1
|
Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1711. [PMID: 33291816 PMCID: PMC7762096 DOI: 10.3390/plants9121711] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | | | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (B.H.-N.); (R.M.-G.)
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (B.H.-N.); (R.M.-G.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
2
|
Bordash MG, Pagliano E, LeBlanc KL, Kumkrong P, Wallschläger D, Mester Z. Determination of selenocyanate, selenate, and selenite in mining wastewater by GC-MS using sequential derivatization and extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140877. [PMID: 32726700 DOI: 10.1016/j.scitotenv.2020.140877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Selenium speciation analysis is usually carried out using complex hyphenated analytical systems such as LC-ICP-MS. Here we present a novel selenium speciation approach based on a sequential derivatization and extraction combined with gas chromatography mass spectrometry for the simultaneous determination of selenite, selenate, and selenocyanate in aqueous mine wastewater samples. Selenocyanate was derivatized with triethyloxonium tetrafluoroborate to ethylselenocyanate, which was extracted into chloroform, following which the sample was split into two aliquots. One aliquot was acidified and 3,5-bis(trifluoromethyl)-o-phenylenediamine was used for the novel derivatization of selenite to 4,6-bis(trifluoromethyl)-2,1,3-benzoselenadiazole, for the determination of selenite. For the second aliquot, concentrated hydrochloric acid was added along with 4-nitro-o-phenylenediamine to simultaneously reduce selenate to selenite and derivatize the combined "selenite + selenate" fraction to 5-nitro-2,1,3-benzoselenadiazole. The benzoselenadiazoles were extracted with chloroform and all extracts were combined for GC-MS analysis. Low ng g-1 detection limits were reported for all three species. The method is unhindered by concentrations of chloride and sulphate up to 3%, as well as nitrate concentrations up to 3% for selenocyanate and selenite analysis, with minor losses in sensitivity for selenate up to 100 ppm nitrate, making the method particularly suitable for aqueous mine waste characterization. Quantitative trace selenium speciation was achieved using cost-effective materials and apparatus on a simple-to-operate benchtop instrument. The novel methodology was tested on gold mine wastewater samples; comparing to total selenium, a 63-149% recovery as the sum of species was observed. Additionally, this novel speciation approach was compared to LC-ICP-MS based selenium speciation and a reasonable agreement was found in the species distribution.
Collapse
Affiliation(s)
- Mitchell G Bordash
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada; Master of Instrumental Chemical Analysis Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Enea Pagliano
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| | - Kelly L LeBlanc
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada.
| | - Paramee Kumkrong
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| | - Dirk Wallschläger
- Water Quality Centre, School of the Environment, Department of Chemistry, Trent University, Peterborough, Ontario, Canada
| | - Zoltán Mester
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Irfan M, Rehman R, Razali MR, Shafiq-Ur-Rehman, Ateeq-Ur-Rehman, Iqbal MA. Organotellurium compounds: an overview of synthetic methodologies. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
In wake of emerging applications of organotellurium compounds in biological and material science avenues, the current review describes their key synthetic methodologies while focusing the synthesis of organotellurium compounds through five ligand-to-metal linkages including carbon; carbon-oxygen; carbon-nitrogen; carbon-metal; carbon-sulfur to tellurium. In all of these linkages whether tellurium links with ligands through a complicated or simple pathways, it is often governed through electrophilic substitution reactions. The present study encompasses these major synthetic routes so as to acquire comprehensive understanding of synthetic organotellurium compounds.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Rabia Rehman
- Institute of Chemistry , University of the Punjab , Lahore - 54590 , Pakistan
| | - Mohd. R. Razali
- School of Chemical Sciences , Universiti Sains Malaysia , 11800-USM , Penang , Malaysia
| | - Shafiq-Ur-Rehman
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Ateeq-Ur-Rehman
- Department of Physics , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| |
Collapse
|
4
|
Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. WATER 2020. [DOI: 10.3390/w12072071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discharge of aquaculture wastewater and the excessive selenium in aquaculture effluent caused by selenium addition to aquatic feed are posing a serious risk for the marine environment. In this study, batch tests were carried out to investigate the feasibility of utilizing algal–bacterial biofilm for the treatment of selenium-rich aquaculture wastewater. The effects of four different types of commercial biofilm carriers on the attached growth of biofilms and the contaminant removal capacity were examined. The braided cotton biofilm carrier had the best performance on biofilm growth, while in an exponential growth period the dry weight density of the biofilm was above 2.0 g L−1. By utilizing the braided cotton carrier with a hydraulic retention time (HRT) of 6 days, the removal rate of N and P from the raw aquaculture wastewater was 88.5 ± 6.2% and 99.8 ± 0.2%, respectively. After that, the effects of different initial wastewater load ratios (IWLR) and HRT on the effluent quality of the treatment process were studied. The decrease in IWLR and the extension of HRT could improve the treatment performance. The effluent N, P and Se concentrations in the group with 50% IWLR and 6-day HRT were 0.75 ± 0.10 mg L−1, 0.015 ± 0.02 mg L−1, 35.2 ± 3.2 μg L−1, respectively, indicating an effective removal of the main contaminants. The algal–bacterial biofilm harvested from the batch test was rich in N, P and Se, where the Se content was 21.8 ± 3.4 mg kg−1, which has the potential to be used as an Se-rich biofertilizer.
Collapse
|
5
|
Etteieb S, Magdouli S, Zolfaghari M, Brar S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134339. [PMID: 31783461 DOI: 10.1016/j.scitotenv.2019.134339] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 05/07/2023]
Abstract
Selenium is an indispensable trace element for humans, however, its release at high concentrations becomes a major concern for terrestrial and aquatic ecosystems due to its bioaccumulation potential. Mining and metal-mineral processing are among the main sources of selenium released into the environment. Excessive levels of selenium may induce toxicity in human as selenosis, in grazing animals as alkali disease and in aquatic organisms as larval and developmental deformities and mortality. Due to the introduction of new policies for Se monitoring in the mining industry mainly setting the guidelines for selenium level in freshwaters as recommended by the Canadian Council of Ministers of Environment and Environment and climate change Canada, an improved understanding of Se occurrence, mobility, bioavailability and treatment technologies for efficient removal is timely and required. In this context, this review updated the understanding of mining-related selenium occurrence in surface water, soil and plant, with a focus on its mobility and bioavailability. Selenium uptake, translocation, accumulation, and metabolism in plants are further presented. Selenium monitoring and treatment is the key to adopt the corrective measures to mitigate highly contaminated effluent and to minimize the associated adverse health effects. Future research directions and recommendations for selenium analysis and treatment processes are also discussed.
Collapse
Affiliation(s)
- Selma Etteieb
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, J9X0E1, Canada; Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec G1K 9A9, Qc, Canada
| | - Sara Magdouli
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, J9X0E1, Canada.
| | - Mehdi Zolfaghari
- Centre technologique des résidus industriels en Abitibi Témiscamingue, 433 boulevard du collège, J9X0E1, Canada
| | - SatinderKaur Brar
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec G1K 9A9, Qc, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto M3J 1P3, Ontario, Canada
| |
Collapse
|
6
|
Markwart B, Liber K, Xie Y, Raes K, Hecker M, Janz D, Doig LE. Selenium oxyanion bioconcentration in natural freshwater periphyton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:693-704. [PMID: 31146156 DOI: 10.1016/j.ecoenv.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) enrichment has been demonstrated to vary by several orders of magnitude among species of planktonic algae. This is a substantial source of uncertainty when modelling Se biodynamics in aquatic systems. In addition, Se bioconcentration data are largely lacking for periphytic species of algae, and for multi-species periphyton biofilms, adding to the challenge of modelling Se transfer in periphyton-based food webs. To better predict Se dynamics in periphyton dominated, freshwater ecosystems, the goal of this study was to assess the relative influence of periphyton community composition on the uptake of waterborne Se oxyanions. Naturally grown freshwater periphyton communities, sampled from five different water bodies, were exposed to environmentally relevant concentrations of selenite [Se(IV)] or selenate [Se(VI)] (nominal concentrations of 5 and 25 μg Se L-1) under similar, controlled laboratory conditions for a period of 8 days. Unique periphyton assemblages were derived from the five different field sites, as confirmed by light microscopy and targeted DNA sequencing of the plastid 23S rRNA gene in algae. Selenium accumulation demonstrated a maximum of 23.6-fold difference for Se(IV) enrichment and 2.1-fold difference for Se(VI) enrichment across the periphyton/biofilm assemblages tested. The assemblage from one field site demonstrated both high accumulation of Se(IV) and iron, and was subjected to additional experimentation to elucidate the mechanism(s) of Se accumulation. Selenite accumulation (at nominal concentrations of 5 and 25 μg Se L-1 and mean pH of 7.5 across all treatment replicates) was assessed in both unaltered and heat-killed periphyton, and in periphyton from the same site grown without light to exclude phototrophic organisms. Following an exposure length of 8 days, all periphyton treatments showed similar levels of Se accumulation, indicating that much of the apparent uptake of Se(IV) was due to non-biological processes (i.e., surface adsorption). The results of this study will help reduce uncertainty in the prediction of Se dynamics and food-chain transfer in freshwater environments. Further exploration of the ecological consequences of extracellular adsorption of Se(IV) to periphyton, rather than intracellular absorption, is recommended to further refine predictions related to Se biodynamics in freshwater food webs.
Collapse
Affiliation(s)
- Blue Markwart
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada.
| | - Yuwei Xie
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Katherine Raes
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - David Janz
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Lorne E Doig
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| |
Collapse
|
7
|
Donner MW, Siddique T. A rapid and sensitive IC-ICP-MS method for determining selenium speciation in natural waters. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selenium (Se) is an element monitored by water quality agencies worldwide. The challenge of assessing its presence in aquatic systems is its low concentrations (parts per trillion) and the need for determining its chemical speciation. A method was developed using an ion chromatograph (IC) paired with a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) equipped with a hydrogen reaction cell to provide analysts with a rapid and sensitive method to measure Se speciation with suitable accuracy and precision. The Se species selenite (SeIV) and selenate (SeVI) were separated within a 5 min span using dilute nitric acid as a mobile phase in a step-wise gradient (50–400 mmol L−1) and quantified using 80Se isotope that yielded low limits of detection (<10 ng L−1). Spectral interference from plasma generated diatomic argon ions (40Ar2+; m/z = 80) on 80Se was eliminated by hydrogen gas (H2) in the reaction cell. Polyatomic 79Br1H+ (m/z = 80) did not interfere with 80Se for quantification of common aquatic Se species (SeVI and SeIV) due to different column retention times. Two organic species (methylselenocysteine and selenomethionine) commonly found in aquatic and terrestrial plant tissues were also tested to rule out possible chromatographic interference and explore the potential application to biological samples. Urban rainwater and Canadian river water samples were analyzed for Se species to demonstrate the applicability of the method. Owing to its ability to rapidly determine Se species in water samples at environmentally relevant concentrations, the method may be useful for monitoring agencies to routinely measure Se species in freshwater aquatic systems.
Collapse
Affiliation(s)
- Mark W. Donner
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
8
|
Ponton DE, Fortin C, Hare L. Organic selenium, selenate, and selenite accumulation by lake plankton and the alga Chlamydomonas reinhardtii at different pH and sulfate concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2112-2122. [PMID: 29672902 DOI: 10.1002/etc.4158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) concentrations measured in lake planktonic food chains (microplankton <64 μm, copepods, and Chaoborus larvae) were strongly correlated with the concentrations of dissolved organic Se. These correlations were strengthened slightly by adding the concentrations of dissolved selenate to those of organic Se. To better understand the role of Se species and the influence of water chemistry on Se uptake, we exposed the green alga Chlamydomonas reinhardtii to selenite, selenate, or selenomethionine at various H+ ion and sulfate concentrations under controlled laboratory conditions. At low sulfate concentrations, inorganic Se species (selenate >> selenite) were more readily accumulated by this alga than was selenomethionine. However, at higher sulfate concentrations the uptake of selenite was higher than that of selenate, whereas the uptake of selenomethionine remained unchanged. Although the pH of the exposure water did not influence the uptake of selenate by this alga, the accumulation of selenomethionine and selenite increased with pH because of their relative pH-related speciation. The Se concentrations that we measured in C. reinhardtii exposed to selenomethionine were 30 times lower than those that we measured in field-collected microplankton exposed in the same laboratory conditions. This difference is explained by the taxa present in the microplankton samples. Using the present laboratory measurements of Se uptake in microplankton and of natural Se concentrations in lake water allowed us to model Se concentrations in a lake pelagic food chain. Environ Toxicol Chem 2018;37:2112-2122. © 2018 SETAC.
Collapse
Affiliation(s)
- Dominic E Ponton
- Institut National de la Recherche Scientifique-Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Quebec City, Quebec, Canada
| | - Claude Fortin
- Institut National de la Recherche Scientifique-Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Quebec City, Quebec, Canada
| | - Landis Hare
- Institut National de la Recherche Scientifique-Centre Eau, Terre et Environnement (INRS-ETE), Université du Québec, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Nelson JR, Schwartz TS, Gohlke JM. Influence of maternal age on the effects of seleno-l-methionine in the model organism Daphnia pulex under standard and heat stress conditions. Reprod Toxicol 2018; 75:1-9. [PMID: 29128604 PMCID: PMC5836502 DOI: 10.1016/j.reprotox.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/15/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Selenium deficiency and toxicity increase the risk of adverse developmental and reproductive outcomes; however, few multi-stressor studies have evaluated the influence of maternal age on organic selenium dose-response and additional stressors over the life course. While multi-stressor research in mammalian models is time-consuming and expensive, use of alternative models can efficiently produce screening data for prioritizing research in mammalian systems. As a well-known eco-toxicological model, Daphnia pulex, may offer advantages in screening for impacts of multi-stressor exposures. We evaluated the influence of maternal age on the effects of seleno-methionine (SeMet) for lifespan, reproduction, and heat-stress resistance in D. pulex. Our results show effects of SeMet-treatment and maternal age, where the highest SeMet-treatment had reduced lifespan and absence of reproduction, and where Daphnia from late life broods had increased resistance to heat-induced stress. Further analysis suggests an additional interactive effect between maternal age and SeMet treatment on time to first reproduction.
Collapse
Affiliation(s)
- Jordan R Nelson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham AL, 35294, United States.
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn AL, 36849, United States.
| | - Julia M Gohlke
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, United States.
| |
Collapse
|
10
|
Feldmann J, Bluemlein K, Krupp EM, Mueller M, Wood BA. Metallomics Study in Plants Exposed to Arsenic, Mercury, Selenium and Sulphur. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:67-100. [DOI: 10.1007/978-3-319-90143-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Zonaro E, Piacenza E, Presentato A, Monti F, Dell'Anna R, Lampis S, Vallini G. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microb Cell Fact 2017; 16:215. [PMID: 29183326 PMCID: PMC5704588 DOI: 10.1186/s12934-017-0826-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles—both inside and outside the cells—characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences. Results In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO32−) and tellurite (TeO32−) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO32− and 0.5 mM TeO32− to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO32− and TeO32− bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO32− bioreduction, while TeO32− bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent oxidoreductases. The organic coating surrounding biogenic Se- and TeNPs was also characterized through Fourier-transform infrared spectroscopy. This analysis revealed interesting differences among the NPs produced by Ochrobactrum sp. MPV1 and suggested a possible different role of phospholipids and proteins in both biosynthesis and stabilization of such chalcogen-NPs. Conclusions In conclusion, Ochrobactrum sp. MPV1 has demonstrated to be an ideal candidate for the bioconversion of toxic oxyanions such as selenite and tellurite to their respective elemental forms, producing intracellular Se- and TeNPs possibly exploitable in biomedical and industrial applications.![]()
Collapse
Affiliation(s)
- Emanuele Zonaro
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Elena Piacenza
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.,Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Alessandro Presentato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Francesca Monti
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Rossana Dell'Anna
- Micro Nano Facility, Fondazione Bruno Kessler, Via Sommarive 18, 38123, Povo (TN), Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
12
|
Janz DM, Liber K, Pickering IJ, Wiramanaden CIE, Weech SA, Gallego-Gallegos M, Driessnack MK, Franz ED, Goertzen MM, Phibbs J, Tse JJ, Himbeault KT, Robertson EL, Burnett-Seidel C, England K, Gent A. Integrative assessment of selenium speciation, biogeochemistry, and distribution in a northern coldwater ecosystem. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2014; 10:543-54. [PMID: 25044203 DOI: 10.1002/ieam.1560] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/30/2014] [Accepted: 07/11/2014] [Indexed: 05/22/2023]
Abstract
For the past decade, considerable research has been conducted at a series of small lakes receiving treated liquid effluent containing elevated selenium (Se) from the Key Lake uranium (U) milling operation in northern Saskatchewan, Canada. Several studies related to this site, including field collections of water, sediment, and biota (biofilm and/or periphyton, invertebrates, fish, and birds), semicontrolled mesocosm and in situ caging studies, and controlled laboratory experiments have recently been published. The aim of the present investigation was to compile the site-specific information obtained from this multidisciplinary research into an integrative perspective regarding the influence of Se speciation on biogeochemical cycling and food web transfer of Se in coldwater ecosystems. Within lakes, approximately 50% of sediment Se was in the form of elemental Se, although this ranged from 0% to 81% among samples. This spatial variation in elemental Se was positively correlated with finer particles (less sand) and percent total organic C content in sediments. Other Se species detected in sediments included selenosulfides, selenite, and inorganic metal selenides. In contrast, the major Se form in sediment-associated biofilm and/or periphyton was an organoselenium species modeled as selenomethionine (SeMet), illustrating the critical importance of this matrix in biotransformation of inorganic Se to organoselenium compounds and subsequent trophic transfer to benthic invertebrates at the base of the food web. Detritus displayed a Se speciation profile intermediate between sediment and biofilm, with both elemental Se and SeMet present. In benthic detritivore (chironomid) larvae and emergent adults, and in foraging and predatory fishes, SeMet was the dominant Se species. The proportion of total Se present as a SeMet-like species displayed a direct nonlinear relationship with increasing whole-body Se in invertebrates and fishes, plateauing at approximately 70% to 80% of total Se as a SeMet-like species. In fish collected from reference lakes, a selenocystine-like species was the major Se species detected. Similar Se speciation profiles were observed using 21-day mesocosm and in situ caging studies with native small-bodied fishes, illustrating the efficient bioaccumulation of Se and use of these semicontrolled approaches for future research. A simplified conceptual model illustrating changes in Se speciation through abiotic and biotic components of lakes was developed, which is likely applicable to a wide range of northern industrial sites receiving elevated Se loading into aquatic ecosystems.
Collapse
Affiliation(s)
- David M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rigby MC, Lemly AD, Gerads R. Fish toxicity testing with selenomethionine spiked feed--what's the real question being asked? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:511-517. [PMID: 24473081 DOI: 10.1039/c3em00612c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The US Environmental Protection Agency and several U.S. states and Canadian provinces are currently developing national water quality criteria for selenium that are based in part on toxicity tests performed by feeding freshwater fish a selenomethionine-spiked diet. Using only selenomethionine to examine the toxicity of selenium is based in part on the limitations of the analytical chemistry methods commonly used in the 1990s and 2000s to speciate selenium in freshwater biota. While these methods provided a good starting point, recent improvements in analytical chemistry methodology have demonstrated that selenium speciation in biota is far more complex than originally thought. Here, we review the recent literature that suggests that there are numerous additional selenium species present in freshwater food chains and that the toxicities of these other selenium species, both individually and in combination, have not been evaluated in freshwater fishes. Evidence from studies on birds and mammals suggests that the other selenium forms differ in their metabolic pathways and toxicity from selenomethionine. Therefore, we conclude that toxicity testing using selenomethionine-spiked feed is only partly addressing the question "what is the toxicity of selenium to freshwater fishes?" and that using the results of these experiments to derive freshwater quality criteria may lead to biased water quality criteria. We also discuss additional studies that are needed in order to derive a more ecologically relevant freshwater quality criterion for selenium.
Collapse
Affiliation(s)
- Mark C Rigby
- Parsons, 10235 South Jordan Gateway, Suite 300, South Jordan, Utah 84095, USA.
| | | | | |
Collapse
|
14
|
Ponton DE, Hare L. Relating selenium concentrations in a planktivore to selenium speciation in lakewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:254-260. [PMID: 23454587 DOI: 10.1016/j.envpol.2013.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 06/01/2023]
Abstract
We measured selenium (Se) speciation in the waters of 16 lakes located near two major metal smelters and compared it to Se concentrations in a potential biomonitor, the planktivorous insect Chaoborus. We used this sentinel because planktonic algae and crustaceans, which are lower in the trophic chain leading to Chaoborus, are more difficult to separate and identify to species, whereas many fish species are not obligate planktivores. Percentages of selenate and organo-Se were generally higher in acidic lakes, whereas those of selenite were usually greater in alkaline waters. Chaoborus Se concentrations varied widely among lakes and, with the exception of a single high-sulfate lake, were significantly and highly correlated with those of dissolved organo-Se plus selenate (Se(VI)). We suggest that Chaoborus larvae would be highly effective for monitoring the Se-exposure of planktonic food webs in lakes.
Collapse
Affiliation(s)
- Dominic E Ponton
- Institut national de recherche scientifique - Eau Terre Environnement, Université du Québec, 490 rue de Couronne, Quebec City, QC, Canada G1K 9A9
| | | |
Collapse
|
15
|
Vinceti M, Crespi CM, Bonvicini F, Malagoli C, Ferrante M, Marmiroli S, Stranges S. The need for a reassessment of the safe upper limit of selenium in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:633-42. [PMID: 23220755 DOI: 10.1016/j.scitotenv.2012.11.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 05/25/2023]
Abstract
Results of recent epidemiologic studies suggest the need to reassess the safe upper limit in drinking water of selenium, a metalloid with both toxicological and nutritional properties. Observational and experimental human studies on health effects of organic selenium compounds consumed through diet or supplements, and of inorganic selenium consumed through drinking water, have shown that human toxicity may occur at much lower levels than previously surmised. Evidence indicates that the chemical form of selenium strongly influences its toxicity, and that its biological activity may differ in different species, emphasizing the importance of the few human studies on health effects of the specific selenium compounds found in drinking water. Epidemiologic studies that investigated the effects of selenate, an inorganic selenium species commonly found in drinking water, together with evidence of toxicity of inorganic selenium at low levels in from in vitro and animal studies, indicate that health risks may occur at exposures below the current European Union and World Health Organization upper limit and guideline of 10 and 40 μg/l, respectively, and suggest reduction to 1 μg/l in order to adequately protect human health. Although few drinking waters are currently known to have selenium concentrations exceeding this level, the public health importance of this issue should not be overlooked, and further epidemiologic research is critically needed in this area.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Diagnostic and Clinical Medicine and of Public Health, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
LeBlanc KL, Smith MS, Wallschläger D. Production and release of selenocyanate by different green freshwater algae in environmental and laboratory samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5867-5875. [PMID: 22455319 DOI: 10.1021/es203904e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In a previous study, selenocyanate was tentatively identified as a biotransformation product when green algae were exposed to environmentally relevant concentrations of selenate. In this follow-up study, we confirm conclusively the presence of selenocyanate in Chlorella vulgaris culture medium by electrospray mass spectrometry, based on selenium's known isotopic pattern. We also demonstrate that the observed phenomenon extends to other green algae (Chlorella kesslerii and Scenedesmus obliquus) and at least one species of blue-green algae (Synechococcus leopoliensis). Further laboratory experiments show that selenocyanate production by algae is enhanced by addition of nitrate, which appears to serve as a source of cyanide produced in the algae. Ultimately, this biotransformation process was confirmed in field experiments where trace amounts of selenocyanate (0.215 ± 0.010 ppb) were observed in a eutrophic, selenium-impacted river with massive algal blooms, which consisted of filamentous green algae (Cladophora genus) and blue-green algae (Anabaena genus). Selenocyanate abundance was low despite elevated selenium concentrations, apparently due to suppression of selenate uptake by sulfate, and insufficient nitrogen concentrations. Finally, trace levels of several other unidentified selenium-containing compounds were observed in these river water samples; preliminary suggestions for their identities include thioselenate and small organic Se species.
Collapse
Affiliation(s)
- Kelly L LeBlanc
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada K9J 7B8.
| | | | | |
Collapse
|
17
|
Petrov PK, Charters JW, Wallschläger D. Identification and determination of selenosulfate and selenocyanate in flue gas desulfurization waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1716-1723. [PMID: 22206507 DOI: 10.1021/es202529w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, 13 selenium species in flue gas desulfurization (FGD) waters from coal-fired power plants were separated and quantified using anion-exchange chromatography coupled to inductively coupled plasma mass spectrometry. For the first time, we identified both selenosulfate (SeSO(3)(2-)) and selenocyanate (SeCN(-)) in such waters, using retention time matching and confirmation by electrospray mass spectrometry. Besides selenite and selenate, selenosulfate was the most frequently occurring selenium species. It occurred in most samples and constituted a major fraction (up to 63%) of the total selenium concentration in waters obtained from plants employing inhibited oxidation scrubbers. Selenocyanate occurred in about half of the tested samples, but was only a minor species (up to 6% of the total selenium concentration). Nine additional Se-containing compounds were found in FGD waters, but they remain unidentified at this point.
Collapse
Affiliation(s)
- Panayot K Petrov
- Environmental & Resource Sciences Program and Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | | | | |
Collapse
|