1
|
Mortara L, Mukhina T, Chaimovich H, Brezesinski G, van der Vegt NFA, Schneck E. Anion Competition at Positively Charged Surfactant Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6949-6961. [PMID: 38502024 DOI: 10.1021/acs.langmuir.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.
Collapse
Affiliation(s)
- Laura Mortara
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Tetiana Mukhina
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Hernan Chaimovich
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Gerald Brezesinski
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | | | - Emanuel Schneck
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| |
Collapse
|
2
|
Mukherjee D, Hasan MN, Ghosh R, Ghosh G, Bera A, Prasad SE, Hiwale A, Vemula PK, Das R, Pal SK. Decoding the Kinetic Pathways toward a Lipid/DNA Complex of Alkyl Alcohol Cationic Lipids Formed in a Microfluidic Channel. J Phys Chem B 2022; 126:588-600. [PMID: 35041417 DOI: 10.1021/acs.jpcb.1c07263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Complexes of cationic liposomes with DNA have emerged as promising nonviral vectors for delivering genetic information into cells for gene therapy. Kinetics of the liposome/DNA complex (lipoplex) formation on a millisecond time scale are studied by monitoring time evolution of fluorescence of 8-anilino-1-naphthalene sulfonic acid (ANS) and ethidium bromide (EtBr) in a continuous flow microfluidic channel coupled to a fluorescence microscope. The formation of lipoplexes between calf thymus DNA and liposomes based on two novel cationic lipids (Lip1810 and Lip1814) are found to follow a two-step process with kinetic constants for the Lip1814/DNA complex (k1 = 1120-1383 s-1, k2 = 0.227-1.45 s-1) being significantly different from those (k1 = 68.53-98.5 s-1, k2 = 32.3-60.19 s-1) corresponding to formation of the Lip1810/DNA complex. The kinetic pathway leading to the formation of Lip1814/DNA complex is diffusion-controlled whereas the formation of Lip1810/DNA complex occurs by a conformational rearrangement-controlled pathway. The observed difference in the kinetics of lipoplex formation likely originates from different structures of the lipid/DNA complexes.
Collapse
Affiliation(s)
- Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Md Nur Hasan
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Ria Ghosh
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.,Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Ballygunge, Kolkata 700019, India
| | - Gourab Ghosh
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Arpan Bera
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Sujanthi Easwara Prasad
- Institute for Stem Cell Science and Regenerative Medicine (instem), GKVK Campus, Bellary Road, Bangalore, 560065 KA, India.,School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, TN, India
| | - Ankita Hiwale
- Institute for Stem Cell Science and Regenerative Medicine (instem), GKVK Campus, Bellary Road, Bangalore, 560065 KA, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (instem), GKVK Campus, Bellary Road, Bangalore, 560065 KA, India
| | - Ranjan Das
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
3
|
Boloix A, Feiner-Gracia N, Köber M, Repetto J, Pascarella R, Soriano A, Masanas M, Segovia N, Vargas-Nadal G, Merlo-Mas J, Danino D, Abutbul-Ionita I, Foradada L, Roma J, Córdoba A, Sala S, de Toledo JS, Gallego S, Veciana J, Albertazzi L, Segura MF, Ventosa N. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101959. [PMID: 34786859 DOI: 10.1002/smll.202101959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.
Collapse
Affiliation(s)
- Ariadna Boloix
- Molecular Nanoscience and Organic Materials (Nanomol), Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, 08035, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Natalia Feiner-Gracia
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08024, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Mariana Köber
- Molecular Nanoscience and Organic Materials (Nanomol), Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Javier Repetto
- Molecular Nanoscience and Organic Materials (Nanomol), Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Rosa Pascarella
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08024, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Aroa Soriano
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, 08035, Spain
| | - Marc Masanas
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, 08035, Spain
| | - Nathaly Segovia
- Molecular Nanoscience and Organic Materials (Nanomol), Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Guillem Vargas-Nadal
- Molecular Nanoscience and Organic Materials (Nanomol), Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Josep Merlo-Mas
- Nanomol Technologies SL, Campus de la UAB, Bellaterra, 08193, Spain
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Technion - Israel Institute of Technology, Haifa, 32000, Israel
- Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong Province, 515063, China
| | - Inbal Abutbul-Ionita
- CryoEM Laboratory of Soft Matter, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Laia Foradada
- Peptomyc S.L., Vall d'Hebron Institut d'Oncologia (VHIO)- Edifici Cellex, Barcelona, 08035, Spain
| | - Josep Roma
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, 08035, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, Campus de la UAB, Bellaterra, 08193, Spain
| | - Santi Sala
- Nanomol Technologies SL, Campus de la UAB, Bellaterra, 08193, Spain
| | - Josep Sánchez de Toledo
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, 08035, Spain
| | - Soledad Gallego
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, 08035, Spain
| | - Jaume Veciana
- Molecular Nanoscience and Organic Materials (Nanomol), Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08024, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Miguel F Segura
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, 08035, Spain
| | - Nora Ventosa
- Molecular Nanoscience and Organic Materials (Nanomol), Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
4
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Effect of DODAB Nano-Sized Cationic Bilayer Fragments against Leishmania amazonensis. Molecules 2020; 25:molecules25235741. [PMID: 33291367 PMCID: PMC7730371 DOI: 10.3390/molecules25235741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
The dioctadecyldimethylammonium bromide (DODAB) is a double-chained cationic lipid with potent bactericide and fungistatic activities; however, its toxicity on protozoan parasites is still unknown. Here, we show the antileishmanial activity of DODAB nano-sized cationic bilayer fragments on stationary-phase promastigotes and amastigotes of Leishmania amazonensis, the causative agent of cutaneous leishmaniasis. Upon treatment with DODAB, we analyzed the parasite surface zeta-potential, parasite viability, cellular structural modifications, and intracellular proliferation. The DODAB cytotoxic effect was dose-dependent, with a median effective concentration (EC50) of 25 µM for both life-cycle stages, comparable to the reported data for bacteria and fungi. The treatment with DODAB changed the membrane zeta-potential from negative to positive, compromised the parasite's morphology, affected the cell size regulation, caused a loss of intracellular organelles, and probably dysregulated the plasma membrane permeability without membrane disruption. Moreover, the parasites that survived after treatment induced small parasitophorous vacuoles and failed to proliferate inside macrophages. In conclusion, DODAB displayed antileishmanial activity, and it remains to be elucidated how DODAB acts on the protozoan membrane. Understanding this mechanism can provide insights into the development of new parasite-control strategies.
Collapse
|
6
|
Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020; 25:molecules25215006. [PMID: 33126767 PMCID: PMC7662579 DOI: 10.3390/molecules25215006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is an extremely complex disease, typically caused by mutations in cancer-critical genes. By delivering therapeutic nucleic acids (NAs) to patients, gene therapy offers the possibility to supplement, repair or silence such faulty genes or to stimulate their immune system to fight the disease. While the challenges of gene therapy for cancer are significant, the latter approach (a type of immunotherapy) starts showing promising results in early-stage clinical trials. One important advantage of NA-based cancer therapies over synthetic drugs and protein treatments is the prospect of a more universal approach to designing therapies. Designing NAs with different sequences, for different targets, can be achieved by using the same technologies. This versatility and scalability of NA drug design and production on demand open the way for more efficient, affordable and personalized cancer treatments in the future. However, the delivery of exogenous therapeutic NAs into the patients’ targeted cells is also challenging. Membrane-type lipids exhibiting permanent or transient cationic character have been shown to associate with NAs (anionic), forming nanosized lipid-NA complexes. These complexes form a wide variety of nanostructures, depending on the global formulation composition and properties of the lipids and NAs. Importantly, these different lipid-NA nanostructures interact with cells via different mechanisms and their therapeutic potential can be optimized to promising levels in vitro. The complexes are also highly customizable in terms of surface charge and functionalization to allow a wide range of targeting and smart-release properties. Most importantly, these synthetic particles offer possibilities for scaling-up and affordability for the population at large. Hence, the versatility and scalability of these particles seem ideal to accommodate the versatility that NA therapies offer. While in vivo efficiency of lipid-NA complexes is still poor in most cases, the advances achieved in the last three decades are significant and very recently a lipid-based gene therapy medicine was approved for the first time (for treatment of hereditary transthyretin amyloidosis). Although the path to achieve efficient NA-delivery in cancer therapy is still long and tenuous, these advances set a new hope for more treatments in the future. In this review, we attempt to cover the most important biophysical and physicochemical aspects of non-viral lipid-based gene therapy formulations, with a perspective on future cancer treatments in mind.
Collapse
|
7
|
Sharma VK, Srinivasan H, García Sakai V, Mitra S. Dioctadecyldimethylammonium bromide, a surfactant model for the cell membrane: Importance of microscopic dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:051301. [PMID: 32984433 PMCID: PMC7511241 DOI: 10.1063/4.0000030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
Cationic lipid membranes have recently attracted huge attention both from a fundamental point of view and due to their practical applications in drug delivery and gene therapy. The dynamical behavior of the lipids in the membrane is a key parameter controlling various physiological processes and drug release kinetics. Here, we review the dynamical and thermotropic phase behavior of an archetypal cationic lipid membrane, dioctadecyldimethylammonium bromide (DODAB), as studied using neutron scattering and molecular dynamics simulation techniques. DODAB membranes exhibit interesting phase behavior, specifically showing coagel, gel, and fluid phases in addition to a large hysteresis when comparing heating and cooling cycles. The dynamics of the lipid membrane is strongly dependent on the physical state of the bilayer. Lateral diffusion of the lipids is faster, by an order of magnitude, in the fluid phase than in the ordered phase. It is not only the characteristic times but also the nature of the segmental motions that differ between the ordered and fluid phases. The effect of different membrane active molecules including drugs, stimulants, gemini surfactants, and unsaturated lipids, on the dynamical and thermotropic phase behavior of the DODAB membrane, is also discussed here. Various interesting features such as induced synchronous ordering between polar head groups and tails, sub diffusive behavior, etc., are observed. The results shed light on the interaction between these additives and the membrane, which is found to be a complex interplay between the physical state of the membrane, charge, concentration, molecular architecture of the additives, and their location within the membrane.
Collapse
Affiliation(s)
- V. K. Sharma
- Author to whom correspondence should be addressed: and . Phone: +91-22-25594604
| | | | - V. García Sakai
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | |
Collapse
|
8
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
9
|
Li P, Shen Y, Wang L, Lu W, Li W, Chen K, Zhou Y, Shen L, Wei F, Zheng W. The electric double layer structure modulates poly-dT 25 conformation and adsorption kinetics at the cationic lipid bilayer interface. SOFT MATTER 2019; 15:4445-4453. [PMID: 31011740 DOI: 10.1039/c9sm00321e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conformation and adsorption kinetics of oligonucleotides at lipid membrane interfaces are crucial to their biological functions, but are yet not clearly understood. Poly-dT oligonucleotide molecules have been widely used as primers for reverse translation of RNA molecules, as well as a surface recognition agent for mRNA purification and extraction. In this research, the adsorption processes of poly-dT25 on lipid membranes in different ionic solutions were investigated by sum frequency generation vibrational spectroscopy (SFG-VS) together with a single molecule tracking technique in situ and in real time. These systematic studies provide us with molecular insight into the chemical and physical nature of oligonucleotide-membrane interactions, and show us how the electric double layer (EDL) structure changes the conformation and adsorption kinetics of oligonucleotides. The SFG-VS results indicate that an increase of ionic concentration not only decreases the adsorption density of oligonucleotides but also changes the conformation of oligonucleotides from an elongated conformation to a coiled conformation, causing stronger thermodynamic interactions with membranes, as demonstrated by single molecule tracking techniques. It is also shown that the ionic solution can tune the balance between the surface diffusion rate and solution diffusion rate of oligonucleotides significantly. These results demonstrated that the spectra and kinetics collected by in situ label-free SFG-VS detection and the single molecular tracking technique can provide new molecular insights into the mechanisms of oligonucleotide-membrane interactions. These new understandings may help researchers to control the assembly of oligonucleotide-liposome complexes and to improve the efficiency of transportation and delivery of oligonucleotide molecules.
Collapse
Affiliation(s)
- PengHua Li
- Institution for Interdisciplinary Research, & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan, Hubei 430056, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dubey PS, Sharma VK, Srinivasan H, Mitra S, Sakai VG, Mukhopadhyay R. Effects of NSAIDs on the Dynamics and Phase Behavior of DODAB Bilayers. J Phys Chem B 2018; 122:9962-9972. [PMID: 30351108 DOI: 10.1021/acs.jpcb.8b07093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite well-known side effects, nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most prescribed drugs worldwide for their anti-inflammatory and antipyretic properties. Here, we report the effects of two NSAIDs, aspirin and indomethacin, on the thermotropic phase behavior and the dynamics of a dioctadecyldimethylammonium bromide (DODAB) lipid bilayer as studied using neutron scattering techniques. Elastic fixed window scans showed that the addition of aspirin and indomethacin affects the phase behavior of a DODAB bilayer in both heating and cooling cycles. Upon heating, there is a change in the coagel- to fluid-phase transition temperature from 327 K for pure DODAB bilayer to 321 and 323 K in the presence of aspirin and indomethacin, respectively. More strikingly, upon cooling, the addition of NSAIDs suppresses the formation of the intermediate gel phase observed in pure DODAB. The suppression of the gel phase on addition of the NSAIDs evidences the synchronous ordering of a lipid headgroup and chain. Analysis of quasi-elastic neutron scattering data showed that only localized internal motion exists in the coagel phase, whereas both internal and lateral motions exist in the fluid phase. The internal motion is described by a fractional uniaxial rotational diffusion model in the coagel phase and by a localized translation diffusion model in the fluid phase. In the coagel phase, the rotational diffusion coefficient of DODAB is found to be almost twice for the addition of the drugs, whereas the mobility fraction did not change for indomethacin but becomes twice for aspirin. In the fluid phase, the lateral motion, described well by a continuous diffusion model, is found to be slower by about ∼30% for indomethacin but almost no change for aspirin. For the internal motion, addition of aspirin leads to enhancement of the internal motion, whereas indomethacin did not show significant effect. This study shows that the effect of different NSAIDs on the dynamics of the lipid membrane is not the same; hence, one must consider these NSAIDs individually while studying their action mechanism on the cell membrane.
Collapse
Affiliation(s)
- P S Dubey
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - V K Sharma
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - H Srinivasan
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - S Mitra
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - V García Sakai
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council , Rutherford Appleton Laboratory , Didcot OX11 0QX , U.K
| | - R Mukhopadhyay
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| |
Collapse
|
11
|
Dynamical Transitions and Diffusion Mechanism in DODAB Bilayer. Sci Rep 2018; 8:1862. [PMID: 29382881 PMCID: PMC5789887 DOI: 10.1038/s41598-018-19899-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
Dioctadecyldimethylammonium bromide (DODAB), a potential candidate for applications in drug transport or DNA transfection, forms bilayer in aqueous media exhibiting a rich phase behavior. Here, we report the detailed dynamical features of DODAB bilayer in their different phases (coagel, gel and fluid) as studied by neutron scattering techniques. Elastic intensity scans show dynamical transitions at 327 K in the heating and at 311 K and 299 K during cooling cycle. These results are consistent with calorimetric studies, identified as coagel-fluid phase transition during heating, and fluid-gel and gel-coagel phase transitions during cooling. Quasielastic Neutron Scattering (QENS) data analysis showed presence of only localized internal motion in the coagel phase. However, in the gel and fluid phases, two distinct motions appear, namely lateral motion of the DODAB monomers and a faster localized internal motion of the monomers. The lateral motion of the DODAB molecule is described by a continuous diffusion model and is found to be about an order of magnitude slower in the gel phase than in the fluid phase. To gain molecular insights, molecular dynamics simulations of DODAB bilayer have also been carried out and the results are found to be in agreement with the experiment.
Collapse
|
12
|
Wang L, Shen Y, Yang Y, Lu W, Li W, Wei F, Zheng G, Zhou Y, Zheng W, Cao Y. Stern-Layer Adsorption of Oligonucleotides on Lamellar Cationic Lipid Bilayer Investigated by Polarization-Resolved SFG-VS. ACS OMEGA 2017; 2:9241-9249. [PMID: 30023605 PMCID: PMC6045418 DOI: 10.1021/acsomega.7b01214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
The molecular interaction between the oligonucleotides and lipid membranes is the key to the functions of virus, aptamer, and various oligonucleotide-based materials. In this study, the conformational changes of oligonucleotides (dT25) on lamellar cationic 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP) bilayer were investigated by polarization-resolved sum frequency generation vibrational spectroscopy (SFG-VS) in situ. The SFG-VS spectra within different wavenumber ranges were analyzed to give conformation details of thymine groups, phosphate groups, and OD/OH groups and to provide a comprehensive and fundamental understanding of the oligonucleotide adsorption on a model bilayer. It is shown that the adsorption of dT25 on DMTAP bilayer reaches maximum at CdT ≈ 500 nM. And the conformation of dT25 molecules change significantly when surface charge of DMTAP bilayer reaches the point of zero charge (PZC) at CdT ≈ 100 nM. Combined spectroscopic evidences also indicate that the formation of electric double layer at the DMTAP/dT25 surface follows the Gouy-Chapman-Stern model. The analysis results also show that the symmetric PO2- stretching mode of oligonucleotide molecules can serve as a sensitive vibration molecular probe for quantifying the oligonucleotide/lipid charge ratio and determine the point of zero charge (PZC) of lipid bilayer surface, which may help researchers to control the layer-by-layer assembly of oligonucleotide-lipid complexes and to improve the efficiency genetic therapy against cancer and viral infections.
Collapse
Affiliation(s)
- Liqun Wang
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Yang Shen
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Yanbo Yang
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Wangting Lu
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Wenhui Li
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Feng Wei
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Guang Zheng
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Youhua Zhou
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| | - Wanquan Zheng
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
- Institut
des Sciences Moléculaires d’Orsay, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Yuancheng Cao
- Institution
for Interdisciplinary Research, & Key Laboratory
of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Life
Science, School of Physics and Information Engineering, and School of Chemical and Environmental
Engineering, Jianghan University, 430056 Wuhan, Hubei, P. R. China
| |
Collapse
|
13
|
Janich C, Hädicke A, Bakowsky U, Brezesinski G, Wölk C. Interaction of DNA with Cationic Lipid Mixtures-Investigation at Langmuir Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10172-10183. [PMID: 28873311 DOI: 10.1021/acs.langmuir.7b02014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four different binary lipid mixtures composed of a cationic lipid and the zwitterionic colipids DOPE or DPPC, which show different DNA transfer activities in cell culture models, were investigated at the soft air/water interface to identify transfection efficiency determining characteristics. Langmuir films are useful models to investigate the interaction between DNA and lipid mixtures in a two-dimensional model system by using different surface sensitive techniques, namely, epifluorescence microscopy and infrared reflection-absorption spectroscopy. Especially, the effect of adsorbed DNA on the properties of the lipid mixtures has been examined. Distinct differences between the lipid composites were found which are caused by the different colipids of the mixtures. DOPE containing lipid mixtures form fluid monolayers with a uniform distribution of the fluorescent probe in the presence and absence of DNA at physiologically relevant surface pressures. Only at high nonphysiological pressures, the lipid monolayer collapses and phase separation was observed if DNA was present in the subphase. In contrast, DPPC containing lipid mixtures show domains in the liquid condensed phase state in the presence and absence of DNA in the subphase. The adsorption of DNA at the positively charged mixed lipid monolayer induces phase separation which is expressed in the morphology and the point of appearance of these domains.
Collapse
Affiliation(s)
- Christopher Janich
- Martin Luther University Halle-Wittenberg , Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - André Hädicke
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval , Québec, Québec, Canada
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University Marburg , Ketzerbach 63, 35037 Marburg, Germany
| | - Gerald Brezesinski
- Max-Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm , Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Christian Wölk
- Martin Luther University Halle-Wittenberg , Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Angelov B, Garamus VM, Drechsler M, Angelova A. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Structure, thermodynamic and kinetic signatures of a synthetic polyelectrolyte coacervating system. Adv Colloid Interface Sci 2017; 239:178-186. [PMID: 27939186 DOI: 10.1016/j.cis.2016.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022]
Abstract
While many studies on coacervation have targeted biomacromolecules, we review in this article the key structure, thermodynamic and kinetic features of a fully synthetic coacervating system based on polyacrylic acid (PAA) and poly(diallyldimethylammonium chloride) (PDADMAC) oppositely charged polyelectrolytes at pH10, where PAA chains are fully deprotonated. Among the main points of interest, we can highlight (i) the presence of polyelectrolyte complex (PEC) nanoparticles that, unexpectedly, coexist with a certain amount of coacervate droplets in a large range of compositions, even far from stoichiometry; (ii) the fact that these PEC nanoparticles are likely precursors of the coacervation occurring at stoichiometry; (iii) the formation of soluble PECs only in a certain range of physicochemical conditions; (iv) the equilibrium properties of the system; (v) and last but not least a distinctive kinetic signature at stoichiometry evidenced by a peak in light scattering at very short times (~100ms). Some of these results can be rationalized on the basis of weak interaction unfolding between oppositely charged PAA and PDADMAC chains as revealed by microcalorimetry measurements.
Collapse
|
16
|
Liu X, Haddou M, Grillo I, Mana Z, Chapel JP, Schatz C. Early stage kinetics of polyelectrolyte complex coacervation monitored through stopped-flow light scattering. SOFT MATTER 2016; 12:9030-9038. [PMID: 27748777 DOI: 10.1039/c6sm01979j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Polyelectrolyte complexes (PECs) between poly(acrylic acid) (PAA) and poly(diallyldimethylammonium chloride) (PDADMAC), a model system forming coacervate particles via electrostatic interaction at pH 10, were prepared by a stopped-flow (SF) fast mixing technique at different mixing charge ratios (z) and ionic strengths. Both PEC final morphologies prepared by either SF or manual one-shot mixing are similar at bench time. In situ light scattering combined with the SF technique pointed-out, however, the presence of three distinct early stage kinetic behaviors in the formation of PECs. The first stage observed at low z is ascribed to the relaxation/reorganization of soluble PECs. At higher z or in the presence of salt, a second stage is found corresponding to the aggregation and/or rearrangement of small soluble PECs into larger structures. Redistribution of excess charges among those PECs produces some neutral condensed coacervate droplets as well, coexisting with PECs in a wide range of mixing ratios. Finally, a last process featured with bell-shaped curves indicates the full coacervation that quickens while approaching charge neutrality and/or at higher ionic strength.
Collapse
Affiliation(s)
- Xiaoqing Liu
- CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F-33600 Pessac, France. and Université de Bordeaux, Centre de Recherche Paul Pascal, F-33600 Pessac, France and Université de Bordeaux, Laboratoire de Chimie des Polymères Organiques, UMR 5629, IPB/ENSCBP, 16 avenue Pey-Berland, F-33607 Pessac, France and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33607 Pessac, France
| | - Marie Haddou
- CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F-33600 Pessac, France. and Université de Bordeaux, Centre de Recherche Paul Pascal, F-33600 Pessac, France and Université de Bordeaux, Laboratoire de Chimie des Polymères Organiques, UMR 5629, IPB/ENSCBP, 16 avenue Pey-Berland, F-33607 Pessac, France and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33607 Pessac, France
| | - Isabelle Grillo
- Institut Laue Langevin, 71 avenue des martyrs, B.P. 156, 38042 Grenoble Cedex 9, France
| | - Zohra Mana
- Bio-logic SAS, 4 rue Vaucanson, 38170 Seyssinet Pariset, France
| | - Jean-Paul Chapel
- CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F-33600 Pessac, France. and Université de Bordeaux, Centre de Recherche Paul Pascal, F-33600 Pessac, France
| | - Christophe Schatz
- Université de Bordeaux, Laboratoire de Chimie des Polymères Organiques, UMR 5629, IPB/ENSCBP, 16 avenue Pey-Berland, F-33607 Pessac, France and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33607 Pessac, France
| |
Collapse
|
17
|
Di Cola E, Grillo I, Ristori S. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes. Pharmaceutics 2016; 8:pharmaceutics8020010. [PMID: 27043614 PMCID: PMC4932473 DOI: 10.3390/pharmaceutics8020010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users.
Collapse
Affiliation(s)
- Emanuela Di Cola
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble-Alpes, CNRS-UMR 5588, 140 rue de la Physique, 38402 Saint-Martin-d'Hères, France.
| | - Isabelle Grillo
- Institut Laue-Langevin (ILL) DS/LSS, CS 20156-38042 Grenoble Cedex 9, France.
| | - Sandra Ristori
- Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
18
|
Balbino TA, Serafin JM, Malfatti-Gasperini AA, de Oliveira CLP, Cavalcanti LP, de Jesus MB, de La Torre LG. Microfluidic Assembly of pDNA/Cationic Liposome Lipoplexes with High pDNA Loading for Gene Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1799-1807. [PMID: 26814663 DOI: 10.1021/acs.langmuir.5b04177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microfluidics offers unique characteristics to control the mixing of liquids under laminar flow. Its use for the assembly of lipoplexes represents an attractive alternative for the translation of gene delivery studies into clinical trials on a sufficient throughput scale. Here, it was shown that the microfluidic assembly of pDNA/cationic liposome (CL) lipoplexes allows the formation of nanocarriers with enhanced transfection efficiencies compared with the conventional bulk-mixing (BM) process under high pDNA loading conditions. Lipoplexes generated by microfluidic devices exhibit smaller and more homogeneous structures at a molar charge ratio (R±) of 1.5, representing the ratio of lipid to pDNA content. Using an optimized model to fit small-angle X-ray scattering (SAXS) curves, it was observed that large amounts of pDNA induces the formation of aggregates with a higher number of stacked bilayers (N ∼ 5) when the BM process was used, whereas microfluidic lipoplexes presented smaller structures with a lower number of stacked bilayers (N ∼ 2.5). In vitro studies further confirmed that microfluidic lipoplexes achieved higher in vitro transfection efficiencies in prostate cancer cells at R ± 1.5, employing a reduced amount of cationic lipid. The correlation of mesoscopic characteristics with in vitro performance provides insights for the elucidation of the colloidal arrangement and biological behavior of pDNA/CL lipoplexes obtained by different processes, highlighting the feasibility of applying microfluidics to gene delivery.
Collapse
Affiliation(s)
- Tiago A Balbino
- School of Chemical Engineering, University of Campinas, UNICAMP , Campinas, SP 13083-970, Brazil
| | - Juliana M Serafin
- School of Chemical Engineering, University of Campinas, UNICAMP , Campinas, SP 13083-970, Brazil
| | | | | | - Leide P Cavalcanti
- School of Chemical Engineering, University of Campinas, UNICAMP , Campinas, SP 13083-970, Brazil
| | - Marcelo B de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas , Campinas, SP 13083-970, Brazil
| | - Lucimara G de La Torre
- School of Chemical Engineering, University of Campinas, UNICAMP , Campinas, SP 13083-970, Brazil
| |
Collapse
|
19
|
Hersey JS, LaManna CM, Lusic H, Grinstaff MW. Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids. Chem Phys Lipids 2016; 196:52-60. [PMID: 26896839 DOI: 10.1016/j.chemphyslip.2016.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release.
Collapse
Affiliation(s)
- Joseph S Hersey
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA
| | - Caroline M LaManna
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA
| | - Hrvoje Lusic
- Boston University, Chemistry Department, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA; Boston University, Chemistry Department, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Gehlot PS, Rao KS, Bharmoria P, Damarla K, Gupta H, Drechsler M, Kumar A. Spontaneous Formation of Multiarchitecture Vesicles of [C8mim]Br + [Na]DBS in Aqueous Medium: Synergic Interplay of Electrostatic, Hydrophobic, and π–π Stacking Interactions. J Phys Chem B 2015; 119:15300-9. [DOI: 10.1021/acs.jpcb.5b09850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Praveen Singh Gehlot
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - K. Srinivasa Rao
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Pankaj Bharmoria
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Krishnaiah Damarla
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Hariom Gupta
- CSIR-Central Salt
and Marine Chemicals Research Institute, Council of Scientific and
Industrial Research (CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Markus Drechsler
- Universität Bayreuth, BIMF − Soft Matter Electron Microscopy, Bayreuth, D-95447, Germany
| | - Arvind Kumar
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
- CSIR-Central Salt
and Marine Chemicals Research Institute, Council of Scientific and
Industrial Research (CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| |
Collapse
|
21
|
de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201:1-13. [DOI: 10.1016/j.jconrel.2015.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/19/2023]
|
22
|
Dan N. Lipid-Nucleic Acid Supramolecular Complexes: Lipoplex Structure and the Kinetics of Formation. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
Patra T, Ghosh S, Dey J. Cationic vesicles of a carnitine-derived single-tailed surfactant: Physicochemical characterization and evaluation of in vitro gene transfection efficiency. J Colloid Interface Sci 2014; 436:138-45. [DOI: 10.1016/j.jcis.2014.08.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 11/24/2022]
|
24
|
Complexation of DNA with cationic surfactants as studied by small-angle X-ray scattering. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5159-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Dan N, Danino D. Structure and kinetics of lipid-nucleic acid complexes. Adv Colloid Interface Sci 2014; 205:230-9. [PMID: 24529969 DOI: 10.1016/j.cis.2014.01.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
Abstract
The structure and function of lipid-based complexes (lipoplexes) have been widely investigated as cellular delivery vehicles for nucleic acids-DNA and siRNA. Transfection efficiency in applications such as gene therapy and gene silencing has been clearly linked to the local, nano-scale organization of the nucleic acid in the vehicle, as well as to the global properties (e.g. size) of the carriers. This review focuses on both the structure of DNA and siRNA complexes with cationic lipids, and the kinetics of structure evolution during complex formation. The local organization of the lipoplexes is largely set by thermodynamic, equilibrium forces, dominated by the lipid preferred phase. As a result, complexation of linear lambda-phage DNA, circular plasmid DNA, or siRNA with lamellae-favoring lipids (or lipid mixtures) forms multi-lamellar L(α)(C) liquid crystalline arrays. Complexes created with lipids that have bulky tail groups may form inverted hexagonal HII(C) phases, or bicontinuous cubic Q(II)(C) phases. The kinetics of complex formation dominates the large-scale, global structure and the properties of lipoplexes. Furthermore, the time-scales required for the evolution of the equilibrium structure may be much longer than expected. In general, the process may be divided into three distinct stages: An initial binding, or adsorption step, where the nucleic acid binds onto the surface of the cationic vesicles. This step is relatively rapid, occurring on time scales of order of milliseconds, and largely insensitive to system parameters. In the second step, vesicles carrying adsorbed nucleic acid aggregate to form larger complexes. This step is sensitive to the lipid characteristics, in particular the bilayer rigidity and propensity to rupture, and to the lipid to nucleic acid (L/D) charge ratio, and is characterized by time scales of order seconds. The last and final step is that of internal rearrangement, where the overall global structure remains constant while local adjustment of the nucleic acid/lipid organization takes place. This step may occur on unusually long time scales of order hours or longer. This rate, as well, is highly sensitive to lipid characteristics, including membrane fluidity and rigidity. While the three step process is consistent with many experimental observations to date, improving the performance of these non-viral vectors requires better understanding of the correlations between the parameters that influence lipoplexes' formation and stability and the specific rate constants i.e., the timescales required to obtain the equilibrium structures. Moreover, new types of cellular delivery agents are now emerging, such as antimicrobial peptide complexes with anionic lipids, and other proteins and small-molecule lipid carriers, suggesting that better understanding of lipoplex kinetics would apply to a variety of new systems in biotechnology and nanomedicine.
Collapse
|
26
|
Cuomo F, Lopez F, Ceglie A. Templated globules--applications and perspectives. Adv Colloid Interface Sci 2014; 205:124-33. [PMID: 24011695 DOI: 10.1016/j.cis.2013.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/11/2013] [Indexed: 12/21/2022]
Abstract
Polyelectrolyte capsules represent a class of particles composed of an internal core and an external polymer matrix shell. In recent years, it has become clear that the manufacture of polyelectrolyte capsule is likely to have a significant role in several areas including medicine and biology. Many distinct methodologies for the fabrications of templated globules have been reported. Despite the huge availability of knowledge used to obtain such globules, the choice of the appropriate technology for the desired applications demands a deeper appreciation of this issue. Furthermore, the extent to which the applications of polyelectrolyte capsule may be actively involved in the practical biomedical field is still a fascinating challenge. Here, we review the recipes for the globule assembly with their own benefits and limitations and how different templates could affect the final globule features, with a particular focus on the Layer by Layer (LbL) procedure. The latest applications in biological, therapeutical and diagnostic areas are also discussed and some outlooks for the strategic development of polymer globule are highlighted.
Collapse
|
27
|
Angelov B, Angelova A, Filippov SK, Narayanan T, Drechsler M, Štěpánek P, Couvreur P, Lesieur S. DNA/Fusogenic Lipid Nanocarrier Assembly: Millisecond Structural Dynamics. J Phys Chem Lett 2013; 4:1959-1964. [PMID: 26283134 DOI: 10.1021/jz400857z] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structural changes occurring on a millisecond time scale during uptake of DNA by cationic lipid nanocarriers are monitored by time-resolved small-angle X-ray scattering (SAXS) coupled to a rapid-mixing stopped-flow technique. Nanoparticles (NPs) of nanochannel organization are formed by PEGylation, hydration, and dispersion of a lipid film of the fusogenic lipid monoolein in a mixture with positively charged (DOMA) and PEGylated (DOPE-PEG2000) amphiphiles and are characterized by the inner cubic structure of very large nanochannels favorable for DNA upload. Ultrafast structural dynamics of complexation and assembly of these cubosome particles with neurotrophic plasmid DNA (pDNA) is revealed thanks to the high brightness of the employed synchrotron X-ray beam. The rate constant of the pDNA/lipid NP complexation is estimated from dynamic roentgenograms recorded at 4 ms time resolution. pDNA upload into the vastly hydrated channels of the cubosome carriers leads to a fast nanoparticle-nanoparticle structural transition and lipoplex formation involving tightly packed pDNA.
Collapse
Affiliation(s)
- Borislav Angelov
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, CZ-16206 Prague, Czech Republic
| | - Angelina Angelova
- ‡CNRS UMR8612 Institut Galien Paris-Sud, Univ Paris Sud 11, F-92296 Châtenay-Malabry, France
| | - Sergey K Filippov
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, CZ-16206 Prague, Czech Republic
| | - Theyencheri Narayanan
- §European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, F-38043 Grenoble, France
| | - Markus Drechsler
- ⊥Laboratory for Soft Matter Electron Microscopy, Bayreuth Institute of Macromolecular Research, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Petr Štěpánek
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, CZ-16206 Prague, Czech Republic
| | - Patrick Couvreur
- ‡CNRS UMR8612 Institut Galien Paris-Sud, Univ Paris Sud 11, F-92296 Châtenay-Malabry, France
| | - Sylviane Lesieur
- ‡CNRS UMR8612 Institut Galien Paris-Sud, Univ Paris Sud 11, F-92296 Châtenay-Malabry, France
| |
Collapse
|
28
|
How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J Control Release 2013; 166:46-56. [DOI: 10.1016/j.jconrel.2012.12.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
|
29
|
Balbino TA, Gasperini AAM, Oliveira CLP, Azzoni AR, Cavalcanti LP, de La Torre LG. Correlation of the physicochemical and structural properties of pDNA/cationic liposome complexes with their in vitro transfection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11535-11545. [PMID: 22788539 DOI: 10.1021/la302608g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R(±)) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R(±) = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R(±) is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R(±) to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R(±) value. Interestingly, for R(±) = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R(±)) in the system. This information is used to explain the transfection differences observed at an R(±) = 9 as compared to R(±) = 3 and 6. Close to the isoneutrality region (R(±) = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.
Collapse
Affiliation(s)
- Tiago A Balbino
- School of Chemical Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Dabkowska AP, Barlow DJ, Campbell RA, Hughes AV, Quinn PJ, Lawrence MJ. Effect of Helper Lipids on the Interaction of DNA with Cationic Lipid Monolayers Studied by Specular Neutron Reflection. Biomacromolecules 2012; 13:2391-401. [DOI: 10.1021/bm300639n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. P. Dabkowska
- Institute of Pharmaceutical
Science, School of Biomedical Sciences, King’s College London, 150 Stamford Street, London, SE1 9NH,
U.K
| | - D. J. Barlow
- Institute of Pharmaceutical
Science, School of Biomedical Sciences, King’s College London, 150 Stamford Street, London, SE1 9NH,
U.K
| | - R. A. Campbell
- Institut Laue-Langevin, B.P. 156, 38042 Grenoble Cedex, France
| | - A. V. Hughes
- ISIS, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 OQX, U.K
| | - P. J. Quinn
- Institute of Pharmaceutical
Science, School of Biomedical Sciences, King’s College London, 150 Stamford Street, London, SE1 9NH,
U.K
| | - M. J. Lawrence
- Institute of Pharmaceutical
Science, School of Biomedical Sciences, King’s College London, 150 Stamford Street, London, SE1 9NH,
U.K
| |
Collapse
|
31
|
Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:815-29. [DOI: 10.1007/s00249-012-0830-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 01/14/2023]
|
32
|
Alves FR, Loh W. Vesicles prepared with the complex salts dioctadecyldimethylammonium polyacrylates. J Colloid Interface Sci 2012; 368:292-300. [DOI: 10.1016/j.jcis.2011.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 11/25/2022]
|
33
|
Fluorescence methods for lipoplex characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2694-705. [DOI: 10.1016/j.bbamem.2011.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 11/24/2022]
|
34
|
Bilayer structures in dioctadecyldimethylammonium bromide/oleic acid dispersions. Chem Phys Lipids 2011; 164:359-67. [DOI: 10.1016/j.chemphyslip.2011.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 11/23/2022]
|
35
|
Nordly P, Rose F, Christensen D, Nielsen HM, Andersen P, Agger EM, Foged C. Immunity by formulation design: induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J Control Release 2010; 150:307-17. [PMID: 21111765 DOI: 10.1016/j.jconrel.2010.11.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/24/2022]
Abstract
The combination of nucleic acid-based Toll-like receptor (TLR)-3 or TLR9 agonists and cationic liposomes constitutes an effective vaccine adjuvant approach for eliciting CD8+ T-cell responses. However, complexing cationic liposomes and oppositely charged oligonucleotides generally results in highly unstable and heterogeneous formulations with limited clinical applicability. The aim of this study was to design, formulate, and carefully characterize a stable CD8-inducing adjuvant based on the TLR3 ligand polyinosinic-polycytidylic acid [poly(I:C)] incorporated into a cationic adjuvant system (CAF01) composed of dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB). For this purpose, a modified double emulsion solvent evaporation method was investigated for complexation of high amounts of anionic poly(I:C) to gel-state DDA/TDB liposomes. Addition of a volatile, water-miscible co-solvent (ethanol) to the outer water phase enabled preparation of colloidally stable liposomes, presumably by reducing the poly(I:C)-enhanced rigidity of the lipid bilayer. Cryo-transmission electron microscopy (TEM) revealed the formation of unilamellar as well as multilamellar liposomes, the latter suggesting that poly(I:C) is intercalated between the membrane bilayers in an onion-like structure. Finally, immunization of mice with the model antigen ovalbumin (OVA) and DDA/TDB/poly(I:C) liposomes induced a remarkably strong, antigen-specific CD8+ T-cell response, which was maintained for more than two months. Importantly, whereas injection of soluble poly(I:C) led to rapid production of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in serum, administration of poly(I:C) in complex with the cationic DDA/TDB liposomes prevented this non-specific systemic pro-inflammatory response. These data emphasize the importance of improving the quality of the vaccine formulation to indeed overcome some of the major obstacles for using CD8-inducing agents such as poly(I:C) in future subunit vaccines.
Collapse
Affiliation(s)
- Pernille Nordly
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Jamróz D, Kepczynski M, Nowakowska M. Molecular structure of the dioctadecyldimethylammonium bromide (DODAB) bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15076-9. [PMID: 20804190 DOI: 10.1021/la102324p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dioctadecyldimethylammonium bromide (DODAB) is a double-chained quaternary ammonium surfactant that assembles in water into bilayer structures. This letter reports the molecular dynamics (MD) computer simulations of the DODAB bilayer at 25 °C. The simulations show that the surfactant membrane arranges spontaneously into the rippled phase (P(β)(')) at that temperature. The ordering within the chain fragment closest to the hydrophilic head (carbon atoms 1-5) is relatively low. It grows significantly for the carbon atoms located in the center of the membrane (atoms 6-17). The C6-C17 chain fragments are well aligned and tilted by ca. 15° with respect to the bilayer normal.
Collapse
Affiliation(s)
- Dorota Jamróz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | |
Collapse
|
37
|
Tarahovsky YS. Cell transfection by DNA-lipid complexes — Lipoplexes. BIOCHEMISTRY (MOSCOW) 2010; 74:1293-304. [DOI: 10.1134/s0006297909120013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Michanek A, Kristen N, Höök F, Nylander T, Sparr E. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:829-38. [PMID: 20036213 DOI: 10.1016/j.bbamem.2009.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/12/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
The aim of the present study is to establish under which conditions tRNA associates with phospholipid bilayers, and to explore how this interaction influences the lipid bilayer. For this purpose we have studied the association of tRNA or DNA of different sizes and degrees of base pairing with a set of model membrane systems with varying charge densities, composed of zwitterionic phosphatidylcholines (PC) in mixtures with anionic phosphatidylserine (PS) or cationic dioctadecyl-dimethyl-ammoniumbromide (DODAB), and with fluid or solid acyl-chains (oleoyl, myristoyl and palmitoyl). To prove and quantify the attractive interaction between tRNA and model-lipid membrane we used quartz crystal microbalance with dissipation (QCM-D) monitoring to study the tRNA adsorption to deposit phospholipid bilayers from solutions containing monovalent (Na(+)) or divalent (Ca(2+)) cations. The influence of the adsorbed polynucleic acids on the lipid phase transitions and lipid segregation was studied by means of differential scanning calorimetry (DSC). The basic findings are: i) tRNA adsorbs to zwitterionic liquid-crystalline and gel-phase phospholipid bilayers. The interaction is weak and reversible, and cannot be explained only on the basis of electrostatic attraction. ii) The adsorbed amount of tRNA is higher for liquid-crystalline bilayers compared to gel-phase bilayers, while the presence of divalent cations show no significant effect on the tRNA adsorption. iii) The adsorption of tRNA can lead to segregation in the mixed 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (DMPC)-1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) and DMPC-DODAB bilayers, where tRNA is likely excluded from the anionic DMPS-rich domains in the first system, and associated with the cationic DODAB-rich domains in the second system. iv) The addition of shorter polynucleic acids influence the chain melting transition and induce segregation in a mixed DMPC-DMPS system, while larger polynucleic acids do not influence the melting transition in these system. The results in this study on tRNA-phospholipid interactions can have implications for understanding its biological function in, e.g., the cell nuclei, as well as in applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Agnes Michanek
- Physical Chemistry 1, Lund University, P.O. Box 124, 22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Kuehn F, Fischer K, Schmidt M. Kinetics of Complex Formation between DNA and Cationically Charged Cylindrical Brush Polymers Observed by Stopped Flow Light Scattering. Macromol Rapid Commun 2009; 30:1470-6. [DOI: 10.1002/marc.200900166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 04/30/2009] [Indexed: 11/08/2022]
|
41
|
Pizzey CL, Jewell CM, Hays ME, Lynn DM, Abbott NL, Kondo Y, Golan S, Talmon Y. Characterization of the nanostructure of complexes formed by a redox-active cationic lipid and DNA. J Phys Chem B 2008; 112:5849-57. [PMID: 18419168 DOI: 10.1021/jp7103903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report characterization of the nanostructures of complexes formed between the redox-active lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA) and DNA using small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryo-TEM). A particular focus was directed to the influence of lipid oxidation state (where reduced BFDMA has a net charge of +1 and oxidized BFDMA has a charge of +3) on the nanostructures of the solution aggregates formed. Complexes were characterized over a range of charge ratios of reduced BFDMA to DNA (1.1:1, 2.75:1, and 4:1) in solutions of 1 mM Li2SO4. For these complexes, a single peak in the SANS data at 1.2 nm(-1) indicated that a nanostructure with a periodicity of 5.2 nm was present, similar to that observed with complexes of the classical lipids DODAB/DOPE and DNA (multilamellar spacing of 7.0 nm). The absence of additional Bragg peaks in all the SANS data indicated that the periodicity did not extend over large distances. Both inverse Fourier transform analysis and form factor fitting suggested formation of a multilamellar vesicle. These results were confirmed by cryo-TEM images in which multilamellar complexes with diameters between 50 and 150 nm were observed with no more than seven lamellae per aggregate. In contrast to complexes of reduced BFDMA and DNA, Bragg peaks were absent in SANS spectra of complexes formed by oxidized BFDMA and DNA at all charge ratios investigated. The low-q behavior of the SANS data obtained using oxidized BFDMA and DNA complexes suggested that large, loose aggregates were formed, consistent with complementary cryo-TEM images showing predominantly loose disordered aggregates. Some highly ordered spongelike and cubic phase nanostructures were also detected in cryo-TEM images. We conclude that control of BFDMA oxidation state can be used to manipulate the nanostructures of lipid-DNA complexes formed using BFDMA.
Collapse
Affiliation(s)
- Claire L Pizzey
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Caracciolo G, Pozzi D, Caminiti R, Amenitsch H. Two-dimensional lipid mixing entropy regulates the formation of multicomponent lipoplexes. J Phys Chem B 2007; 110:20829-35. [PMID: 17048894 DOI: 10.1021/jp0620926] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of formation of multicomponent lipoplexes was investigated by means of synchrotron Small-Angle X-ray Diffraction (SAXD). Mixed lipid dispersions were prepared by mixing different populations of binary cationic liposomes. When adding DNA to mixed lipid dispersions, multicomponent lipoplexes spontaneously formed exhibiting structural properties, i.e., membrane thickness, surface charge density, and one-dimensional DNA packing density, intermediate between those of binary lipoplexes. These results suggested that DNA lets liposomes come into contact and fuse and that a complete lipid mixing at the molecular level occurs. The equilibrium structure of multicomponent lipoplexes was found to be unique and did not depend on the number and kind of populations composing lipid dispersion but only on the lipid species involved and on their relative molar ratio. According to recent theoretical models we identified two-dimensional lipid mixing entropy as the key factor regulating the existence of only multicomponent lipoplexes with ideally mixed lipid species.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
43
|
Hays ME, Jewell CM, Kondo Y, Lynn DM, Abbott NL. Lipoplexes formed by DNA and ferrocenyl lipids: effect of lipid oxidation state on size, internal dynamics, and zeta-potential. Biophys J 2007; 93:4414-24. [PMID: 17720731 PMCID: PMC2098709 DOI: 10.1529/biophysj.107.107094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of lipid oxidation state on the physical properties of complexes formed by plasmid DNA and the redox-active lipid bis-(11-ferrocenylundecyl)dimethylammonium bromide (BFDMA) is reported. With increasing concentration of BFDMA, the hydrodynamic sizes of complexes formed by BFDMA and DNA (in the presence of 1 mM Li(2)SO(4)) pass through a maximum and the zeta-potential changes monotonically from -40 mV to +40 mV. In contrast, complexes formed by oxidized BFDMA and DNA exhibit a minimum in size and maintain a negative zeta-potential with increasing concentration of BFDMA. Angle-dependent dynamic light scattering measurements also reveal the presence of relaxation processes within complexes formed by DNA and oxidized BFDMA that are absent for complexes formed by DNA and reduced BFDMA. These results, when combined, reveal that the amphiphilic nature of reduced BFDMA leads to lipoplexes with physical properties resembling those formed by classical cationic lipids, whereas the interaction of oxidized BFDMA with DNA is similar to that of nonamphiphilic cationic molecules bearing multiple charges (e.g., spermidine). In particular, the negative zeta-potential and measurable presence of DNA chain dynamics within complexes formed by oxidized BFDMA and DNA indicate that these complexes are loosely packed with excess charge due to DNA in their outer regions. These results, when combined with additional measurements performed in OptiMEM reduced-serum cell culture medium, lead to the proposition that the strong dependence of transfection efficiency on the oxidation state of BFDMA, as reported previously, is largely a reflection of the substantial change in the zeta-potentials of these complexes with changes in the oxidation state of BFDMA.
Collapse
Affiliation(s)
- Melissa E Hays
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
44
|
Caracciolo G, Marchini C, Pozzi D, Caminiti R, Amenitsch H, Montani M, Amici A. Structural stability against disintegration by anionic lipids rationalizes the efficiency of cationic liposome/DNA complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4498-508. [PMID: 17341104 DOI: 10.1021/la063456o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Reported here is the correlation between the transfection efficiency of cationic liposome/DNA complexes (lipoplexes) and the structural evolution that they undergo when interacting with anionic membrane lipids. Multicomponent lipoplexes, incorporating from three to six lipid species simultaneously, presented a much higher transfection efficiency than binary lipoplexes, which are more commonly used for gene-delivery purposes. The discovery that a high transfection efficiency can be achieved by employing multicomponent complexes at a lower-than-ever-before membrane charge density of lipoplexes was of primary significance. Synchrotron small-angle X-ray diffraction (SAXD) experiments showed that anionic liposomes made of dioleoylphosphatidylglycerol (DOPG) disintegrated the lamellar phase of lipoplexes. DNA unbinding was measured by electrophoresis on agarose gels. Most importantly, structural changes induced by anionic lipids strictly depended on the lipid composition of lipoplexes. We found evidence of the existence of three different regimes of stability related to the interaction between complexes and anionic membranes. Both unstable (with low membrane charge density, sigmaM) and highly stable lipoplexes (with high sigmaM) exhibited low transfection efficiency whereas highly efficient multicomponent lipoplexes exhibited an "optimal stability". This intermediate regime reflects a compromise between two opposing constraints: protection of DNA in the cytosol and endosomal escape. Here we advance the concept that structural stability, upon interaction with cellular anionic lipids, is a key factor governing the transfection efficiency of lipoplexes. Possible molecular mechanisms underlying experimental observations are also discussed.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Caracciolo G, Pozzi D, Caminiti R, Amenitsch H. Formation of overcharged cationic lipid/DNA complexes. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Caracciolo G, Pozzi D, Amenitsch H, Caminiti R. Multicomponent cationic lipid-DNA complex formation: role of lipid mixing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:11582-7. [PMID: 16316084 DOI: 10.1021/la052077c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Multicomponent cationic lipid-DNA complexes (lipoplexes) were prepared by adding linear DNA to mixed lipid dispersions containing two populations of binary cationic liposomes and characterized by means of small angle X-ray scattering (SAXS). Four kinds of cationic liposomes were used. The first binary lipid mixture was made of the cationic lipid (3'[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) and the neutral helper lipid dioleoylphosphocholine (DOPC) (DC-Chol/DOPC liposomes), the second one of the cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the neutral dioleoylphosphatidylethanolamine (DOPE) (DOTAP/DOPE liposomes), the third one of DC-Chol and DOPE (DC-Chol/DOPE liposomes), and the fourth one of DOTAP and DOPC (DOTAP/DOPC liposomes). Upon DNA-induced fusion of liposomes, large lipid mixing at the molecular level occurs. As a result, highly organized mixed lipoplexes spontaneously form with membrane properties intermediate between those of starting liposomes. By varying the composition of lipid dispersions, different DNA packing density regimes can also be achieved. Furthermore, occurring lipid mixing was found to induce hexagonal to lamellar phase transition in DOTAP/DOPE membranes. Molecular mechanisms underlying experimental findings are discussed.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, Italy.
| | | | | | | |
Collapse
|
47
|
MCLoughlin § D, Delsanti M, Albouy PA, Langevin * D. Aggregates formation between short DNA fragments and cationic surfactants. Mol Phys 2005. [DOI: 10.1080/00268970500250460] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
McLoughlin D, Dias R, Lindman B, Cardenas M, Nylander T, Dawson K, Miguel M, Langevin D. Surface complexation of DNA with insoluble monolayers. Influence of divalent counterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:1900-1907. [PMID: 15723487 DOI: 10.1021/la047700s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
DNA interacts with insoluble monolayers made of cationic amphiphiles as well as with monolayers of zwitterionic lipids in the presence of divalent ions. Binding to dioctadecyldimethylammonium bromide (DODAB) or distearoyl-sn-glycero-3-phosphocholine (DSPC) monolayers in the presence of calcium is accompanied by monolayer expansion. For the positively charged DODAB monolayer, this causes a decrease of surface potential, while an increase is observed for the DSPC monolayers. Binding to dipalmitoyl-sn-glycero-3-phosphocholine preserves most of the liquid expanded-liquid condensed coexistence region. The liquid condensed domains adopt an elongated morphology in the presence of DNA, especially in the presence of calcium. The interaction of DNA with phospholipid monolayers is ion specific: the presence of calcium leads to a stronger interaction than magnesium and barium. These results were confirmed by bulk complexation studies.
Collapse
Affiliation(s)
- D McLoughlin
- Laboratoire de Physique des Solides, Université Paris Sud, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
McManus JJ, Rädler JO, Dawson KA. Observation of a rectangular columnar phase in a DNA-calcium-zwitterionic lipid complex. J Am Chem Soc 2005; 126:15966-7. [PMID: 15584722 DOI: 10.1021/ja046105+] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of calcium, DNA and unilamellar liposomes of the zwitterionic lipid DPPC form a complex in which DNA strands are embedded between a lamellar phase of DPPC. In some complexes, in-plane alignment of the DNA strands occurs, where a DNA-DNA interaxial distance can be measured using small-angle X-ray scattering. Here we report a higher level of DNA organization, with a rectangular columnar phase of DNA identified within this complex structure. This observation is important in view of recent interests in creating new synthetic systems at the interface of biology.
Collapse
Affiliation(s)
- Jennifer J McManus
- Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
50
|
McLoughlin D, Langevin D. Surface complexation of DNA with a cationic surfactant. Colloids Surf A Physicochem Eng Asp 2004. [DOI: 10.1016/j.colsurfa.2004.04.096] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|