoxetine exposure levels and clinical response was far from sufficient. CONCLUSION Personalizing atomoxetine dosage may be even more complex than anticipated thus far, but elucidating the best way to tailor the non-stimulant to a patient's individual need will be achieved by combining two strategies: detailed research in linking the pharmacokinetics and pharmacodynamics in pediatric patients, and better understanding in nature and causes of ADHD, as well as environmental stressors.
Collapse
|
15
|
Therapeutic Drug Monitoring of Lacosamide in Chinese Pediatric Patients with Epilepsy: Efficacy and Factors Influencing the Plasma Concentration. Eur J Drug Metab Pharmacokinet 2023; 48:41-49. [PMID: 36418850 DOI: 10.1007/s13318-022-00808-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE The impact of individual patient variables on drug metabolism is particularly important for antiseizure medication, and lacosamide has not been studied in Chinese pediatric patients with epilepsy. This study evaluated the effects of dose, age, sex, medication time, seizure type, and concomitant enzyme-inducing antiseizure medications (EIASMs) on the plasma concentration of lacosamide. METHODS A total of 500 pediatric patients from two hospitals in China were enrolled in this study. Lacosamide plasma concentration was processed using an ultra-performance liquid chromatography assay. Efficacy was evaluated based on the four-grade therapeutic effect criteria developed by the first National Epilepsy Academic Conference of the Chinese Medical Association. RESULTS The responder rate to lacosamide therapy was 72.2% (361/500). There was a weaker relationship between the lacosamide daily dose and lacosamide plasma concentration (r = 0.238). Lacosamide plasma concentrations of patients ranged from 1.5 to 19.7 µg/mL, with a mean of 6.9 ± 3.2 µg/mL. The study results showed a significant contribution of age, body mass index, epilepsy duration, medication time, and EIASMs to the lacosamide plasma concentration (p < 0.05). Patients taking concomitant EIASMs with lacosamide had a significantly lower mean lacosamide plasma concentration (5.9 ± 2.6 µg/mL) than patients taking concomitant non-EIASMs (7.5 ± 3.5 µg/mL, p < 0.001). CONCLUSION To ensure the clinical efficacy and safety of lacosamide therapy in pediatric patients, it is necessary to monitor the plasma concentration.
Collapse
|
16
|
Yabe T, Noike R, Okubo R, Amano H, Ikeda T. Infarct Size and Long-Term Clinical Outcomes of Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndrome Undergoing Coronary Artery Stenting: A Prospective Randomized Study. Int J Angiol 2022; 32:56-65. [PMID: 36727153 PMCID: PMC9886453 DOI: 10.1055/s-0042-1746417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The antiplatelet drug prasugrel inhibits platelet aggregation early after oral administration. This study examined whether prasugrel is effective in inhibiting infarct size and can reduce the incidence of major adverse cardiovascular events (MACE) in patients with acute coronary syndrome (ACS). This study was a single-center, prospective, randomized pilot study. Among 80 ACS patients treated at our institution between August 2014 and September 2015, 76 ACS patients who underwent stenting and achieved thrombolysis in myocardial infarction flow grade 3 were assigned to receive aspirin plus prasugrel (prasugrel group; n = 37) or aspirin plus clopidogrel (clopidogrel group; n = 39). The primary endpoint was survival free of MACE. The secondary endpoint was the evaluation of infarct size defined as the area under the curve (AUC) of troponin I, calculated using the linear trapezoidal method. During follow-up (mean, 1262.4 ± 599.6 days), 14 patients showed MACE. No significant differences in CYP2C19 genotype were seen between groups. AUC of troponin I up to 72 hours after intervention tended to be smaller in the prasugrel group (1,927.1 ± 2,189.3 ng/mL) than in the clopidogrel group (3,186.0 ± 3,760.1 ng/mL, p = 0.08). Cumulative incidence of MACE was significantly higher in the clopidogrel group (log-rank test; p = 0.02). Compared with clopidogrel, prasugrel was associated with reduced infarct size and lower frequency of long-term outcomes among ACS patients undergoing stenting.
Collapse
Affiliation(s)
- Takayuki Yabe
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan,Address for correspondence Takayuki Yabe, MD, PhD Department of Cardiovascular Medicine, Toho University Faculty of MedicineTokyo, Japan, 6-11-1 Omorinishi, Ota-ku, Tokyo 143-8541Japan
| | - Ryota Noike
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Ryo Okubo
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Hideo Amano
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Mugosa S, Radosavljevic I, Sahman M, Djordjevic N, Todorovic Z. Risk factors for adverse drug reactions associated with clopidogrel therapy. Open Med (Wars) 2022; 17:694-701. [PMID: 35480401 PMCID: PMC8990878 DOI: 10.1515/med-2021-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study aimed to investigate the possible influence of genetic and non-genetic factors on the incidence of clopidogrel adverse drug reactions (ADRs) in cardiology patients, including the most important CYP2C19 alleles, namely *2 and *17, as well as compliance, dose, drug interactions, and clinical factors. A total of 102 clopidogrel-treated adult Caucasian patients hospitalized at the Cardiology Department of the Clinical Center of Montenegro were enrolled in the study. Data on clinical outcomes of interest were obtained by intensive monitoring ADRs during hospitalization and one year after hospital discharge. Genotyping for CYP2C19*2 and *17 was conducted using the real-time polymerase chain reaction method. ADRs were characterized using the Rawlins and Thompson classification and the World Health Organization criteria. Causality was assessed using the Naranjo probability scale. ADRs to clopidogrel were observed in 9 of 102 patients (8.8%). The observed frequencies of CYP2C19*2 and *17 were 13.2 and 25.5%, respectively. Our study, which is the first to report the frequency of CYP2C19 polymorphism in the Montenegrin population, as well as to link the pharmacovigilance of clopidogrel with CYP2C19 gene variability, shows that the incidence of ADRs of clopidogrel in cardiac patients is high and depends on CYP2C19 polymorphisms, comedication/drug interactions, and gastrointestinal comorbidity.
Collapse
Affiliation(s)
- Snezana Mugosa
- Department of Pharmacology, Faculty of Medicine, University of Montenegro , 81000 Podgorica , Montenegro
- Clinical Trials Department, Institute for Medicines and Medical Devices of Montenegro , 81000 Podgorica , Montenegro
| | - Ivan Radosavljevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac , 34000 Kragujevac , Serbia
| | - Majda Sahman
- Department of Pharmacology, Faculty of Medicine, University of Montenegro , 81000 Podgorica , Montenegro
- Clinical Trials Department, Institute for Medicines and Medical Devices of Montenegro , 81000 Podgorica , Montenegro
| | - Natasa Djordjevic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac , 34000 Kragujevac , Serbia
| | - Zoran Todorovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade , Belgrade , Serbia
- University Medical Center “Bežanijska kosa” , Belgrade , Serbia
| |
Collapse
|
18
|
Shah S, Hubscher E, Pelletier C, Jacob R, Vinals L, Yadlapati R. Helicobacter pylori infection treatment in the United States: clinical consequences and costs of eradication treatment failure. Expert Rev Gastroenterol Hepatol 2022; 16:341-357. [PMID: 35315732 DOI: 10.1080/17474124.2022.2056015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helicobacter pylori (Hp) is causal in benign and malignant gastrointestinal diseases. Accordingly, current guidelines recommend Hp eradication in patients with active infection. Unfortunately, treatment failure is common, exposing patients to complications associated with persistent Hp infection and consequences of repeated treatment, including promotion of antibiotic resistance. In the United States (US), data regarding eradication rates with available therapies are limited. Moreover, the clinical and economic burden of eradication treatment failure have not been thoroughly described. AREAS COVERED We aimed to characterize Hp eradication rates and the clinical consequences and associated costs of persistent Hp infection among US adults. We conducted focused literature reviews using initial searches in Embase, MEDLINE, and Cochrane Database of Systematic Reviews via Ovid followed by manual searches to identify relevant publications. EXPERT OPINION Hp eradication rates were suboptimal, with most studies reporting rates ≤80% with clarithromycin-based triple therapy and bismuth quadruple therapy. There was direct evidence supporting numerous benefits of successful Hp eradication, including decreased risk of recurrent or complicated peptic disease and non-cardia gastric cancer. Cost benefits of eradication were related to mitigation of conditions associated with persistent Hp infection, (e.g. complicated peptic ulcer disease, and gastric cancer) which altogether exceed US$5.3 billion.
Collapse
Affiliation(s)
- Shailja Shah
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | | | - Corey Pelletier
- HEOR, Phathom Pharmaceuticals, Florham Park, New Jersey, USA
| | - Rinu Jacob
- Medical Affairs, Phathom Pharmaceuticals, Florham Park, New Jersey, USA
| | - Lydia Vinals
- Real-World Advanced Analytics, Cytel, Inc, Waltham, Massachusetts, USA
| | - Rena Yadlapati
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Yeh CH, Chou YJ, Tsai TH, Hsu PWC, Li CH, Chan YH, Tsai SF, Ng SC, Chou KM, Lin YC, Juan YH, Fu TC, Lai CC, Sytwu HK, Tsai TF. Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease. Biomedicines 2022; 10:biomedicines10010116. [PMID: 35052795 PMCID: PMC8773099 DOI: 10.3390/biomedicines10010116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
An increased risk of cardiovascular events was identified in patients with peripheral artery disease (PAD). Clopidogrel is one of the most widely used antiplatelet medications. However, there are heterogeneous outcomes when clopidogrel is used to prevent cardiovascular events in PAD patients. Here, we use an artificial intelligence (AI)-assisted methodology to identify genetic factors potentially involved in the clopidogrel-resistant mechanism, which is currently unclear. Several discoveries can be pinpointed. Firstly, a high proportion (>50%) of clopidogrel resistance was found among diabetic PAD patients in Taiwan. Interestingly, our result suggests that platelet function test-guided antiplatelet therapy appears to reduce the post-interventional occurrence of major adverse cerebrovascular and cardiac events in diabetic PAD patients. Secondly, AI-assisted genome-wide association study of a single-nucleotide polymorphism (SNP) database identified a SNP signature composed of 20 SNPs, which are mapped into 9 protein-coding genes (SLC37A2, IQSEC1, WASHC3, PSD3, BTBD7, GLIS3, PRDM11, LRBA1, and CNR1). Finally, analysis of the protein connectivity map revealed that LRBA, GLIS3, BTBD7, IQSEC1, and PSD3 appear to form a protein interaction network. Intriguingly, the genetic factors seem to pinpoint a pathway related to endocytosis and recycling of P2Y12 receptor, which is the drug target of clopidogrel. Our findings reveal that a combination of AI-assisted discovery of SNP signatures and clinical parameters has the potential to develop an ethnic-specific precision medicine for antiplatelet therapy in diabetic PAD patients.
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.L.); (Y.-H.J.); (T.-C.F.)
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-J.C.); (P.W.-C.H.); (S.-F.T.)
| | - Tsung-Hsien Tsai
- Advanced Tech BU, Acer Inc., New Taipei City 221, Taiwan; (T.-H.T.); (C.-H.L.); (Y.-H.C.)
| | - Paul Wei-Che Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-J.C.); (P.W.-C.H.); (S.-F.T.)
| | - Chun-Hsien Li
- Advanced Tech BU, Acer Inc., New Taipei City 221, Taiwan; (T.-H.T.); (C.-H.L.); (Y.-H.C.)
| | - Yun-Hsuan Chan
- Advanced Tech BU, Acer Inc., New Taipei City 221, Taiwan; (T.-H.T.); (C.-H.L.); (Y.-H.C.)
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-J.C.); (P.W.-C.H.); (S.-F.T.)
| | - Soh-Ching Ng
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (S.-C.N.); (K.-M.C.)
| | - Kuei-Mei Chou
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (S.-C.N.); (K.-M.C.)
| | - Yu-Ching Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.L.); (Y.-H.J.); (T.-C.F.)
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yu-Hsiang Juan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.L.); (Y.-H.J.); (T.-C.F.)
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tieh-Cheng Fu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.L.); (Y.-H.J.); (T.-C.F.)
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chi-Chun Lai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.L.); (Y.-H.J.); (T.-C.F.)
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Correspondence: (C.-C.L.); (H.-K.S.); (T.-F.T.); Tel.: +886-2-24313131 (ext. 6101) (C.-C.L.); +886-37-206166 (ext. 31010) (H.-K.S.); +886-2-28267293 (T.-F.T.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
- National Defense Medical Center, Department & Graduate Institute of Microbiology and Immunology, Taipei 114, Taiwan
- Correspondence: (C.-C.L.); (H.-K.S.); (T.-F.T.); Tel.: +886-2-24313131 (ext. 6101) (C.-C.L.); +886-37-206166 (ext. 31010) (H.-K.S.); +886-2-28267293 (T.-F.T.)
| | - Ting-Fen Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-J.C.); (P.W.-C.H.); (S.-F.T.)
- Departments of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-C.L.); (H.-K.S.); (T.-F.T.); Tel.: +886-2-24313131 (ext. 6101) (C.-C.L.); +886-37-206166 (ext. 31010) (H.-K.S.); +886-2-28267293 (T.-F.T.)
| |
Collapse
|
20
|
The Influence of CYP2D6 and CYP2C19 Genetic Variation on Diabetes Mellitus Risk in People Taking Antidepressants and Antipsychotics. Genes (Basel) 2021; 12:genes12111758. [PMID: 34828364 PMCID: PMC8620997 DOI: 10.3390/genes12111758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022] Open
Abstract
CYP2D6 and CYP2C19 enzymes are essential in the metabolism of antidepressants and antipsychotics. Genetic variation in these genes may increase risk of adverse drug reactions. Antidepressants and antipsychotics have previously been associated with risk of diabetes. We examined whether individual genetic differences in CYP2D6 and CYP2C19 contribute to these effects. We identified 31,579 individuals taking antidepressants and 2699 taking antipsychotics within UK Biobank. Participants were classified as poor, intermediate, or normal metabolizers of CYP2D6, and as poor, intermediate, normal, rapid, or ultra-rapid metabolizers of CYP2C19. Risk of diabetes mellitus represented by HbA1c level was examined in relation to the metabolic phenotypes. CYP2D6 poor metabolizers taking paroxetine had higher Hb1Ac than normal metabolizers (mean difference: 2.29 mmol/mol; p < 0.001). Among participants with diabetes who were taking venlafaxine, CYP2D6 poor metabolizers had higher HbA1c levels compared to normal metabolizers (mean differences: 10.15 mmol/mol; p < 0.001. Among participants with diabetes who were taking fluoxetine, CYP2D6 intermediate metabolizers and decreased HbA1c, compared to normal metabolizers (mean difference -7.74 mmol/mol; p = 0.017). We did not observe any relationship between CYP2D6 or CYP2C19 metabolic status and HbA1c levels in participants taking antipsychotic medication. Our results indicate that the impact of genetic variation in CYP2D6 differs depending on diabetes status. Although our findings support existing clinical guidelines, further research is essential to inform pharmacogenetic testing for people taking antidepressants and antipsychotics.
Collapse
|
21
|
Shah SC, Tepler A, Chung CP, Suarez G, Peek RM, Hung A, Roumie C, Narula N. Host Genetic Determinants Associated With Helicobacter pylori Eradication Treatment Failure: A Systematic Review and Meta-analysis. Gastroenterology 2021; 161:1443-1459. [PMID: 34358488 PMCID: PMC8545829 DOI: 10.1053/j.gastro.2021.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infects approximately 50% of individuals worldwide. Successful H pylori eradication is associated with reduced risk of gastric cancer and peptic ulcer disease, among other conditions. We hypothesized that host genetic determinants, especially those affecting gastric pH, might contribute to eradication therapy failure, particularly when treatment adherence and antibiotic susceptibility are confirmed. We aimed to conduct a meta-analysis of host genetic variants associated with H pylori eradication failure. METHODS We searched the literature for studies comparing posttreatment H pylori eradication failure vs success (outcome) according to host genetic polymorphisms (exposure). Reference groups were defined according to genotypes (or corresponding phenotypes) hypothesized to be associated with successful eradication. We pooled estimates using a random-effects model and performed comprehensive sensitivity analyses. RESULTS We analyzed 57 studies from 11 countries; the vast majority analyzed CYP2C19 polymorphisms. Among individuals prescribed eradication regimens with proton pump inhibitors predominantly CYP2C19 metabolized, enhanced vs poor metabolizer phenotypes were associated with a 2.52-fold significantly higher likelihood of eradication failure and 4.44-fold significantly higher likelihood when treatment adherence and H pylori clarithromycin susceptibility (if relevant) were confirmed. There was no association between CYP2C19 variants and eradication failure if proton pump inhibitors less metabolized by or that bypass CYP2C19 metabolism were used. IL1B polymorphisms that are vs are not associated with less gastric acid suppression were associated with 1.72-fold significantly higher likelihood of eradication failure. There was no association between MDR1 polymorphisms and H pylori eradication failure. The certainty of evidence was moderate. CONCLUSION Based on meta-analysis, we identified host genetic polymorphisms significantly associated with H pylori eradication failure; host genetics might underlie eradication failure among treatment-adherent individuals with confirmed H pylori antibiotic susceptibility.
Collapse
Affiliation(s)
- Shailja C. Shah
- Section of Gastroenterology, Veterans Affairs San Diego Health System (La Jolla, CA) and Tennessee Valley Healthcare System (Nashville, TN),Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN,Division of Gastroenterology, University of California, San Diego, La Jolla, CA,Corresponding Author Shailja C. Shah, MD MPH, 3550 La Jolla Village Drive, 3rd Floor, GI Section, VA San Diego Healthcare System, San Diego, CA 92161 USA, , Ph: 619-854-9550
| | - Adam Tepler
- Department of Medicine, New York University, New York, NY
| | - Cecilia P. Chung
- Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN,Section of Rheumatology, Veterans Affairs Tennessee Valley Healthcare System
| | - Giovanni Suarez
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN
| | - Adriana Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville TN,Section of Nephrology, Veterans Affairs Tennessee Valley Healthcare System
| | - Christianne Roumie
- Department of Medicine, Vanderbilt University Medical Center, Nashville TN,Department of Veterans Affairs, Medical Service and Geriatric Research and Education Clinical Center (GRECC) Tennessee Valley Healthcare System, Nashville, TN
| | - Neeraj Narula
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton Ontario Canada
| |
Collapse
|
22
|
Schilling U, Dingemanse J, Ufer M. Pharmacokinetics and Pharmacodynamics of Approved and Investigational P2Y12 Receptor Antagonists. Clin Pharmacokinet 2021; 59:545-566. [PMID: 32056160 DOI: 10.1007/s40262-020-00864-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronary artery disease remains the major cause of mortality worldwide. Antiplatelet drugs such as acetylsalicylic acid and P2Y12 receptor antagonists are cornerstone treatments for the prevention of thrombotic events in patients with coronary artery disease. Clopidogrel has long been the gold standard but has major pharmacological limitations such as a slow onset and long duration of effect, as well as weak platelet inhibition with high inter-individual pharmacokinetic and pharmacodynamic variability. There has been a strong need to develop potent P2Y12 receptor antagonists with more favorable pharmacological properties. Prasugrel and ticagrelor are more potent and have a faster onset of action; however, they have shown an increased bleeding risk compared with clopidogrel. Cangrelor is highly potent and has a very rapid onset and offset of effect; however, its indication is limited to P2Y12 antagonist-naïve patients undergoing percutaneous coronary intervention. Two novel P2Y12 receptor antagonists are currently in clinical development, namely vicagrel and selatogrel. Vicagrel is an analog of clopidogrel with enhanced and more efficient formation of its active metabolite. Selatogrel is characterized by a rapid onset of action following subcutaneous administration and developed for early treatment of a suspected acute myocardial infarction. This review article describes the clinical pharmacology profile of marketed P2Y12 receptor antagonists and those under development focusing on pharmacokinetic, pharmacodynamic, and drug-drug interaction liability.
Collapse
Affiliation(s)
- Uta Schilling
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Mike Ufer
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| |
Collapse
|
23
|
Na JY, Jeon I, Yoon J, Choi Y, Yoon SH, Yu KS, Chung JY. Influence of CYP2C19 Polymorphisms on the Pharmacokinetics of Omeprazole in Elderly Subjects. Clin Pharmacol Drug Dev 2021; 10:1469-1477. [PMID: 34337876 DOI: 10.1002/cpdd.966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 11/11/2022]
Abstract
Omeprazole blocks the gastric H+ /K+ adenosine triphosphatase, thus inhibiting gastric acid secretion, and is metabolized by cytochrome P450 (CYP) 2C19. Due to the physiological changes in the elderly, there are different pharmacokinetic consequences compared to young people. The aim of this study was to evaluate the pharmacokinetic profiles of omeprazole in 15 elderly participants according to the CYP2C19 genotype. The concentration-time profiles of omeprazole and its metabolites, 5-hydroxy (5-OH) omeprazole and omeprazole sulfone, were similar between the CYP2C19 extensive metabolizer (EM) and intermediate metabolizer groups. In contrast, when comparing the EM group and CYP2C19 poor metabolizer (PM) group, the EM/PM geometric mean ratio (95% confidence interval) of area under the plasma concentration-time curve from time of dosing to the last measurable concentration was 0.52 (0.27-1.01) and that of the IM group was 0.71 (0.32-1.59), indicating that the exposure of omeprazole in the PM group was increased. The exposure of 5-OH omeprazole was significantly decreased in the PM group when compared to the EM group, with an EM/PM geometric mean ratio (95% confidence interval) of 2.20 (1.50-3.22). In conclusion, the tendency of drug exposure according to the CYP2C19 genotype in the elderly and young adults was similar in that the exposure level was highest in the PM group. However, when compared to young adults, the difference between the genotype groups was smaller in the elderly.
Collapse
Affiliation(s)
- Joo Young Na
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Inseung Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jangsoo Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Yewon Choi
- Genosco Inc, Billerica, Massachusetts, USA
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| |
Collapse
|
24
|
Arvind A, Memel ZN, Philpotts LL, Zheng H, Corey KE, Simon TG. Thiazolidinediones, alpha-glucosidase inhibitors, meglitinides, sulfonylureas, and hepatocellular carcinoma risk: A meta-analysis. Metabolism 2021; 120:154780. [PMID: 33891949 PMCID: PMC8217281 DOI: 10.1016/j.metabol.2021.154780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related death worldwide. Effects of second-line oral antidiabetic medications on incident HCC risk in individuals with type 2 diabetes mellitus remain unclear. This study evaluated associations between sulfonylureas, thiazolidinediones, meglitinides and alpha-glucosidase inhibitors, and incident HCC risk. METHODS We systematically reviewed all studies on PubMed, Embase and Web of Science databases. Studies were included if they documented: (1) exposure to oral antidiabetic medication classes; (2) HCC incidence; (3) relative risks/odds ratios (OR) for HCC incidence. Eight eligible observational studies were identified. We performed random-effects meta-analyses to calculate pooled adjusted ORs (aORs) and 95% confidence intervals (CI). RESULTS Thiazolidinedione use (7 studies, 280,567 participants, 19,242 HCC cases) was associated with reduced HCC risk (aOR = 0.92, 95% CI = 0.86-0.97, I2 = 43%), including among Asian subjects (aOR = 0.90, 95% CI = 0.83-0.97), but not Western subjects (aOR = 0.95, 95% CI = 0.87-1.04). Alpha-glucosidase inhibitor use (3 studies, 56,791 participants, 11,069 HCC cases) was associated with increased HCC incidence (aOR = 1.08; 95% CI = 1.02-1.14, I2 = 21%). Sulfonylurea use (8 studies, 281,180 participants, 19,466 HCC cases) was associated with increased HCC risk in studies including patients with established liver disease (aOR = 1.06, 95% CI = 1.02-1.11, I2 = 75%). Meglitinide use (4 studies, 58,237 participants, 11,310 HCC cases) was not associated with HCC incidence (aOR = 1.19; 95% CI = 0.89-1.60, I2 = 72%). CONCLUSIONS Thiazolidinedione use was associated with reduced HCC incidence in Asian individuals with diabetes. Alpha-glucosidase inhibitor or sulfonylurea use was associated with modestly increased HCC risk; future research should determine whether those agents should be avoided in patients with chronic liver disease.
Collapse
Affiliation(s)
- Ashwini Arvind
- Harvard Medical School, Boston, MA, United States of America; Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Boston, MA, United States of America
| | - Zoe N Memel
- Harvard Medical School, Boston, MA, United States of America; Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Lisa L Philpotts
- Treadwell Library, Massachusetts General Hospital, Boston, MA, United States of America
| | - Hui Zheng
- Harvard Medical School, Boston, MA, United States of America; Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States of America
| | - Kathleen E Corey
- Harvard Medical School, Boston, MA, United States of America; Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Boston, MA, United States of America; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States of America
| | - Tracey G Simon
- Harvard Medical School, Boston, MA, United States of America; Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Boston, MA, United States of America; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States of America.
| |
Collapse
|
25
|
Sukprasong R, Chuwongwattana S, Koomdee N, Jantararoungtong T, Prommas S, Jinda P, Rachanakul J, Nuntharadthanaphong N, Jongjitsook N, Puangpetch A, Sukasem C. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population. Sci Rep 2021; 11:12343. [PMID: 34117307 PMCID: PMC8195986 DOI: 10.1038/s41598-021-90969-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, CYP2C19*6, CYP2C19*17, and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2, CYP2C19*3, CYP2C19*6, and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P < 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P < 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.
Collapse
Affiliation(s)
- Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sumonrat Chuwongwattana
- Faculty of Medical Technology, Huachiew Chalermprakiet University, Bang Phli District, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutcha Jongjitsook
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
26
|
Díaz-Ordóñez L, Ramírez-Montaño D, Candelo E, González-Restrepo C, Silva-Peña S, Rojas CA, Sepulveda Copete M, Echavarria HR, Pachajoa H. Evaluation of CYP2C19 Gene Polymorphisms in Patients with Acid Peptic Disorders Treated with Esomeprazole. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:509-520. [PMID: 33953602 PMCID: PMC8092628 DOI: 10.2147/pgpm.s285144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
Background CYP2C19 is a highly polymorphic gene that encodes an enzyme with the same name and whose function is associated with the metabolism of many important drugs, such as proton pump inhibitors (such as esomeprazole, which is used for the treatment of acid peptic disease). Genetic variants in CYP2C19 alter protein function and affect drug metabolism. This study aims to genotypically and phenotypically characterize the genetic variants in the CYP2C19 gene in 12 patients with acid peptic disorders and different therapeutic profiles to proton pump inhibitor (PPI) drugs. The patients were randomly selected from a controlled, randomized and blinded clinical pilot trial of 33 patients. We determined the presence and frequency of single nucleotide polymorphisms (SNPs) within exons 1–5 and 9, the intron-exon junctions, and a fragment in the 3ʹ UTR region of the CYP2C19 gene using Sanger sequencing. Undescribed polymorphisms were analyzed by free online bioinformatics tools to evaluate the potential molecular effects of these genetic variants. Results We identified nine polymorphisms, six of which had no reported functions. One of these genetic variants, with a functional impact, not yet reported (p.Arg132Trp) was predicted by bioinformatic tools as potentially pathogenic. This finding suggests that p.Arg132Trp could be related to poor metabolizers of drugs metabolized by CYP2C19. Conclusion We identified the genotype spectrum of variants in CYP2C19. The genotype spectrum of variants in CYP2C19 could predict the treatment response and could support to evaluate clinical efficacy in patients treated with esomeprazole.
Collapse
Affiliation(s)
- Lorena Díaz-Ordóñez
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia.,Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia
| | - Diana Ramírez-Montaño
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia.,Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia
| | - Estephania Candelo
- Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia.,Research Centre, Fundación Valle de Lili, Cali, Colombia
| | | | - Sebastián Silva-Peña
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia
| | | | | | | | - Harry Pachajoa
- Basic Medical Science Department, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia.,Clinical Genetic Department, Fundación Valle del Lili, Cali, Colombia.,Research Centre in Rare Diseases and Congenital Abnormalities (CIACER), Universidad Icesi, Cali, Colombia
| |
Collapse
|
27
|
Shah SC, Iyer PG, Moss SF. AGA Clinical Practice Update on the Management of Refractory Helicobacter pylori Infection: Expert Review. Gastroenterology 2021; 160:1831-1841. [PMID: 33524402 PMCID: PMC8281326 DOI: 10.1053/j.gastro.2020.11.059] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The purpose of this CPU Expert Review is to provide clinicians with guidance on the management of Helicobacter pylori after an initial attempt at eradication therapy fails, including best practice advice on specific regimen selection, and consideration of patient and systems factors that contribute to treatment efficacy. This Expert Review is not a formal systematic review, but is based upon a review of the literature to provide practical advice. No formal rating of the strength or quality of the evidence was carried out. Accordingly, a combination of available evidence and consensus-based expert opinion were used to develop these best practice advice statements.
Collapse
Affiliation(s)
- Shailja C. Shah
- Division of Gastroenterology, Veterans Affairs Tennessee Valley Health System, Nashville, TN,Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN
| | - Prasad G. Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Steven F. Moss
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
28
|
Simon F, Gautier-Veyret E, Truffot A, Chenel M, Payen L, Stanke-Labesque F, Tod M. Modeling Approach to Predict the Impact of Inflammation on the Pharmacokinetics of CYP2C19 and CYP3A4 Substrates. Pharm Res 2021; 38:415-428. [PMID: 33686560 DOI: 10.1007/s11095-021-03019-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE For decades, inflammation has been considered a cause of pharmacokinetic variability, mainly in relation to the inhibitory effect of pro-inflammatory cytokines on the expression level and activity of cytochrome P450 (CYP). In vitro and clinical studies have shown that two major CYPs, CYP2C19 and CYP3A4, are both impaired. The objective of the present study was to quantify the impact of the inflammatory response on the activity of both CYPs in order to predict the pharmacokinetic profile of their substrates according to systemic C-reactive protein (CRP). METHODS The relationships between CRP concentration and both CYPs activities were estimated and validated using clinical data first on midazolam then on voriconazole. Finally, clinical data on omeprazole were used to validate the findings. For each substrate, a physiologically based pharmacokinetics model was built using a bottom-up approach, and the relationships between CRP level and CYP activities were estimated by a top-down approach. After incorporating the respective relationships, we compared the predictions and observed drug concentrations. RESULTS Changes in pharmacokinetic profiles and parameters induced by inflammation seem to be captured accurately by the models. CONCLUSIONS These findings suggest that the pharmacokinetics of CYP2C19 and CYP3A4 substrates can be predicted depending on the CRP concentration.
Collapse
Affiliation(s)
- Florian Simon
- EA3738, Faculté de médecine de Lyon-Sud, Université de Lyon 1, 69921, Université de Lyon 1, Oullins cedex, France. .,Laboratoire de biochimie-toxicologie, Centre hospitalier Lyon-Sud, Hospices civils de Lyon, Pierre Bénite, Lyon, France.
| | - Elodie Gautier-Veyret
- Laboratoire de Pharmacologie, Pharmacogenetique et Toxicologie, Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.,University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000, Grenoble, France
| | - Aurélie Truffot
- Laboratoire de Pharmacologie, Pharmacogenetique et Toxicologie, Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France
| | - Marylore Chenel
- Institut de recherches internationales Servier, Direction of clinical PK and pharmacometrics, Suresnes, France
| | - Léa Payen
- Laboratoire de biochimie-toxicologie, Centre hospitalier Lyon-Sud, Hospices civils de Lyon, Pierre Bénite, Lyon, France
| | - Françoise Stanke-Labesque
- Laboratoire de Pharmacologie, Pharmacogenetique et Toxicologie, Centre Hospitalier Universitaire des Alpes, 38043, Grenoble, France.,University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000, Grenoble, France
| | - Michel Tod
- EA3738, Faculté de médecine de Lyon-Sud, Université de Lyon 1, 69921, Université de Lyon 1, Oullins cedex, France
| |
Collapse
|
29
|
Forster J, Duis J, Butler MG. Pharmacogenetic Testing of Cytochrome P450 Drug Metabolizing Enzymes in a Case Series of Patients with Prader-Willi Syndrome. Genes (Basel) 2021; 12:genes12020152. [PMID: 33498922 PMCID: PMC7912498 DOI: 10.3390/genes12020152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Prader-Willi syndrome (PWS) is associated with co-morbid psychiatric symptoms (disruptive behavior, anxiety, mood disorders, and psychosis) often requiring psychotropic medications. In this clinical case series of 35 patients with PWS, pharmacogenetic testing was obtained to determine allele frequencies predicting variations in activity of cytochrome (CYP) P450 drug metabolizing enzymes 2D6, 2B6, 2C19, 2C9, 3A4, and 1A2. Results were deidentified, collated, and analyzed by PWS genetic subtype: 14 deletion (DEL), 16 maternal uniparental disomy (UPD) and 5 DNA-methylation positive unspecified molecular subtype (PWS Unspec). Literature review informed comparative population frequencies of CYP polymorphisms, phenotypes, and substrate specificity. Among the total PWS cohort, extensive metabolizer (EM) activity prevailed across all cytochromes except CYP1A2, which showed greater ultra-rapid metabolizer (UM) status (p < 0.05), especially among UPD. Among PWS genetic subtypes, there were statistically significant differences in metabolizing status for cytochromes 2D6, 2C19, 2C9, 3A4 and 1A2 acting on substrates such as fluoxetine, risperidone, sertraline, modafinil, aripiprazole, citalopram, and escitalopram. Gonadal steroid therapy may further impact metabolism of 2C19, 2C9, 3A4 and 1A2 substrates. The status of growth hormone treatment may affect CYP3A4 activity with gender specificity. Pharmacogenetic testing together with PWS genetic subtyping may inform psychotropic medication dosing parameters and risk for adverse events.
Collapse
Affiliation(s)
- Janice Forster
- Pittsburgh Partnership, PWS, Pittsburgh, PA 15218, USA
- Correspondence:
| | - Jessica Duis
- Section of Genetic and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Merlin G. Butler
- Division of Research and Genetics, Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
30
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
31
|
Masuyama T, Sakuma M, Waku R, Hirose S, Kitahara K, Naganuma J, Yazawa H, Toyoda S, Abe S, Nakajima T, Inoue T. Effects of switching from clopidogrel to prasugrel at the chronic phase after coronary stenting on antiplatelet action and vascular endothelial function: Switch-Pras study. Heart Vessels 2020; 36:442-451. [PMID: 33113567 PMCID: PMC7940291 DOI: 10.1007/s00380-020-01714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 01/12/2023]
Abstract
Compared to clopidogrel, prasugrel has a lower incidence of ischemic events following percutaneous coronary intervention (PCI) because of an early reduction during the acute phase in P2Y12 reaction units (PRU). The objective of this study was to compare the antiplatelet effect and vascular endothelial function of both drugs during the chronic phase after PCI. Patients who had undergone PCI and were confirmed to have no restenosis by follow-up coronary angiography under dual anti-platelet therapy with clopidogrel (75 mg/day) and aspirin (100 mg/day) were randomized to either continue clopidogrel or switch to prasugrel (3.75 mg/day). At baseline, prior to randomization we determined the CYP2C19 genotype. At the baseline and 24 weeks after randomization, the P2Y12 reactivity unit (PRU) was measured using the VerifyNow™ P2Y12 assay. Endothelial function was evaluated by flow-mediated vasodilation (FMD) and reactive hyperemia peripheral arterial tonometry (RH-PAT), while and circulating CD34+/CD133+/CD45low progenitor cells were measured by flow cytometric analysis. Serum high-sensitivity C-reactive protein (hsCRP) level was also measured. The PRU was reduced significantly in the prasugrel group (P = 0.0008), especially in patients who were intermediate or poor metabolizers based on the CYP2C19 genotype (P < 0.0001). This reduction was not observed in the clopidogrel group. The number of CD34+/CD133+/CD45low cells increased in the clopidogrel group (P = 0.008), but not in the prasugrel group. The hsCRP, FMD and reactive hyperemia index measured by RH-PAT did not change in either group. Prasugrel is potentially better than clopidogrel for preventing thrombotic events, although clopidogrel may have an advantage over prasugrel in terms of preventing atherosclerotic events. Proper use of thienopyridine drugs based on the CYP2C19 genotype has promising clinical potential.
Collapse
Affiliation(s)
- Taiki Masuyama
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Ryutaro Waku
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Suguru Hirose
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Keijiro Kitahara
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Jin Naganuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroko Yazawa
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Shichiro Abe
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
32
|
Ionova Y, Ashenhurst J, Zhan J, Nhan H, Kosinski C, Tamraz B, Chubb A. CYP2C19 Allele Frequencies in Over 2.2 Million Direct-to-Consumer Genetics Research Participants and the Potential Implication for Prescriptions in a Large Health System. Clin Transl Sci 2020; 13:1298-1306. [PMID: 32506666 PMCID: PMC7719394 DOI: 10.1111/cts.12830] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/08/2020] [Indexed: 01/03/2023] Open
Abstract
Understanding the prevalence of clinically relevant pharmacogenetic variants using large unselected populations is critical for gauging the potential clinical impact of widespread preemptive pharmacogenetic testing. To this end, we assessed the frequencies and ethnic distribution of the three most common CYP2C19 alleles (*2, *3, and *17) in 2.29 million direct-to-consumer genetics research participants (23andMe, Sunnyvale, CA). The overall frequencies of *2, *3, and *17 were 15.2%, 0.3%, and 20.4%, respectively, but varied by ethnicity. The most common variant diplotypes were *1/*17 at 26% and *1/*2 at 19.4%. The less common *2/*17, *17/*17, and *2/*2 genotypes occurred at 6.0%, 4.4%, and 2.5%, respectively. Overall, 58.3% of participants had at least one increased-function or no-function CYP2C19 allele. To better understand how this high frequency might impact a real patient population, we examined the prescription rates (Rx) of high-pharmacogenetic-risk medications metabolized by CYP2C19 using the University of California at San Francisco (UCSF) health system's anonymized database of over 1.25 million patients. Between 2012 and 2019, a total of 151,068 UCSF patients (15.8%) representing 5 self-reported ethnicities were prescribed one or more high-pharmacogenetic-risk CYP2C19 medications: proton pump inhibitors (145,243 Rx), three selective serotonin reuptake inhibitor antidepressants (54,463 Rx), clopidogrel (14,376 Rx), and voriconazole (2,303 Rx).
Collapse
Affiliation(s)
- Yelena Ionova
- School of Pharmacy, University of California, San Francisco, California, USA
| | | | | | - Hoang Nhan
- 23andMe, Inc., Sunnyvale, California, USA
| | | | - Bani Tamraz
- School of Pharmacy, University of California, San Francisco, California, USA
| | | |
Collapse
|
33
|
Vu NP, Nguyen HTT, Tran NTB, Nguyen TD, Huynh HTT, Nguyen XT, Nguyen DT, Nong HV, Nguyen HH. CYP2C19 genetic polymorphism in the Vietnamese population. Ann Hum Biol 2020; 46:491-497. [PMID: 31766957 DOI: 10.1080/03014460.2019.1687750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Genetic polymorphism of CYP2C19 has been shown to affect enzyme activity and thereby contribute to inter-individual variability in drug metabolism and response. The complete genetic variation of CYP2C19 in Vietnam still remains obscure even though data of common alleles in Vietnamese Kinh have been reported.Aim: To establish the extent of CYP2C19 polymorphism in Vietnamese.Subjects and methods: The promoter and all nine exons of CYP2C19 in 100 healthy unrelated Vietnamese Kinh subjects were sequenced. Additionally, the CYP2C19 variants, *2, *3 and *17 were analysed by RFLP-PCR in 275 subjects of four minor ethnic groups in Vietnam (Tay, Muong, H'Mong and Nung).Results: In 100 Kinh subjects, the percentages of CYP2C19*1, CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles were 76%, 20.5%, 2.5% and 1%, respectively. Three novel variants in introns 2, 5 and 8 had no impact on mRNA splicing according to the Human Splicing Finder. The prevalence of CYP2C19*17 in Vietnamese Kinh was significantly lower compared with figures found in Western Asia and Europe, while CYP2C19*2 frequency was statistically higher than that in Western Asia and several countries in Europe. The frequency of CYP2C19*2 in Kinh was significantly lower than in the other four ethnic minorities.Conclusion: These results provide information on CYP2C19 polymorphism in the Vietnamese population, which could be useful for optimising drug therapies and precision medicine studies.
Collapse
Affiliation(s)
- Nhung Phuong Vu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Hoa Thi Thanh Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Ngoc Thi Bich Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Ton Dang Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Hue Thi Thu Huynh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Xuan Thi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Duong Thuy Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Hai Van Nong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Ha Hai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| |
Collapse
|
34
|
Routine CYP2C19 Genotyping to Adjust Thienopyridine Treatment After Primary PCI for STEMI. JACC Cardiovasc Interv 2020; 13:621-630. [DOI: 10.1016/j.jcin.2020.01.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/18/2022]
|
35
|
Micarelli A, Cormano A, Caccamo D, Alessandrini M. Olfactory-Related Quality of Life in Multiple Chemical Sensitivity: A Genetic-Acquired Factors Model. Int J Mol Sci 2019; 21:ijms21010156. [PMID: 31881664 PMCID: PMC6981591 DOI: 10.3390/ijms21010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Genetic polymorphisms as well as environmental exposures to chemical compounds, iatrogenic, psychological, and physical trauma may play a pathophysiological role in multiple chemical sensitivity (MCS) olfactory complaints, given that xenobiotic metabolism is influenced by sequence variations in genes of metabolizing enzymes. Thus, the aim of the present study was to depict-by means of multiple regression analysis-how different genetic conditions, grouped according to their function as well as clinical background and environmental exposure may interfere with those olfactory complaints referred by MCS patients. Therefore, MCS patients after gene polymorphism sequencing, the olfactory-related quality of life score-calculated by means of the Questionnaire of Olfactory Disorder in forty-six MCS patients-have been found to significantly rely on the phase I and II enzymes score and exposure to previous compounds and surgical treatments. The present work-implementing for the first time a genetic-acquired factors model on a regression analysis-further reinforces those theories, positing MCS as a complex, multifactorial, disease in which the genetic risk related to phase I and II enzymes involved in xenobiotic detoxification, olfactory, and neurodegenerative diseases play a necessary, but probably not sufficient role, along the pathophysiological route of the disease.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Institute of Mountain Emergency Medicine, EURAC Research, I-39100 Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), 02032 Rome, Italy
- Correspondence:
| | | | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, 98124 Messina, Italy;
| | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
36
|
Zhou L, Sharma P, Yeo KR, Higashimori M, Xu H, Al-Huniti N, Zhou D. Assessing pharmacokinetic differences in Caucasian and East Asian (Japanese, Chinese and Korean) populations driven by CYP2C19 polymorphism using physiologically-based pharmacokinetic modelling. Eur J Pharm Sci 2019; 139:105061. [DOI: 10.1016/j.ejps.2019.105061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
|
37
|
Challenges to assess substrate-dependent allelic effects in CYP450 enzymes and the potential clinical implications. THE PHARMACOGENOMICS JOURNAL 2019; 19:501-515. [DOI: 10.1038/s41397-019-0105-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
|
38
|
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35:e3109. [PMID: 30515958 PMCID: PMC6590177 DOI: 10.1002/dmrr.3109] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient's characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Francesco Andreozzi
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Giorgio Sesti
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| |
Collapse
|
39
|
Huang Y, Liu C, Liu S, Liu Z, Li S, Wang Y. In vitro metabolism of magnolol and honokiol in rat liver microsomes and their interactions with seven cytochrome P substrates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:229-238. [PMID: 30343517 DOI: 10.1002/rcm.8314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Magnolol and honokiol are the main active components of Magnolia officinalis Rehd. et Wils. The study of their interactions with liver microsomes is very important for the clinical safety of M. officinalis Rehd. et Wils. METHODS The main metabolites of magnolol and honokiol in rat liver microsomes were investigated using ultrahigh-performance liquid chromatography/mass spectrometry and their possible structures were identified. In addition, cytochrome P450 (CYP450) isoenzymes of the major rat metabolites of magnolol and honokiol were identified using a specific inhibitor. RESULTS This study suggests that the CYP2E1 subtype is responsible for the oxidation of magnolol and honokiol terminal double bonds to epoxy metabolites. CYP3A4 appears to be the major subtype responsible for further hydrolytic metabolism, while CYP1A2 may promote decarboxylation of the metabolites. CYP2A6 may be the main subtype responsible for the hydrogenation of magnolol (p < 0.05). CONCLUSIONS This study demonstrated that different CYP450 enzyme isoforms showed different activities in the in vitro metabolism of magnolol and honokiol in rat liver microsomes. It has certain practical applications in that we should pay attention to drug-drug interactions in clinical medications and also to drug-enzyme interactions.
Collapse
Affiliation(s)
- Yu Huang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Shu Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Chaoyang District, Changchun, 130022, China
| | - Zhiqiang Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Chaoyang District, Changchun, 130022, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Yueqi Wang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| |
Collapse
|
40
|
Qiao W, Martis S, Mendiratta G, Shi L, Botton MR, Yang Y, Gaedigk A, Vijzelaar R, Edelmann L, Kornreich R, Desnick RJ, Scott SA. Integrated CYP2D6 interrogation for multiethnic copy number and tandem allele detection. Pharmacogenomics 2018; 20:9-20. [PMID: 30730286 DOI: 10.2217/pgs-2018-0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To comprehensively interrogate CYP2D6 by integrating genotyping, copy number analysis and novel strategies to identify CYP2D6*36 and characterize CYP2D6 duplications. METHODS Genotyping of 16 CYP2D6 alleles, multiplex ligation-dependent probe amplification (MLPA) and CYP2D6*36 and duplication allele-specific genotyping were performed on 427 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. RESULTS A novel PCR strategy determined that almost half of all CYP2D6*10 (100C>T) alleles are actually *36 (isolated or in tandem with *10) and all identified duplication alleles were characterized. Integrated results from all testing platforms enabled the refinement of genotype frequencies across all studied populations. CONCLUSION The polymorphic CYP2D6 gene requires comprehensive interrogation to characterize allelic variation across ethnicities, which was enabled in this study by integrating multiplexed genotyping, MLPA copy number analysis, novel PCR strategies and duplication allele-specific genotyping.
Collapse
Affiliation(s)
- Wanqiong Qiao
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Suparna Martis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geetu Mendiratta
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Lisong Shi
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Yao Yang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Raymon Vijzelaar
- MRC-Holland, Willem Schoutenstraat 6, Amsterdam, The Netherlands
| | - Lisa Edelmann
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Ruth Kornreich
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| |
Collapse
|
41
|
Claudio-Campos KI, González-Santiago P, Renta JY, Rodríguez J, Carrasquillo K, Gaedigk A, Roche A, Ducongé J. CYP2C9*61, a rare missense variant identified in a Puerto Rican patient with low warfarin dose requirements. Pharmacogenomics 2018; 20:3-8. [PMID: 30518301 DOI: 10.2217/pgs-2018-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Warfarin continues to be the mainstay therapy for preventing thrombus formation. Although pharmacogenetic algorithms have shown higher predictability of the optimal warfarin dose and lower occurrence of bleeding episodes, they often do not include ethno-specific genetic variants relevant to non-Europeans. This case report describes a rare missense variant at exon 9 of CYP2C9 (rs202201137; c.1370A>G transition; p.Asn457Ser) found in a Puerto Rican patient with low warfarin dose requirements (3 mg/day). The haplotype characterized by two amino acid changes, Asn457Ser and Arg144Cys (rs1799853; c.430C>T), has been designated CYP2C9*61 by the Pharmacogene Variation Consortium. According to prediction scores assessed with the Combined Annotation Dependent Depletion tool, CYP2C9*61 (p.Asn457Ser) was classified as nondeleterious, therefore its impact on CYP2C9 enzymatic activity cannot be postulated.
Collapse
Affiliation(s)
- Karla I Claudio-Campos
- Department of Pharmacotherapy and Translational Research, University of Florida, College of Pharmacy, Gainesville, FL 36611, USA
| | - Pablo González-Santiago
- Department of Pharmacology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, Puerto Rico
| | - Jessica Y Renta
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, Puerto Rico
| | - Jovaniel Rodríguez
- Department of Chemistry, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, Puerto Rico
| | - Kelvin Carrasquillo
- Research Centers for Minorities Institutions (RCMI) - Integrated Informatics Services University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, Puerto Rico
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Abiel Roche
- Research Centers for Minorities Institutions (RCMI) - Integrated Informatics Services University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, Puerto Rico
| | - Jorge Ducongé
- Department of Pharmaceutical Sciences, School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, Puerto Rico
| |
Collapse
|
42
|
Cicali EJ, Blake K, Gong Y, Mougey EB, Al-Atrash H, Chambers N, Denham J, Evans J, George DE, Gomez R, Palomo P, Taufiq S, Johnson JA, Lima JJ, Franciosi JP. Novel Implementation of Genotype-Guided Proton Pump Inhibitor Medication Therapy in Children: A Pilot, Randomized, Multisite Pragmatic Trial. Clin Transl Sci 2018; 12:172-179. [PMID: 30341969 PMCID: PMC6440564 DOI: 10.1111/cts.12589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
The efficacy of proton pump inhibitor (PPI) medications is highly dependent on plasma concentrations, which varies considerably due to cytochrome P450 (CYP2C19) genetic variation. We conducted a pragmatic, pilot study of CYP2C19 genotype‐guided pediatric dosing of PPI medications. Children aged 5–17 years old with gastric‐acid‐related conditions were randomized to receive either conventional dosing of a PPI or genotype‐guided dosing for a total of 12 weeks. Sixty children (30 in each arm) were enrolled and had comparable baseline characteristics. The mean daily omeprazole equivalent dose prescribed to participants across metabolizer phenotype groups was significantly different in the genotype‐guided dosing arm (P < 0.001), but not in the conventional dosing arm. Prescribers waited for the genotype result before prescribing the PPI medication for 90% of the participants in the genotype‐guided dosing arm. The number of participants who reported an infection was marginally lower in genotype‐guided dosing vs. conventional dosing (20% vs. 44%; P = 0.07). Sinonasal symptoms were higher in the conventional dosing arm as compared with genotype‐guided dosing arm: (2.6 (2.0, 3.4) vs. 1.8 (1.0, 2.3), P = 0.031). CYP2C19 genotype‐guided PPI therapy is feasible in a clinical pediatric setting, well accepted by providers, resulted in differential PPI dosing, and may reduce PPI‐associated infections. A future large scale randomized clinical trial of CYP2C19 genotype‐guided pediatric dosing of PPI medications in children is warranted.
Collapse
Affiliation(s)
| | - Kathryn Blake
- Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | - Yan Gong
- University of Florida, Gainesville, Florida, USA
| | - Edward B Mougey
- Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | - Hadeel Al-Atrash
- Nemours Children's Hospital, Orlando, Florida, USA.,University of Central Florida College of Medicine, Orlando, Florida, USA
| | | | - Jolanda Denham
- Nemours Children's Hospital, Orlando, Florida, USA.,University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Jonathan Evans
- Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | - Donald E George
- Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | - Roberto Gomez
- Nemours Children's Hospital, Orlando, Florida, USA.,University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Pablo Palomo
- Nemours Children's Hospital, Orlando, Florida, USA.,University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Salik Taufiq
- Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | | | - John J Lima
- Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | - James P Franciosi
- Nemours Children's Hospital, Orlando, Florida, USA.,University of Central Florida College of Medicine, Orlando, Florida, USA
| |
Collapse
|
43
|
An analysis of allele, genotype and phenotype frequencies, actionable pharmacogenomic (PGx) variants and phenoconversion in 5408 Australian patients genotyped for CYP2D6, CYP2C19, CYP2C9 and VKORC1 genes. J Neural Transm (Vienna) 2018; 126:5-18. [DOI: 10.1007/s00702-018-1922-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022]
|
44
|
Tricyclic Antidepressant-Induced Anticholinergic Delirium in a Young Healthy Male Individual. DRUG SAFETY - CASE REPORTS 2018; 5:1. [PMID: 29294203 PMCID: PMC5750324 DOI: 10.1007/s40800-017-0069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tricyclic antidepressants, while older, still have their place in the treatment of depression today. They are efficacious but less selective and thus have the potential of eliciting many side effects. Anticholinergic delirium is a potential complication when using a tricyclic antidepressant or other anticholinergic agent. Following the Naranjo algorithm, this case report describes a probable amitriptyline-induced delirium in a previously healthy, 36-year-old Caucasian male individual after he promptly resumed his nightly 200-mg amitriptyline dose, following abrupt discontinuation of the medication 1 week earlier. This case emphasizes the importance of drug titration/tapering and therapeutic drug monitoring of patients taking tricyclic antidepressants.
Collapse
|
45
|
Shah RR, Gaedigk A. Precision medicine: does ethnicity information complement genotype-based prescribing decisions? Ther Adv Drug Saf 2018; 9:45-62. [PMID: 29318005 PMCID: PMC5753996 DOI: 10.1177/2042098617743393] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Inter-ethnic differences in drug response are all too well known. These are underpinned by a number of factors, including pharmacogenetic differences across various ethnic populations. Precision medicine relies on genotype-based prescribing decisions with the aim of maximizing efficacy and mitigating the risks. When there is no access to genotyping tests, ethnicity is frequently regarded as a proxy of the patient's probable genotype on the basis of overall population-based frequency of genetic variations in the ethnic group the patient belongs to, with some variations being ethnicity-specific. However, ever-increasing transcontinental migration of populations and the resulting admixing of populations have undermined the utility of self-identified ethnicity in predicting the genetic ancestry, and therefore the genotype, of the patient. An example of the relevance of genetic ancestry of a patient is the inadequate performance of European-derived pharmacogenetic dosing algorithms of warfarin in African Americans, Brazilians and Caribbean Hispanics. Consequently, genotyping a patient potentially requires testing for all known clinically actionable variants that the patient may harbour, and new variants that are likely to be identified using state-of the art next-generation sequencing-based methods. Furthermore, self-identified ethnicity is associated with a number of ethnicity-related attributes and non-genetic factors that potentially influence the risk of phenoconversion (genotype-phenotype discordance), which may adversely impact the success of genotype-based prescribing decisions. Therefore, while genotype-based prescribing decisions are important in implementing precision medicine, ethnicity should not be disregarded.
Collapse
Affiliation(s)
- Rashmi R. Shah
- Pharmaceutical Consultant, 8 Birchdale, Gerrards Cross, Buckinghamshire, SL9 7JA, UK
| | - Andrea Gaedigk
- Director, Pharmacogenetics Core Laboratory, Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy-Kansas City, Kansas City, MO and School of Medicine, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
46
|
Scott SA, Owusu Obeng A, Botton MR, Yang Y, Scott ER, Ellis SB, Wallsten R, Kaszemacher T, Zhou X, Chen R, Nicoletti P, Naik H, Kenny EE, Vega A, Waite E, Diaz GA, Dudley J, Halperin JL, Edelmann L, Kasarskis A, Hulot JS, Peter I, Bottinger EP, Hirschhorn K, Sklar P, Cho JH, Desnick RJ, Schadt EE. Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai. Pharmacogenomics 2017; 18:1381-1386. [PMID: 28982267 DOI: 10.2217/pgs-2017-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.
Collapse
Affiliation(s)
- Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Aniwaa Owusu Obeng
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Pharmacy, the Mount Sinai Medical Center, NY 10029, USA
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Yao Yang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Erick R Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Stephen B Ellis
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | | | - Tom Kaszemacher
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Xiang Zhou
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Rong Chen
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Paola Nicoletti
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Hetanshi Naik
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Eimear E Kenny
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Aida Vega
- Mount Sinai Faculty Practice Associates Primary Care Program, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Eva Waite
- Mount Sinai Faculty Practice Associates Primary Care Program, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - George A Diaz
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Joel Dudley
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jonathan L Halperin
- The Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Lisa Edelmann
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Andrew Kasarskis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jean-Sébastien Hulot
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, UMRS_1166 ICAN, Institute of Cardiometabolism & Nutrition, AP-HP, Pitié-Salpêtrière Hospital, Institute of Cardiology, Paris, France
| | - Inga Peter
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Berlin Institute of Health, Berlin, Germany
| | - Kurt Hirschhorn
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Pamela Sklar
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Judy H Cho
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, NY 10029 USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Eric E Schadt
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA.,Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| |
Collapse
|
47
|
Afilal D, Basselam MA, Brakez Z, Chouham S, Brehm A, Izaabel EH. Genetic Polymorphism of Drug-Metabolizing Enzymes CYP2C9 and CYP2C19 in Moroccan Population. Genet Test Mol Biomarkers 2017; 21:298-304. [PMID: 28282224 DOI: 10.1089/gtmb.2016.0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Driss Afilal
- Cellular Biology and Molecular Genetics Laboratory, Faculty of Sciences, University Ibn-Zohr, Agadir, Morocco
| | - Mohamed Amine Basselam
- Cellular Biology and Molecular Genetics Laboratory, Faculty of Sciences, University Ibn-Zohr, Agadir, Morocco
| | - Zahra Brakez
- Cellular Biology and Molecular Genetics Laboratory, Faculty of Sciences, University Ibn-Zohr, Agadir, Morocco
| | - Said Chouham
- Cellular Biology and Molecular Genetics Laboratory, Faculty of Sciences, University Ibn-Zohr, Agadir, Morocco
| | - António Brehm
- Human Genetics Laboratory, Life Sciences Faculty, University of Madeira, Funchal, Portugal
| | - El Hassan Izaabel
- Cellular Biology and Molecular Genetics Laboratory, Faculty of Sciences, University Ibn-Zohr, Agadir, Morocco
| |
Collapse
|
48
|
Arwood MJ, Deng J, Drozda K, Pugach O, Nutescu EA, Schmidt S, Duarte JD, Cavallari LH. Anticoagulation endpoints with clinical implementation of warfarin pharmacogenetic dosing in a real-world setting: A proposal for a new pharmacogenetic dosing approach. Clin Pharmacol Ther 2016; 101:675-683. [PMID: 28032893 DOI: 10.1002/cpt.558] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
Abstract
Achieving therapeutic anticoagulation efficiently with warfarin is important to reduce thrombotic and bleeding risks and is influenced by genotype. Utilizing data from a diverse population of 257 patients who received VKORC1 and CYP2C9 genotype-guided warfarin dosing, we aimed to examine genotype-associated differences in anticoagulation endpoints and derive a novel pharmacogenetic nomogram to more optimally dose warfarin. We observed significant differences across patients with 0, 1, or ≥2 reduced-function VKORC1 or CYP2C9 alleles, respectively, in time to achieve therapeutic international normalized ratio (INR) (7.8 ± 5.8, 7.2 ± 4.7, and 5.4 ± 4.6 days, P = 0.0004) and mean percentage of time in therapeutic range in the first 28 days (22.2, 27.8, and 32.2%, P = 0.0127) with use of existing pharmacogenetic algorithms. These data suggest that more aggressive dosing is necessary for patients with 0 to 1 VKORC1/CYP2C9 variants to more efficiently achieve therapeutic anticoagulation. Herein, we provide a novel kinetic/pharmacodynamic-derived dosing nomogram optimized for a heterogeneous patient population.
Collapse
Affiliation(s)
- M J Arwood
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA.,Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
| | - J Deng
- Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida, USA
| | - K Drozda
- Genomics and Targeted Therapy, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - O Pugach
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - E A Nutescu
- Personalized Medicine Program, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, Illinois, USA.,Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - S Schmidt
- Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida, USA
| | - J D Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA.,Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
| | - L H Cavallari
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA.,Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
49
|
Ramos M, Berrogain C, Concha J, Lomba L, García CB, Ribate MP. Pharmacogenetic studies: a tool to improve antidepressant therapy. Drug Metab Pers Ther 2016; 31:197-204. [PMID: 27889704 DOI: 10.1515/dmpt-2016-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The World Health Organization (WHO) predicts that major depressive disorder (MDD) will be the second leading cause of death and disability by 2020. Nowadays, approximately 60-70% of patients with this disorder have shown the lack of effectiveness and tolerability of the therapy with antidepressants. The US Food and Drug Administration (FDA) and the European Medicine Agency (EMA) are including pharmacogenetic information in the labeling of several antidepressants. The presence of this information represents the relevance of genetic polymorphisms in drug response. These pharmacogenetic studies have been based on the knowledge of genes involved in pharmacokinetic (CYP2D6, CYP2C19 and ABCB1) and pharmacodynamic (SLC6A4, HTR2A, BDNF, GNB3 and FKBP5) processes of antidepressant medications. The knowledge of the genotype of patients with MDD is an important tool for personalized therapy that can improve their clinical response to treatment. In this review, we highlight the most relevant genes involved in the metabolism of antidepressants (ADs) or the genes related to the presence of adverse reactions.
Collapse
|
50
|
Saldaña-Cruz AM, León-Moreno LC, Sánchez-Corona J, Santiago DAMD, Mendoza-Carrera F, Castro-Martínez XH, García-Zapién AG, Morán-Moguel MC, Flores-Martínez SE. CYP2C9 and CYP2C19 Allele and Haplotype Distributions in Four Mestizo Populations from Western Mexico: An Interethnic Comparative Study. Genet Test Mol Biomarkers 2016; 20:702-709. [DOI: 10.1089/gtmb.2016.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ana Miriam Saldaña-Cruz
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Lilia Carolina León-Moreno
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - José Sánchez-Corona
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | | | - Francisco Mendoza-Carrera
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Xochitl Helga Castro-Martínez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Alejandra Guadalupe García-Zapién
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - María Cristina Morán-Moguel
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Silvia Esperanza Flores-Martínez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|