1
|
Spadin FS, Gergely LP, Kämpfer T, Frenz M, Vermathen M. Fluorescence lifetime imaging and phasor analysis of intracellular porphyrinic photosensitizers applied with different polymeric formulations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112904. [PMID: 38579534 DOI: 10.1016/j.jphotobiol.2024.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The fluorescence lifetime of a porphyrinic photosensitizer (PS) is an important parameter to assess the aggregation state of the PS even in complex biological environments. Aggregation-induced quenching of the PS can significantly reduce the yield of singlet oxygen generation and thus its efficiency as a medical drug in photodynamic therapy (PDT) of diseased tissues. Hydrophobicity and the tendency to form aggregates pose challenges on the development of efficient PSs and often require carrier systems. A systematic study was performed to probe the impact of PS structure and encapsulation into polymeric carriers on the fluorescence lifetime in solution and in the intracellular environment. Five different porphyrinic PSs including chlorin e6 (Ce6) derivatives and tetrakis(m-hydroxyphenyl)-porphyrin and -chlorin were studied in free form and combined with polyvinylpyrrolidone (PVP) or micelles composed of triblock-copolymers or Cremophor. Following incubation of HeLa cells with these systems, fluorescence lifetime imaging combined with phasor analysis and image segmentation was applied to study the lifetime distribution in the intracellular surrounding. The data suggest that for free PSs, the structure-dependent cell uptake pathways determine their state and emission lifetimes. PS localization in the plasma membrane yielded mostly monomers with long fluorescence lifetimes whereas the endocytic pathway with subsequent lysosomal deposition adds a short-lived component for hydrophilic anionic PSs. Prolonged incubation times led to increasing contributions from short-lived components that derive from aggregates mainly localized in the cytoplasm. Encapsulation of PSs into polymeric carriers led to monomerization and mostly fluorescence emission decays with long fluorescence lifetimes in solution. However, the efficiency depended on the binding strength that was most pronounced for PVP. In the cellular environment, PVP was able to maintain monomeric long-lived species over prolonged incubation times. This was most pronounced for Ce6 derivatives with a logP value around 4.5. Micellar encapsulation led to faster release of the PSs resulting in multiple components with long and short fluorescence lifetimes. The hydrophilic hardly aggregating PS exhibited a mostly stable invariant lifetime distribution over time with both carriers. The presented data are expected to contribute to optimized PDT treatment protocols and improved PS-carrier design for preventing intracellular fluorescence quenching. In conclusion, amphiphilic and concurrent hydrophobic PSs with high membrane affinity as well as strong binding to the carrier have best prospects to maintain their photophysical properties in vivo and serve thus as efficient photodynamic diagnosis and PDT drugs.
Collapse
Affiliation(s)
- Florentin S Spadin
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Lea P Gergely
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland
| | - Tobias Kämpfer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.
| | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
2
|
Aebisher D, Woźnicki P, Dynarowicz K, Kawczyk-Krupka A, Cieślar G, Bartusik-Aebisher D. Photodynamic Therapy and Immunological View in Gastrointestinal Tumors. Cancers (Basel) 2023; 16:66. [PMID: 38201494 PMCID: PMC10777986 DOI: 10.3390/cancers16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastrointestinal cancers are a specific group of oncological diseases in which the location and nature of growth are of key importance for clinical symptoms and prognosis. At the same time, as research shows, they pose a serious threat to a patient's life, especially at an advanced stage of development. The type of therapy used depends on the anatomical location of the cancer, its type, and the degree of progression. One of the modern forms of therapy used to treat gastrointestinal cancers is PDT, which has been approved for the treatment of esophageal cancer in the United States. Despite the increasingly rapid clinical use of this treatment method, the exact immunological mechanisms it induces in cancer cells has not yet been fully elucidated. This article presents a review of the current understanding of the mode of action of photodynamic therapy on cells of various gastrointestinal cancers with an emphasis on colorectal cancer. The types of cell death induced by PDT include apoptosis, necrosis, and pyroptosis. Anticancer effects are also a result of the destruction of tumor vasculature and activation of the immune system. Many reports exist that concern the mechanism of apoptosis induction, of which the mitochondrial pathway is most often emphasized. Photodynamic therapy may also have a beneficial effect on such aspects of cancer as the ability to develop metastases or contribute to reducing resistance to known pharmacological agents.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
3
|
Woźniak M, Nowak-Perlak M. Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro. Int J Mol Sci 2023; 24:16897. [PMID: 38069219 PMCID: PMC10707231 DOI: 10.3390/ijms242316897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of this study was to explore the potential of hypericin, a naturally occurring photosensi-tizer, for photodynamic therapy (PDT) in skin cancer, investigating its phototoxic effects and mechanisms of action in cancer cells compared to normal skin keratinocytes, squamous cell cancer (SCC-25) cells and melanoma (MUG-Mel2) cells. Hypericin was applied at concentrations ranging from 0.1-40 μM to HaCaT, SCC-25, and MUG-Mel2 cells. After 24 h of incubation, the cells were exposed to orange light at 3.6 J/cm2 or 7.2 J/cm2. Phototoxicity was assessed using MTT and SRB tests. Cellular uptake was measured by flow cytometry. Apoptosis-positive cells were estimated through TUNEL for apoptotic bodies' visualization. Hypericin exhibited a higher phototoxic reaction in cancer cells compared to normal keratinocytes after irradiation. Cancer cells demonstrated increased and selective uptake of hypericin. Apoptosis was observed in SCC-25 and MUG-Mel2 cells following PDT. Our findings suggest that hypericin-based PDT is a promising and less invasive approach for treating skin cancer. The higher phototoxic reaction, selective uptake by cancer cells, and observed proapoptotic properties support the promising role of hypericin-based PDT in skin cancer treatment.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | |
Collapse
|
4
|
Lin MHC, Chang LC, Chung CY, Huang WC, Lee MH, Chen KT, Lai PS, Yang JT. Photochemical Internalization of Etoposide Using Dendrimer Nanospheres Loaded with Etoposide and Protoporphyrin IX on a Glioblastoma Cell Line. Pharmaceutics 2021; 13:pharmaceutics13111877. [PMID: 34834292 PMCID: PMC8621426 DOI: 10.3390/pharmaceutics13111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary neoplasm of the adult central nervous system originating from glial cells. The prognosis of those affected by GBM has remained poor despite advances in surgery, chemotherapy, and radiotherapy. Photochemical internalization (PCI) is a release mechanism of endocytosed therapeutics into the cytoplasm, which relies on the membrane disruptive effect of light-activated photosensitizers. In this study, phototherapy by PCI was performed on a human GBM cell-line using the topoisomerase II inhibitor etoposide (Etop) and the photosensitizer protoporphyrin IX (PpIX) loaded in nanospheres (Ns) made from generation-5 polyamidoamine dendrimers (PAMAM(G5)). The resultant formulation, Etop/PpIX-PAMAM(G5) Ns, measured 217.4 ± 2.9 nm in diameter and 40.5 ± 1.3 mV in charge. Confocal microscopy demonstrated PpIX fluorescence within the endo-lysosomal compartment, and an almost twofold increase in cellular uptake compared to free PpIX by flow cytometry. Phototherapy with 3 min and 5 min light illumination resulted in a greater extent of synergism than with co-administered Etop and PpIX; notably, antagonism was observed without light illumination. Mechanistically, significant increases in oxidative stress and apoptosis were observed with Etop/PpIX-PAMAM(G5) Ns upon 5 min of light illumination in comparison to treatment with either of the agents alone. In conclusion, simultaneous delivery and endo-lysosomal co-localization of Etop and PpIX by PAMAM(G5) Ns leads to a synergistic effect by phototherapy; in addition, the finding of antagonism without light illumination can be advantageous in lowering the dark toxicity and improving photo-selectivity.
Collapse
Affiliation(s)
- Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Wei-Chao Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Kuo-Tai Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-5-3621000 (ext. 3412); Fax: +886-5-3621000 (ext. 3002)
| |
Collapse
|
5
|
Sytar O, Kotta K, Valasiadis D, Kosyan A, Brestic M, Koidou V, Papadopoulou E, Kroustalaki M, Emmanouilidou C, Pashalidis A, Avdikos I, Hilioti Z. The Effects of Photosensitizing Dyes Fagopyrin and Hypericin on Planktonic Growth and Multicellular Life in Budding Yeast. Molecules 2021; 26:molecules26164708. [PMID: 34443298 PMCID: PMC8398373 DOI: 10.3390/molecules26164708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Naphthodianthrones such as fagopyrin and hypericin found mainly in buckwheat (Fagopyrum spp.) and St. John’s wort (SJW) (Hypericum perforatum L.) are natural photosensitizers inside the cell. The effect of photosensitizers was studied under dark conditions on growth, morphogenesis and induction of death in Saccharomyces cerevisiae. Fagopyrin and hypericin induced a biphasic and triphasic dose response in cellular growth, respectively, over a 10-fold concentration change. In fagopyrin-treated cells, disruptions in the normal cell cycle progression were evident by microscopy. DAPI staining revealed several cells that underwent premature mitosis without budding, a striking morphological abnormality. Flow Cytometric (FC) analysis using a concentration of 100 µM showed reduced cell viability by 41% in fagopyrin-treated cells and by 15% in hypericin-treated cells. FC revealed the development of a secondary population of G1 cells in photosensitizer-treated cultures characterized by small size and dense structures. Further, we show that fagopyrin and the closely related hypericin altered the shape and the associated fluorescence of biofilm-like structures. Colonies grown on solid medium containing photosensitizer had restricted growth, while cell-to-cell adherence within the colony was also affected. In conclusion, the photosensitizers under dark conditions affected culture growth, caused toxicity, and disrupted multicellular growth, albeit with different efficiencies.
Collapse
Affiliation(s)
- Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrskya str., 64, 01033 Kyiv, Ukraine; (O.S.); (A.K.)
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Konstantia Kotta
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Dimitrios Valasiadis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Anatoliy Kosyan
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrskya str., 64, 01033 Kyiv, Ukraine; (O.S.); (A.K.)
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Venetia Koidou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Eleftheria Papadopoulou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Maria Kroustalaki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Christina Emmanouilidou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Alexandros Pashalidis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Ilias Avdikos
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Zoe Hilioti
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
- Correspondence: ; Tel.: +30-23-1049-8273
| |
Collapse
|
6
|
de Andrade GP, de Souza TFM, Cerchiaro G, Pinhal MADS, Ribeiro AO, Girão MJBC. Hypericin in photobiological assays: An overview. Photodiagnosis Photodyn Ther 2021; 35:102343. [PMID: 34038765 DOI: 10.1016/j.pdpdt.2021.102343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
Hypericin is considered a potent photosensitizer for use in antitumor and antimicrobial photodynamic therapy (PDT). This review presents the primary biological results obtained with hypericin in photodynamic therapy applications, such as photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis. We present a compilation of in vitro results that have been published thus far; for these studies, we highlight the hypericin concentration, light dose, and other experimental conditions to evaluate the efficiency of photodynamic treatment like cell death, cell viability, or cell proliferation. The results indicate that different hypericin phototoxicity levels can be observed according to the specific light dose and concentration. Furthermore, it was shown that cellular localization and cell death mechanisms (apoptosis and necrosis) are dependent on the cell type.
Collapse
Affiliation(s)
- Gislaine Patricia de Andrade
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil
| | | | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil
| | - Maria Aparecida da Silva Pinhal
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, Brasil
| | - Anderson Orzari Ribeiro
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil.
| | | |
Collapse
|
7
|
Dong X, Zeng Y, Zhang Z, Fu J, You L, He Y, Hao Y, Gu Z, Yu Z, Qu C, Yin X, Ni J, Cruz LJ. Hypericin-mediated photodynamic therapy for the treatment of cancer: a review. J Pharm Pharmacol 2020; 73:425-436. [PMID: 33793828 DOI: 10.1093/jpp/rgaa018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Hypericin is a polycyclic aromatic naphthodianthrone that occurs naturally. It is also an active ingredient in some species of the genus Hypericum. Emerging evidence suggests that hypericin has attracted great attention as a potential anticancer drug and exhibits remarkable antiproliferative effect upon irradiation on various tumour cells. This paper aims to summarise the anticancer effect and molecular mechanisms modulated by hypericin-medicated photodynamic therapy and its potential role in the cancer treatment. KEY FINDINGS Hypericin-medicated photodynamic therapy could inhibit the proliferation of various tumour cells including bladder, colon, breast, cervical, glioma, leukaemia, hepatic, melanoma, lymphoma and lung cancers. The effect is primarily mediated by p38 mitogen-activated protein kinase (MAPK), JNK, PI3K, CCAAT-enhancer-binding protein homologous protein (CHOP)/TRIB3/Akt/mTOR, TRAIL/TRAIL-receptor, c-Met and Ephrin-Eph, the mitochondria and extrinsic signalling pathways. Furthermore, hypericin-medicated photodynamic therapy in conjunction with chemotherapeutic agents or targeted therapies is more effective in inhibiting the growth of tumour cells. SUMMARY During the past few decades, the anticancer properties of photoactivated hypericin have been extensively investigated. Hypericin-medicated photodynamic therapy can modulate a variety of proteins and genes and exhibit a great potential to be used as a therapeutic agent for various types of cancer.
Collapse
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Fu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan He
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Hao
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Zili Gu
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhenfeng Yu
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Luis J Cruz
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Kaleta-Richter M, Aebisher D, Jaworska D, Czuba Z, Cieślar G, Kawczyk-Krupka A. The Influence of Hypericin-Mediated Photodynamic Therapy on Interleukin-8 and -10 Secretion in Colon Cancer Cells. Integr Cancer Ther 2020; 19:1534735420918931. [PMID: 32508149 PMCID: PMC7278300 DOI: 10.1177/1534735420918931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to measure the secretion of interleukin (IL)-8 and -10 during an elicited immune response following sublethal doses of hypericin-mediated photodynamic therapy (HY-PDT) in experimental models of residual colon cancer cells in vitro. Investigations were performed on the cancer cell lines SW480 and SW620. Each cell line was exposed to 3 different concentrations of the photosensitizer HY and various doses of irradiation. The cell metabolic activity using an MTT assay was performed and then the measurement of IL-8 and IL-10 secretion was achieved using the Bio-Plex ProTMAssay. There was a statistically significant amplification of IL-8 secretion during HY-PDT in the SW620 cell line (at 1 J/cm2: P = .01, 5 J/cm2: P = .002, and 10 J/cm2: P = .025) and a statistically significant decrease in IL-8 during HY-PDT in the SW480 cell line (at 1 J/cm2: P = .05, 5 J/cm2: P = .035, and 10 J/cm2: P = .035). No statistically significant differences in IL-10 concentration were found following HY-PDT in the SW480 (at 1 J/cm2: P > .4, 5 J/cm2: P = .1, and 10 J/cm2: P = .075) or in the SW620 cell line (at 1 J/cm2: P > .4, 5 J/cm2: P > .4, and 10 J/cm2: P > .4). HY-PDT can both eliminate and control a primary tumor via cytotoxic effects, and at sublethal doses, it can affect IL release by colon cancer cells. In this experiment, this influence depended on the level of tumor cell metastatic activity.
Collapse
Affiliation(s)
- Marta Kaleta-Richter
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Dagmara Jaworska
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| |
Collapse
|
9
|
Damke GMZF, Damke E, de Souza Bonfim-Mendonça P, Ratti BA, de Freitas Meirelles LE, da Silva VRS, Gonçalves RS, César GB, de Oliveira Silva S, Caetano W, Hioka N, Souza RP, Consolaro MEL. Selective photodynamic effects on cervical cancer cells provided by P123 Pluronic®-based nanoparticles modulating hypericin delivery. Life Sci 2020; 255:117858. [PMID: 32497635 DOI: 10.1016/j.lfs.2020.117858] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
At present, cervical cancer is the fourth leading cause of cancer among women worldwide with no effective treatment options. In this study we aimed to evaluate the efficacy of hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) photodynamic therapy (PDT) in a comprehensive panel of human cervical cancer-derived cell lines, including HeLa (HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and 18-positive), and C33A (HPV-negative), compared to a nontumorigenic human epithelial cell line (HaCaT). Were investigated: (i) cell cytotoxicity and phototoxicity, cellular uptake and subcellular distribution; (ii) cell death pathway and cellular oxidative stress; (iii) migration and invasion. Our results showed that HYP/P123 micelles had effective and selective time- and dose-dependent phototoxic effects on cervical cancer cells but not in HaCaT. Moreover, HYP/P123 micelles accumulated in endoplasmic reticulum, mitochondria and lysosomes, resulting in photodynamic cell death mainly by necrosis. HYP/P123 induced cellular oxidative stress mainly via type II mechanism of PDT and inhibited cancer cell migration and invasion mainly via MMP-2 inhibition. Taken together, our results indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat cervical cancers through PDT, suggesting they are worthy for in vivo preclinical evaluations.
Collapse
Affiliation(s)
| | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Patrícia de Souza Bonfim-Mendonça
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Bianca Altrão Ratti
- Department of Basic Health Sciences, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Lyvia Eloiza de Freitas Meirelles
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Vânia Ramos Sela da Silva
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Gabriel Batista César
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Department of Basic Health Sciences, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Raquel Pantarotto Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil.
| |
Collapse
|
10
|
Hypericin and its radio iodinated derivatives – A novel combined approach for the treatment of pediatric alveolar rhabdomyosarcoma cells in vitro. Photodiagnosis Photodyn Ther 2020; 29:101588. [DOI: 10.1016/j.pdpdt.2019.101588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
|
11
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
12
|
Mühleisen L, Alev M, Unterweger H, Subatzus D, Pöttler M, Friedrich RP, Alexiou C, Janko C. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy. Int J Mol Sci 2017; 18:E1388. [PMID: 28661430 PMCID: PMC5535881 DOI: 10.3390/ijms18071388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022] Open
Abstract
The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient's body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications.
Collapse
Affiliation(s)
- Laura Mühleisen
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Magdalena Alev
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Daniel Subatzus
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Maslaňáková M, Balogová L, Miškovský P, Tkáčová R, Štroffeková K. Anti- and Pro-apoptotic Bcl2 Proteins Distribution and Metabolic Profile in Human Coronary Aorta Endothelial Cells Before and After HypPDT. Cell Biochem Biophys 2016; 74:435-47. [PMID: 27314518 DOI: 10.1007/s12013-016-0740-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 06/09/2016] [Indexed: 11/24/2022]
Abstract
Understanding apoptosis regulatory mechanisms in endothelial cells (ECs) has great importance for the development of novel therapy strategies for cancer and cardiovascular pathologies. An oxidative stress with the generation of reactive oxygen species (ROS) is a common mechanism causing ECs' dysfunction and apoptosis. The generation of ROS can be triggered by various stimuli including photodynamic therapy (PDT). In most PDT treatments, photosensitizer (PS) is administered systemically, and thus, possibility of high exposure to PS in the ECs remains high. PS accumulation in ECs may be clinically relevant even without PDT, if PS molecules affect the pro-apoptotic cascade without illumination. In the present work, we focused on Hypericin (Hyp) and HypPDT effects on the cell viability, oxidative stress, and the distribution of Bcl2 family members in human coronary artery endothelial (HCAEC) cells. Our findings show that the presence of Hyp itself has an effect on cell viability, oxidative stress, and the distribution of Bcl2 family members, without affecting the mitochondria function. In contrast, HypPDT resulted in mitochondria dysfunction, further increase of oxidative stress and effect on the distribution of Bcl2 family members, and in primarily necrotic type of death in HCAEC cells.
Collapse
Affiliation(s)
- Mária Maslaňáková
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia
| | - Lucia Balogová
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia
| | - Pavol Miškovský
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia.,Center of Interdisciplinary Biosciences, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Ružena Tkáčová
- Department of Respiratory Medicine, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Katarína Štroffeková
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Jesenna 5, Kosice, Slovakia.
| |
Collapse
|
14
|
Jendželovská Z, Jendželovský R, Kuchárová B, Fedoročko P. Hypericin in the Light and in the Dark: Two Sides of the Same Coin. FRONTIERS IN PLANT SCIENCE 2016; 7:560. [PMID: 27200034 PMCID: PMC4859072 DOI: 10.3389/fpls.2016.00560] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Hypericin (4,5,7,4',5',7'-hexahydroxy-2,2'-dimethylnaphtodianthrone) is a naturally occurring chromophore found in some species of the genus Hypericum, especially Hypericum perforatum L. (St. John's wort), and in some basidiomycetes (Dermocybe spp.) or endophytic fungi (Thielavia subthermophila). In recent decades, hypericin has been intensively studied for its broad pharmacological spectrum. Among its antidepressant and light-dependent antiviral actions, hypericin is a powerful natural photosensitizer that is applicable in the photodynamic therapy (PDT) of various oncological diseases. As the accumulation of hypericin is significantly higher in neoplastic tissue than in normal tissue, it can be used in photodynamic diagnosis (PDD) as an effective fluorescence marker for tumor detection and visualization. In addition, light-activated hypericin acts as a strong pro-oxidant agent with antineoplastic and antiangiogenic properties, since it effectively induces the apoptosis, necrosis or autophagy of cancer cells. Moreover, a strong affinity of hypericin for necrotic tissue was discovered. Thus, hypericin and its radiolabeled derivatives have been recently investigated as potential biomarkers for the non-invasive targeting of tissue necrosis in numerous disorders, including solid tumors. On the other hand, several light-independent actions of hypericin have also been described, even though its effects in the dark have not been studied as intensively as those of photoactivated hypericin. Various experimental studies have revealed no cytotoxicity of hypericin in the dark; however, it can serve as a potential antimetastatic and antiangiogenic agent. On the contrary, hypericin can induce the expression of some ABC transporters, which are often associated with the multidrug resistance (MDR) of cancer cells. Moreover, the hypericin-mediated attenuation of the cytotoxicity of some chemotherapeutics was revealed. Therefore, hypericin might represent another St. John's wort metabolite that is potentially responsible for negative herb-drug interactions. The main aim of this review is to summarize the benefits of photoactivated and non-activated hypericin, mainly in preclinical and clinical applications, and to uncover the "dark side" of this secondary metabolite, focusing on MDR mechanisms.
Collapse
|
15
|
Kuchárová B, Mikeš J, Jendželovský R, Vargová J, Mikešová L, Jendželovská Z, Kovaľ J, Fedoročko P. Potentiation of hypericin-mediated photodynamic therapy cytotoxicity by MK-886: Focus on ABC transporters, GDF-15 and redox status. Photodiagnosis Photodyn Ther 2015; 12:490-503. [DOI: 10.1016/j.pdpdt.2015.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023]
|
16
|
Joniova J, Buriankova L, Buzova D, Miskovsky P, Jancura D. Kinetics of incorporation/redistribution of photosensitizer hypericin to/from high-density lipoproteins. Int J Pharm 2014; 475:578-84. [DOI: 10.1016/j.ijpharm.2014.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/11/2023]
|
17
|
Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One 2014; 9:e103762. [PMID: 25076130 PMCID: PMC4116257 DOI: 10.1371/journal.pone.0103762] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022] Open
Abstract
Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT Mel-1) caspase-dependent apoptotic modes of cell death, as well as a caspase-independent apoptotic mode that did not involve apoptosis-inducing factor (501 mel). Further research is needed to shed more light on these mechanisms.
Collapse
Affiliation(s)
- Britta Kleemann
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Benjamin Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas J. Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dirk Lang
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lester M. Davids
- Redox Laboratory and Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
18
|
The role of anti-apoptotic protein kinase Cα in response to hypericin photodynamic therapy in U-87 MG cells. Photodiagnosis Photodyn Ther 2014; 11:213-26. [DOI: 10.1016/j.pdpdt.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/06/2023]
|
19
|
Larisch P, Verwanger T, Linecker M, Krammer B. The interrelation between a pro-inflammatory milieu and fluorescence diagnosis or photodynamic therapy of human skin cell lines. Photodiagnosis Photodyn Ther 2014; 11:91-103. [DOI: 10.1016/j.pdpdt.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 01/03/2023]
|
20
|
Photosensitizing effects of hypericin on head neck squamous cell carcinoma in vitro. Eur Arch Otorhinolaryngol 2014; 272:711-8. [PMID: 24687800 DOI: 10.1007/s00405-014-2984-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/24/2014] [Indexed: 01/22/2023]
Abstract
Clinical outcome of patients suffering from head neck squamous cell carcinomas is still poor due to recurrent disease and surgical limitations. There is still a demand for multimodality approaches and new therapeutic options. Hypericin is a promising phototoxic drug which was investigated for its effects on head neck squamous cell carcinoma cells in vitro. FaDu cells incubated with or without hypericin were illuminated (450-700 nm, 50,000 lx) for different time periods. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide- and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay were used to score metabolic and apoptotic activity. Even after the shortest illumination FaDu cells incubated with hypericin showed massive reduction of metabolism and excessive apoptosis. This was present even with the lowest hypericin concentration. Cells without hypericin or without illumination were not affected. These photosensitizing effects of hypericin could be suitable for clinical application and could lead to the development of an intraoperative photodynamic therapy of head neck squamous cell carcinomas.
Collapse
|
21
|
Mikešová L, Mikeš J, Kovaľ J, Gyurászová K, Čulka Ľ, Vargová J, Valeková B, Fedoročko P. Conjunction of glutathione level, NAD(P)H/FAD redox status and hypericin content as a potential factor affecting colon cancer cell resistance to photodynamic therapy with hypericin. Photodiagnosis Photodyn Ther 2013; 10:470-83. [DOI: 10.1016/j.pdpdt.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|
22
|
Haupt S, Malik Z, Ehrenberg B. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS. Photochem Photobiol Sci 2013; 13:38-47. [PMID: 24173598 DOI: 10.1039/c3pp50189b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.
Collapse
Affiliation(s)
- Sara Haupt
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
23
|
Strejčková A, Staničová J, Jancura D, Miškovský P, Bánó G. Spatial Orientation and Electric-Field-Driven Transport of Hypericin Inside of Bilayer Lipid Membranes. J Phys Chem B 2013; 117:1280-6. [DOI: 10.1021/jp3114539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alena Strejčková
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Jana Staničová
- Institute of Biophysics and
Biomathematics, University of Veterinary Medicine, Komenského 73, Košice 041 81, Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Pavol Miškovský
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Gregor Bánó
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| |
Collapse
|
24
|
Fu PP, Xia Q, Zhao Y, Wang S, Yu H, Chiang HM. Phototoxicity of herbal plants and herbal products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:213-255. [PMID: 24024520 DOI: 10.1080/10590501.2013.824206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants are used by humans in daily life in many different ways, including as food, herbal medicines, and cosmetics. Unfortunately, many natural plants and their chemical constituents are photocytotoxic and photogenotoxic, and these phototoxic phytochemicals are widely present in many different plant families. To date, information concerning the phototoxicity and photogenotoxicity of many plants and their chemical constituents is limited. In this review, we discuss phototoxic plants and their major phototoxic constituents; routes of human exposure; phototoxicity of these plants and their constituents; general mechanisms of phototoxicity of plants and phototoxic components; and several representative phototoxic plants and their photoactive chemical constituents.
Collapse
Affiliation(s)
- Peter P Fu
- a National Center for Toxicological Research , Jefferson , Arkansas , USA
| | | | | | | | | | | |
Collapse
|
25
|
In vitro studies on erythrosine-based photodynamic therapy of malignant and pre-malignant oral epithelial cells. PLoS One 2012; 7:e34475. [PMID: 22485174 PMCID: PMC3317784 DOI: 10.1371/journal.pone.0034475] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Photodynamic Therapy (PDT) involves the administration of a tumor localizing photosensitizing agent, which upon activation with light of an appropriate wavelength leads to the destruction of the tumor cells. The aim of the present study was to determine the efficacy of erythrosine as a photosensitizer for the PDT of oral malignancies. The drug uptake kinetics of erythrosine in malignant (H357) and pre-malignant (DOK) oral epithelial cells and their susceptibility to erythrosine-based PDT was studied along with the determination of the subcellular localization of erythrosine. This was followed by initial investigations into the mechanism of cell killing induced following PDT involving both high and low concentrations of erythrosine. The results showed that at 37 °C the uptake of erythrosine by both DOK and H357 cells increased in an erythrosine dose dependent manner. However, the percentage of cell killing observed following PDT differed between the 2 cell lines; a maximum of ~80% of DOK cell killing was achieved as compared to ~60% killing for H357 cells. Both the DOK and H357 cell types exhibited predominantly mitochondrial accumulation of erythrosine, but the mitochondrial trans-membrane potential (ΔΨ(m)) studies showed that the H357 cells were far more resistant to the changes in ΔΨ(m) when compared to the DOK cells and this might be a factor in the apparent relative resistance of the H357 cells to PDT. Finally, cell death morphology and caspase activity analysis studies demonstrated the occurrence of extensive necrosis with high dose PDT in DOK cells, whereas apoptosis was observed at lower doses of PDT for both cell lines. For H357 cells, high dose PDT produced both apoptotic as well as necrotic responses. This is the first instance of erythrosine-based PDT's usage for cancer cell killing.
Collapse
|
26
|
Al-Khaza'leh KA, Omar K, Jaafar MS. pH effect on cellular uptake of Sn(IV) chlorine e6 dichloride trisodium salt by cancer cells in vitro. J Biol Phys 2012; 37:153-61. [PMID: 22210969 DOI: 10.1007/s10867-010-9206-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022] Open
Abstract
The effects of pH value and presence of serum in an incubation medium on photosensitizer drug cellular uptake in MCF7 cancer cells have been investigated. The results showed that the presence of serum in an incubation medium reduced the drug cellular uptake at all pH values. It has been found that decreasing on pH values of the incubation medium increased the cellular uptake of the drug, demonstrating selective uptake of the sensitizer. The HepG2 liver cancer cells exhibited more drug cellular uptake than CCD-18CO normal colon cells, which assessed the selectivity uptake of photosensitizer on cancerous cells. The concentration of photosensitizer measured in 10(6) cells showed a good correlation to the incubation time. Fluorescence and absorption spectroscopy been have used to examine the cells.
Collapse
|
27
|
Vuong TTK, Vever-Bizet C, Bonneau S, Bourg-Heckly G. Hypericin incorporation and localization in fixed HeLa cells for various conditions of fixation and incubation. Photochem Photobiol Sci 2011; 10:561-8. [DOI: 10.1039/c0pp00324g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Eriksson ESE, Santos DJVAD, Guedes RC, Eriksson LA. Properties and Permeability of Hypericin and Brominated Hypericin in Lipid Membranes. J Chem Theory Comput 2009; 5:3139-49. [DOI: 10.1021/ct9002702] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma S. E. Eriksson
- Örebro Life Science Center, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden, Modelling and Simulation Research Center, Örebro University, Örebro, Sweden, Department of Pharmacy, University of Lisbon, 1649-019 Lisbon, Portugal, and School of Chemistry, National University of Ireland, University Road, Galway, Ireland
| | - Daniel J. V. A. dos Santos
- Örebro Life Science Center, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden, Modelling and Simulation Research Center, Örebro University, Örebro, Sweden, Department of Pharmacy, University of Lisbon, 1649-019 Lisbon, Portugal, and School of Chemistry, National University of Ireland, University Road, Galway, Ireland
| | - Rita C. Guedes
- Örebro Life Science Center, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden, Modelling and Simulation Research Center, Örebro University, Örebro, Sweden, Department of Pharmacy, University of Lisbon, 1649-019 Lisbon, Portugal, and School of Chemistry, National University of Ireland, University Road, Galway, Ireland
| | - Leif A. Eriksson
- Örebro Life Science Center, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden, Modelling and Simulation Research Center, Örebro University, Örebro, Sweden, Department of Pharmacy, University of Lisbon, 1649-019 Lisbon, Portugal, and School of Chemistry, National University of Ireland, University Road, Galway, Ireland
| |
Collapse
|
29
|
Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P. The Multifaceted Photocytotoxic Profile of Hypericin. Mol Pharm 2009; 6:1775-89. [DOI: 10.1021/mp900166q] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Theodossis A. Theodossiou
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - John S. Hothersall
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Peter A. De Witte
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Alexandros Pantos
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Patrizia Agostinis
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
30
|
Davids LM, Kleemann B, Cooper S, Kidson SH. Melanomas display increased cytoprotection to hypericin-mediated cytotoxicity through the induction of autophagy. Cell Biol Int 2009; 33:1065-72. [PMID: 19596456 DOI: 10.1016/j.cellbi.2009.06.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 05/22/2009] [Accepted: 06/27/2009] [Indexed: 01/13/2023]
Abstract
Photodynamic therapy (PDT) as a regime for melanoma is of limited success due to factors such as the efficacy of the photosensitizer used, penetration depth and the presence of pigment. We characterised a pigmented and an unpigmented melanoma cell line with respect to their phenotypes. Cell viability was assessed after exposure to hypericin, a UVA-activated photosensitizer. Exposure to 3 microM activated hypericin induced a cytoprotective (autophagic) response from both cell lines. However, the pigmented cells accumulated a large amount of glycogen in their cytoplasm. We hypothesise that the treatment induces an initial cytoprotective response through autophagy, but with increased stress results in a different mode of cell death in pigmented melanoma cells from unpigmented cells. These results indicate that hypericin-PDT could be an adjuvant therapy for melanoma.
Collapse
Affiliation(s)
- Lester M Davids
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| | | | | | | |
Collapse
|
31
|
Gbur P, Dedic R, Chorvat Jr D, Miskovsky P, Hala J, Jancura D. Time-resolved Luminescence and Singlet Oxygen Formation After Illumination of the Hypericin-Low-density Lipoprotein Complex. Photochem Photobiol 2009; 85:816-23. [DOI: 10.1111/j.1751-1097.2008.00483.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Galanou MC, Theodossiou TA, Tsiourvas D, Sideratou Z, Paleos CM. Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition. Photochem Photobiol 2009; 84:1073-83. [PMID: 18627515 DOI: 10.1111/j.1751-1097.2008.00392.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hypericin (HYP), a photocytotoxic phenanthroperylenquinone was encapsulated in liposomes outfitted with guanidinium-bearing lipids to ensure efficient cell binding through molecular recognition with anionic groups resident on the plasma membrane. The uptake of HYP encapsulated in these liposomes by DU145 human prostate cancer cells, was studied employing fluorescence, versus nonguadinylated liposomes and free HYP. The subcellular localization was in all cases studied by confocal microscopy employing specific subcellular organelle probes. The photocytotoxicity of HYP was assessed, 24 h following irradiation with 15 mWcm(-2) light through a GG 495 Schott filter, by a standard tetrazolium to formazan assay (XTT). HYP uptake by DU145 cells was found to be profoundly enhanced by using guanidinylated liposomes. Also the distance of the guanidinium group from the liposomal surface was found to significantly affect HYP loading, subcellular localization and phototoxicity. The two different modes of liposome cell internalization observed, i.e. plasma membrane fusion and endocytosis, were found to greatly affect the phototoxicity of HYP. Molecular recognition was overall appraised as a promising, novel route for photodynamic therapy, profoundly enhancing its efficacy. HYP encapsulated in liposomes-bearing guanidinium groups was more efficiently taken up by cells, leading to enhanced phototoxicity, in contrast to HYP encapsulated in their nonguanidinylated counterparts.
Collapse
Affiliation(s)
- Maria C Galanou
- Institute of Physical Chemistry, NCSR "DEMOKRITOS," Aghia Paraskevi, Attiki, Greece
| | | | | | | | | |
Collapse
|
33
|
Ho YF, Wu MH, Cheng BH, Chen YW, Shih MC. Lipid-mediated preferential localization of hypericin in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1287-95. [PMID: 19366588 DOI: 10.1016/j.bbamem.2009.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/16/2009] [Accepted: 01/23/2009] [Indexed: 12/31/2022]
Abstract
Subcellular localization of a photosensitizer is critical to its therapeutic outcome during photodynamic therapy (PDT). We delineated the distribution of hypericin, a new generation photosensitizer, in model membrane systems to identify the operating principles of its subcellular accumulation. Results from fluorescence microscopy indicated preferential incorporation of hypericin in lipid of giant unilamellar vesicles. Monolayer fluorescence measurements further identified cholesterol as the key determinant for the observed selectivity of hypericin. The emission spectra of hypericin in lipid monolayers varied in a lipid-dependent manner and Stoke's shift behavior suggests that hypericin may form closely packed structure with cholesterol. Overall, our data lead to the conclusion that cholesterol is the major origin of the selectivity for hypericin in membrane systems. A hypothetical model depicting the intracellular and intravascular co-transport of hypericin and cholesterol because of their high affinity is presented.
Collapse
Affiliation(s)
- Yunn-Fang Ho
- School of Pharmacy and Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Bae SI, Zhao R, Snapka RM. PCNA damage caused by antineoplastic drugs. Biochem Pharmacol 2008; 76:1653-68. [PMID: 18823950 PMCID: PMC2659951 DOI: 10.1016/j.bcp.2008.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/27/2008] [Accepted: 09/02/2008] [Indexed: 01/18/2023]
Abstract
Structurally diverse chemotherapeutic and chemopreventive drugs, including camptothecin, doxorubicin, sanguinarine, and others, were found to cause covalent crosslinking of proliferating cell nuclear antigen (PCNA) trimers in mammalian cells exposed to fluorescent light. This PCNA damage was caused by both nuclear and cytoplasmically localizing drugs. For some drugs, the PCNA crosslinking was evident even with very brief exposures to laboratory room lighting. In the absence of drugs, there was no detectable covalent crosslinking of PCNA trimers. Other proteins were photo-crosslinked to PCNA at much lower levels, including crosslinking of additional PCNA to the PCNA trimer. The proteins photo-crosslinked to PCNA did not vary with cell type or drug. PCNA was not crosslinked to itself or to other proteins by superoxide, hydrogen peroxide or hydroxyl radicals, but hydrogen peroxide caused monoubiquitination of PCNA. Quenching of PCNA photo-crosslinking by histidine, and enhancement by deuterium oxide, suggest a role for singlet oxygen in the crosslinking. SV40 large T antigen hexamers were also efficiently covalently photo-crosslinked by drugs and light. Photodynamic crosslinking of nuclear proteins by cytoplasmically localizing drugs, together with other evidence, argues that these drugs may reach the nucleoplasm in amounts sufficient to photodamage important chromosomal enzymes. The covalent crosslinking of PCNA trimers provides an extremely sensitive biomarker for photodynamic damage. The damage to PCNA and large T antigen raises the possibility that DNA damage signaling and repair mechanisms may be compromised when cells treated with antineoplastic drugs are exposed to visible light.
Collapse
Affiliation(s)
- Soo In Bae
- Department of Radiology, Division of Radiobiology, The Ohio State University, Columbus, Ohio, 43240
| | - Ran Zhao
- Department of Radiology, Division of Radiobiology, The Ohio State University, Columbus, Ohio, 43240
| | - Robert M. Snapka
- Department of Radiology, Division of Radiobiology, The Ohio State University, Columbus, Ohio, 43240
- The Ohio State University Comprehensive Cancer Center, Innovation Center, 2001 Polaris Parkway, Columbus, Ohio 43240
| |
Collapse
|
35
|
Theodossiou TA, Papakyriakou A, Hothersall JS. Molecular modeling and experimental evidence for hypericin as a substrate for mitochondrial complex III; mitochondrial photodamage as demonstrated using specific inhibitors. Free Radic Biol Med 2008; 45:1581-90. [PMID: 18852042 DOI: 10.1016/j.freeradbiomed.2008.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
The effect of hypericin photoactivation on mitochondria of human prostate carcinoma cells was studied using a range of mitochondrial inhibitors. Oligomycin significantly enhanced hypericin phototoxicity while atractyloside and antymicin A conferred a significant protection. Use of myxothiazol did not affect cell survival following hypericin photoactivation. These results signify a protective role for F(1)F(0)-ATP synthase running in reverse mode, and a significant photodamage at the quinone-reducing site of mitochondrial complex III. In light of these results, we performed molecular modeling of hypericin binding to complex III. This revealed three binding sites, two of which coincided with the quinol-oxidizing and quinone-reducing centers. Using submitochondrial particles we examined hypericin as a possible substrate of complex III and compared this to its natural substrate, ubiquinone-10. Our results demonstrate uniquely that hypericin is an efficient substrate for complex III, and this activity is inhibited by myxothiazol and antimycin A. We further demonstrated that hypericin photosensitization completely inactivated complex III with ubiquinone as substrate. The ability to enhance HYP potency by inhibition of F(1)F(0)-ATP synthase or depress HYP efficacy by inhibition at the Qi site of complex III provides a potential to increase the therapeutic index of HYP and amplify its PDT action in tumor cells.
Collapse
|
36
|
Ritz R, Müller M, Dietz K, Duffner F, Bornemann A, Roser F, Tatagiba M. Hypericin uptake: A prognostic marker for survival in high-grade glioma. J Clin Neurosci 2008; 15:778-83. [DOI: 10.1016/j.jocn.2007.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 02/12/2007] [Accepted: 03/20/2007] [Indexed: 11/25/2022]
|
37
|
Kascakova S, Nadova Z, Mateasik A, Mikes J, Huntosova V, Refregiers M, Sureau F, Maurizot JC, Miskovsky P, Jancura D. High level of low-density lipoprotein receptors enhance hypericin uptake by U-87 MG cells in the presence of LDL. Photochem Photobiol 2008; 84:120-7. [PMID: 18173711 DOI: 10.1111/j.1751-1097.2007.00207.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The dependence of the uptake of hypericin (Hyp) by human glioma U-87 MG cells on the level of expression of low-density lipoprotein (LDL) receptors has been studied in this work. A special role of the LDL receptor-pathway for Hyp delivery to U-87 MG cells in the presence of LDL was revealed by the substantial increase of Hyp uptake in the situation, when the number of LDL receptors on the cell surface was elevated. Moreover, the colocalization experiments showed the lysosomal localization of Hyp following the uptake and that the concentration of Hyp in these organelles was enhanced in the cells with elevated number of LDL receptors when the incubation medium contained LDL. Both these findings suggest that LDL and LDL receptor-pathway play an important role in the delivery and accumulation of Hyp into the cells.
Collapse
Affiliation(s)
- Slavka Kascakova
- Department of Biophysics, P. J. Safarik University, Kosice, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Davids LM, Kleemann B, Kacerovská D, Pizinger K, Kidson SH. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 91:67-76. [PMID: 18342534 DOI: 10.1016/j.jphotobiol.2008.01.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/21/2007] [Accepted: 01/22/2008] [Indexed: 01/03/2023]
Abstract
Hypericin, the major component of St. John's Wort, absorbs light in the UV and visible ranges whereupon it becomes phototoxic through the production of reactive oxygen species. Although photodynamic mechanisms (i.e. through endogenous photosensitizers) play a role in UVA phototherapy for the treatment of skin disorders such as eczema and psoriasis, photodynamic therapy employing exogenous photosensitizers are currently being used only for the treatment of certain forms of non-melanoma skin cancers and actinic keratoses. There are few reports however on its use in treating melanomas. This in vitro study analyses the phototoxic effect of UVA (400-315 nm) - activated hypericin in human pigmented and unpigmented melanomas and immortalised keratinocytes and melanocytes. We show that neither hypericin exposure nor UV irradiation alone reduces cell viability. We show that an exposure to 1 microM UVA-activated hypericin does not bring about cell death, while 3 microM activated hypericin induces a necrotic mode of cell death in pigmented melanoma cells and melanocytes and an apoptotic mode of cell death in non-pigmented melanoma cells and keratinocytes. We hypothesis that the necrotic mode of cell death in the pigmented cells is possibly related to the presence of melanin-containing melanosomes in these cells and that the hypericin-induced increase in reactive oxygen species leads to an increase in permeability of melanosomes. This would result in toxic melanin precursors (of an indolic and phenolic nature) leaking into the cytoplasm which in turn leads to cell death. Hypericin localisation in the endoplasmic reticulum in these cells shown by fluorescent microscopy, further support a disruption in cellular processing and induction of cell death. In contrast, this study shows that cells that do not contain melanosomes (non-pigmented melanoma cells and keratinocytes) die by apoptosis. Further, using a mitochondrial-specific fluorescent dye, we show that intracellular accumulation of hypericin induces a mitochondrial-associated caspase-dependent apoptotic mode of cell death. This work suggests that UVA is effective in activating hypericin and that this phototoxicity may be considered as treatment option in some cases of lentigo maligna or lentigo maligna melanoma that are too large for surgical resection.
Collapse
Affiliation(s)
- Lester M Davids
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town Observatory, 7925 Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
39
|
Soldani C, Croce AC, Bottone MG, Fraschini A, Biggiogera M, Bottiroli G, Pellicciari C. Apoptosis in tumour cells photosensitized with Rose Bengal acetate is induced by multiple organelle photodamage. Histochem Cell Biol 2007; 128:485-95. [PMID: 17849139 DOI: 10.1007/s00418-007-0333-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2007] [Indexed: 01/18/2023]
Abstract
Rose Bengal (RB) is a very efficient photosensitizer which undergoes inactivation of its photophysical and photochemical properties upon addition of a quencher group-i.e. acetate-to the xanthene rings. The resulting RB acetate (RB-Ac) derivative behaves as a fluorogenic substrate: it easily enters the cells where the native photoactive molecule is restored by esterase activities. It is known that the viability of RB-Ac-loaded cells is strongly reduced by light irradiation, attesting to the formation of intracellular RB. The aim of this study was to identify the organelles photodamaged by the intracellularly formed RB. RB-Ac preloaded rat C6 glioma cells and human HeLa cells were irradiated at 530 nm. Fluorescence confocal imaging and colocalization with specific dyes showed that the restored RB molecules redistribute dynamically through the cytoplasm, with the achievement of a dynamic equilibrium at 30 min after the administration, in the cell systems used; this accounted for a generalized damage to several organelles and cell structures (i.e. the endoplasmic reticulum, the Golgi apparatus, the mitochondria, and the cytoskeleton). The multiple organelle damage, furthermore, led preferentially to apoptosis as demonstrated by light and electron microscopy and by dual-fluorescence staining with FITC-labelled annexin V and propidium iodide.
Collapse
Affiliation(s)
- C Soldani
- Department of Animal Biology, University of Pavia, Piazza Botta 10, 27100, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Adigbli DK, Wilson DGG, Farooqui N, Sousi E, Risley P, Taylor I, MacRobert AJ, Loizidou M. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells. Br J Cancer 2007; 97:502-12. [PMID: 17667930 PMCID: PMC2360354 DOI: 10.1038/sj.bjc.6603895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy.
Collapse
Affiliation(s)
- D K Adigbli
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
| | - D G G Wilson
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
| | - N Farooqui
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
| | - E Sousi
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
| | - P Risley
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
| | - I Taylor
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
| | - A J MacRobert
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
| | - M Loizidou
- Department of Surgery, Royal Free and University College Medical School, UCL, London, UK
- E-mail:
| |
Collapse
|
41
|
Bronshteint I, Aulova S, Juzeniene A, Iani V, Ma LW, Smith KM, Malik Z, Moan J, Ehrenberg B. In vitro and in vivo photosensitization by protoporphyrins possessing different lipophilicities and vertical localization in the membrane. Photochem Photobiol 2007; 82:1319-25. [PMID: 16740058 DOI: 10.1562/2006-04-02-ra-865] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photodynamic therapy (PDT) is being evaluated in clinical trials for treatment of various oncologic and ophthalmic diseases. The main cause for cell inactivation and retardation of tumor growth after photoactivation of sensitizers is very short-lived singlet oxygen molecules that are produced and have limited diffusion distances. In this paper we show that the extent of biological damage can be modulated by using protoporphyrin, which was modified to increase its lipophilicity, and which also places the tetrapyrrole core deeper within the membrane by the carboxylate groups being anchored at the lipid:water interface. The uptake of the parent molecule (PPIX) and its diheptanoic acid analogue (PPIXC6) by WiDR and CT26 cells was investigated by fluorescence microscopy and by fluorescence intensity from the cells. The uptake of PPIXC6 increased almost linearly with incubation length for over 24 h, whereas for PPIX only 1 h was needed to reach maximal intracellular concentration. Fluorescence microscopy of both cell lines indicated that both drugs were distributed diffusely in the plasma membrane and cytoplasm, but remained outside the nucleus. The efficiency of in vitro inactivation of WiDr and CT26 cells increased with the length of the alkylcarboxylic chain. Tumors in mice that were treated with PPIX-PDT grew more slowly than control tumors. However, tumors that were given PPIXC6 followed by light exposure showed a significant delay in their growth.
Collapse
|
42
|
Huygens A, Huyghe D, Bormans G, Verbruggen A, Kamuhabwa AR, Roskams T, De Witte PAM. Accumulation and Photocytotoxicity of Hypericin and Analogs in Two- and Three-Dimensional Cultures of Transitional Cell Carcinoma Cells¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780607aapoha2.0.co2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Mazor O, Brandis A, Plaks V, Neumark E, Rosenbach-Belkin V, Salomon Y, Scherz A. WST11, A Novel Water-soluble Bacteriochlorophyll Derivative; Cellular Uptake, Pharmacokinetics, Biodistribution and Vascular-targeted Photodynamic Activity Using Melanoma Tumors as a Model¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Cauchon N, Nader M, Bkaily G, van Lier JE, Hunting D. Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage. Photochem Photobiol 2007; 82:1712-20. [PMID: 16906790 DOI: 10.1562/2005-12-13-ra-752] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We recently reported that variations in cellular phototoxicity among a series of alkynyl-substituted zinc trisulfophthalocyanines (ZnPcS3Cn) correlates with their hydrophobicity, with the most amphiphilic derivatives showing the highest cell uptake and phototoxicity. In this study we address the role of the plasma membrane in the photodynamic response as it relates to the overall hydrophobicity of the photosensitizer. The membrane tracker dye 1-[4(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), which is incorporated into plasma membranes by endocytosis, was used to establish plasma membrane uptake by EMT-6 cells of the ZnPcS3C, by colocalization, and TMA-DPH membrane uptake rates after photodynamic therapy were used to quantify membrane damage. TMA-DPH colocalization patterns show plasma membrane uptake of the photosensitizers after short 1 h incubation periods. TMA-DPH plasma membrane uptake rates after illumination of the photosensitizer-treated cells show a parabolic relationship with photosensitizer hydrophobicity that correlates well with the phototoxicity of the ZnPcS3C,. After a 1 h incubation period, overall phototoxicity correlates closely with the postillumination rate of TMA-DPH incorporation into the cell membrane, suggesting a major role of plasma membrane damage in the overall PDT effect. In contrast, after a 24 h incubation, phototoxicity shows a stronger but imperfect correlation with total cellular photosensitizer uptake rather than TMA-DPH membrane uptake, suggesting a partial shift in the cellular damage responsible for photosensitization from the plasma membrane to intracellular targets. We conclude that plasma membrane localization of the amphiphilic ZnPcS3C6-C9 is a major factor in their overall photodynamic activity.
Collapse
Affiliation(s)
- Nicole Cauchon
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
45
|
Theodossiou T, Spiro MD, Jacobson J, Hothersall JS, MacRobert AJ. Evidence for Intracellular Aggregation of Hypericin and the Impact on its Photocytotoxicity in PAM 212 Murine Keratinocytes¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00111.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Rahimipour S, Litichever-Coslovsky N, Alaluf M, Freeman D, Ehrenberg B, Weiner L, Mazur Y, Fridkin M, Koch Y. Novel Methyl Helianthrones as Photosensitizers: Synthesis and Biological Evaluation¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00182.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Theodossiou T, Spiro MD, Jacobson J, Hothersall JS, Macrobert AJ. Evidence for intracellular aggregation of hypericin and the impact on its photocytotoxicity in PAM 212 murine keratinocytes. Photochem Photobiol 2006; 80:438-43. [PMID: 15623327 DOI: 10.1562/0031-8655(2004)080<0438:efiaoh>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have assessed photoinduced toxicity of hypericin in PAM 212 murine keratinocytes and the relationship between concentration, incubation time and light fluence to evaluate the effect of intracellular aggregation at high concentrations. Confocal microscopy was used to establish the subcellular localization of hypericin at 5 and 50 microM and incubation times of 1 and 3 h. From fluorescence uptake time course studies, intracellular hypericin was demonstrated to exist predominantly in the monomeric form for up to 26 h incubation at 5 microM. However, there was a pronounced aggregation effect at 50 microM, with intracellular hypericin fluorescence levels initially showing an increase followed by a decrease with incubation time. This effect was subsequently shown to exert an effect on the phototoxicity of hypericin. On irradiation, the photocytotoxicity for 1 and 7 h incubation with 50 microM hypericin was comparable, whereas using 5 microM the photocytotoxicity showed good correlation with the intracellular fluorescence measurements at 1 and 7 h incubation.
Collapse
Affiliation(s)
- Theodossis Theodossiou
- National Medical Laser Centre, Royal Free and University College Medical School, Academic Division of Surgical Specialties, University College London, London, UK.
| | | | | | | | | |
Collapse
|
48
|
Cauchon N, Nader M, Bkaily G, Lier JE, Hunting D. Photodynamic Activity of Substituted Zinc Trisulfophthalocyanines: Role of Plasma Membrane Damage. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09835.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Panzarini E, Tenuzzo B, Palazzo F, Chionna A, Dini L. Apoptosis induction and mitochondria alteration in human HeLa tumour cells by photoproducts of Rose Bengal acetate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:39-47. [PMID: 16427301 DOI: 10.1016/j.jphotobiol.2005.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 11/17/2005] [Indexed: 11/20/2022]
Abstract
The aim of this work was to investigate the apoptosis induction and mitochondria alteration after photodamage exerted by incubation of HeLa cells with Rose Bengal acetate-derivative (RBAc) followed by irradiation for a total dose of 1.6 J/cm2. This treatment was previously demonstrated to reduce cell viability under mild treatment conditions, suggesting the restoration of the photoactive molecule in particularly sensitive cell sites. Indeed, Rose Bengal (RB) is a very efficient photosensitizer, whose photophysical properties are inactivated by addition of the quencher group acetate. The RBAc behaves as a fluorogenic substrate by entering easily the cells where the original, photoactive molecule is restored by specific esterases. Different intracellular sites of photodamage of RB are present. In particular, fluorescence imaging of Rodamine 123 and JC-1 labelled cells showed altered morphology and loss of potential membrane of mitochondria. MTT and NR assays gave indications of alteration of mitochondrial and lysosomal enzyme activities. These damaged sites were likely responsible for triggering apoptosis. Significant amount of apoptotic cell death (about 40%) was induced after light irradiation followed RBAc incubation as revealed by morphological (modification of cell shape and blebs formation), cytochemical (FITC-Annexin-V positive cells) and nuclear fragmentation assays.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Science and Technology (Disteba), University of Lecce, Via per Monteroni, Lecce 73100, Italy
| | | | | | | | | |
Collapse
|
50
|
Theodossiou TA, Noronha-Dutra A, Hothersall JS. Mitochondria are a primary target of hypericin phototoxicity: Synergy of intracellular calcium mobilisation in cell killing. Int J Biochem Cell Biol 2006; 38:1946-56. [PMID: 16814590 DOI: 10.1016/j.biocel.2006.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/08/2006] [Accepted: 05/18/2006] [Indexed: 11/28/2022]
Abstract
Hypericin, a naturally occurring anthraquinone synthesised by hypericum, upon light activation exhibits photodynamic cytotoxicity attributed mainly to the production of reactive oxygen species. This study aimed to elucidate the primary subcellular targets and mechanistic aspects of hypericin photosensitization in human prostate carcinoma cells. Depletion of intracellular glutathione (>85%) via inhibition of gamma-glutamyl-cysteine synthase had no effect on hypericin (5 microM) phototoxicity, thus precluding any direct oxidative involvement of H2O2. There was no change in intracellular SOD activity immediately after hypericin irradiation (1.5-5 J cm(-2)). Evaluation of the lysosomal enzyme hexosaminidase activity showed: (a) 60% cell loss 22 h following irradiation (1.5 J cm(-2)) and (b) a steady rate of lysosomal leakage to the cytosol (25%), at the same time and irradiation. However, lysosomal damage appears to be a slower process compared to the rapid loss of mitochondrial function, as reflected from parallel tetrazolium to formazan assays. The activity of cytosolic and mitochondrial aconitase, an enzyme exquisitely sensitive to oxidation, revealed a dose correlated loss of activity in the mitochondria immediately following hypericin photoactivation. The use of ionomycin, which modulates both internal Ca2+ stores and external Ca2+ transport during hypericin photosensitization, profoundly enhanced photocytotoxicity. Our data supports a direct mitochondrial hypericin phototoxicity that does not involve glutathione/H2O2 homeostasis. Further a potential synergistic treatment combining mitochondrial targeting of photosensitisers and Ca2+ mobilisation was identified.
Collapse
Affiliation(s)
- Theodossis A Theodossiou
- Department of Medicine, The Rayne Institute, 5 University Street, University College London, London WC1E 6JJ, UK.
| | | | | |
Collapse
|