1
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
2
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
3
|
Zhang L, Wang Q. Harnessing P450 Enzyme for Biotechnology and Synthetic Biology. Chembiochem 2021; 23:e202100439. [PMID: 34542923 DOI: 10.1002/cbic.202100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/18/2021] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 enzymes (P450s, CYPs) catalyze the oxidative transformation of a wide range of organic substrates. Their functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The enzymes are promising for synthetic biology applications but limited by several drawbacks including low turnover rates, poor stability, the dependance of expensive cofactors and redox partners, and the narrow substrate scope. To conquer these obstacles, emerging strategies including substrate engineering, usage of decoy and decoy-based small molecules auxiliaries, designing of artificial enzyme cascades and the incorporation of materials have been explored based on the unique properties of P450s. These strategies can be applied to a wide range of P450s and can be combined with protein engineering to improve the enzymatic activities. This minireview will focus on some recent developments of these strategies which have been used to leverage P450 catalysis. Remaining challenges and future opportunities will also be discussed.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.,Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:289-320. [PMID: 32951814 DOI: 10.1016/bs.apcsb.2020.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).
Collapse
Affiliation(s)
| | - Carl Young
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | - Darren J Cook
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | | | - Gary W Black
- Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
6
|
Xu J, Wang C, Cong Z. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis. Chemistry 2019; 25:6853-6863. [PMID: 30698852 DOI: 10.1002/chem.201806383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 enzymes (P450s) catalyze the monooxygenation of various organic substrates. These enzymes are fascinating and promising biocatalysts for synthetic applications. Despite the impressive abilities of P450s in the oxidation of C-H bonds, their practical applications are restricted by intrinsic drawbacks, such as poor stability, low turnover rates, the need for expensive cofactors (e.g., NAD(P)H), and the narrow scope of useful non-native substrates. These issues may be overcome through the general strategy of protein engineering, which focuses on the improvement of the catalysts themselves. Alternatively, several emerging strategies have been developed that regulate the P450 catalytic process from the viewpoint of the substrate. These strategies include substrate engineering, decoy molecule, and dual-functional small-molecule co-catalysis. Substrate engineering focuses on improving the substrate acceptance and reaction selectivity by means of an anchoring group. The latter two strategies utilize co-substrate-like small molecules that either are proposed to reform the active site, thereby switching the substrate specificity, or directly participate in the catalytic process, thereby creating new catalytic peroxygenation capabilities towards non-native substrates. For at least 10 years, these approaches have played unique roles in solving the problems highlighted above, either alone or in conjunction with protein engineering. Herein, we review three strategies for substrate regulation in the P450-catalyzed oxidation of non-native substrates. Furthermore, we address remaining challenges and potential solutions associated with these approaches.
Collapse
Affiliation(s)
- Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Chunlan Wang
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of, Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
7
|
Li Z, Wang Z, Wang Y, Wu X, Lu H, Huang Z, Chen F. Substituent Position‐Controlled Stereoselectivity in Enzymatic Reduction of Diaryl‐ and Aryl(heteroaryl)methanones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhining Li
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| | - Zexu Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| | - Yuhan Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
| | - Xiaofan Wu
- College of Chemical EngineeringFuzhou University 2 Xueyuan Road Fuzhou 350100 People's Republic of China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan University 2005 Songhu Road Shanghai 200438 People's Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms 2005 Songhu Road Shanghai 200438 People's Republic of China
| | - Zedu Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| |
Collapse
|
8
|
Saab-Rincón G, Alwaseem H, Guzmán-Luna V, Olvera L, Fasan R. Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450 BM3 by Consensus-Guided Mutagenesis. Chembiochem 2018; 19:622-632. [PMID: 29276819 PMCID: PMC5941085 DOI: 10.1002/cbic.201700546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/07/2022]
Abstract
The multidomain, catalytically self-sufficient cytochrome P450 BM-3 from Bacillus megaterium (P450BM3 ) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus-guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3 . Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild-type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half-lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD-binding domain and that the optimal temperature (Topt ) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Valeria Guzmán-Luna
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
9
|
Suzuki K, Stanfield JK, Shoji O, Yanagisawa S, Sugimoto H, Shiro Y, Watanabe Y. Control of stereoselectivity of benzylic hydroxylation catalysed by wild-type cytochrome P450BM3 using decoy molecules. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01130j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The benzylic hydroxylation of non-native substrates was catalysed by cytochrome P450BM3, wherein “decoy molecules” controlled the stereoselectivity of the reactions.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Osami Shoji
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Sota Yanagisawa
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Hiroshi Sugimoto
- Core Research for Evolutional Science and Technology (CREST)
- Japan Science and Technology Agency
- Tokyo
- Japan
- RIKEN SPring-8 Center
| | | | - Yoshihito Watanabe
- Research Center for Materials Science
- Nagoya University
- Nagoya 464-8602
- Japan
| |
Collapse
|
10
|
Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:209-28. [PMID: 26002737 DOI: 10.1007/978-3-319-16009-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.
Collapse
|
11
|
Polic V, Auclair K. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis. Bioorg Med Chem 2014; 22:5547-54. [PMID: 25035263 PMCID: PMC5177023 DOI: 10.1016/j.bmc.2014.06.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 01/25/2023]
Abstract
P450 enzymes (P450s) are well known for their ability to oxidize unactivated CH bonds with high regio- and stereoselectivity. Hence, there is emerging interest in exploiting P450s as potential biocatalysts. Although bacterial P450s typically show higher activity than their mammalian counterparts, they tend to be more substrate selective. Most drug-metabolizing P450s on the other hand, display remarkable substrate promiscuity, yet product prediction remains challenging. Protein engineering is one established strategy to overcome these issues. A less explored, yet promising alternative involves substrate engineering. This review discusses the use of small molecules for controlling the substrate specificity and product selectivity of P450s. The focus is on two approaches, one taking advantage of non-covalent decoy molecules, and the other involving covalent substrate modifications.
Collapse
Affiliation(s)
- Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
12
|
Rydzik AM, Leung IKH, Kochan GT, McDonough MA, Claridge TDW, Schofield CJ. Oxygenase-catalyzed desymmetrization of N,N-dialkyl-piperidine-4-carboxylic acids. Angew Chem Int Ed Engl 2014; 53:10925-7. [PMID: 25164544 PMCID: PMC4497603 DOI: 10.1002/anie.201406125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 12/14/2022]
Abstract
γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate dependent oxygenase that catalyzes the final hydroxylation step in the biosynthesis of carnitine. BBOX was shown to catalyze the oxidative desymmetrization of achiral N,N-dialkyl piperidine-4-carboxylates to give products with two or three stereogenic centers.
Collapse
Affiliation(s)
- Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Ivanhoe K H Leung
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Grazyna T Kochan
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosvelt DriveHeadington OX3 7DQ, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| |
Collapse
|
13
|
Application of engineered cytochrome P450 mutants as biocatalysts for the synthesis of benzylic and aromatic metabolites of fenamic acid NSAIDs. Bioorg Med Chem 2014; 22:5613-20. [DOI: 10.1016/j.bmc.2014.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022]
|
14
|
Doble MV, Ward AC, Deuss PJ, Jarvis AG, Kamer PC. Catalyst design in oxidation chemistry; from KMnO4 to artificial metalloenzymes. Bioorg Med Chem 2014; 22:5657-77. [DOI: 10.1016/j.bmc.2014.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 01/07/2023]
|
15
|
Rydzik AM, Leung IKH, Kochan GT, McDonough MA, Claridge TDW, Schofield CJ. Oxygenase-Catalyzed Desymmetrization ofN,N-Dialkyl-piperidine-4-carboxylic Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Regio- and stereoselective hydroxylation of 10-undecenoic acid with a light-driven P450 BM3 biocatalyst yielding a valuable synthon for natural product synthesis. Bioorg Med Chem 2014; 22:5687-91. [PMID: 24938497 DOI: 10.1016/j.bmc.2014.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/21/2014] [Indexed: 11/22/2022]
Abstract
We report herein the selective hydroxylation of 10-undecenoic acid with a light-activated hybrid P450 BM3 enzyme. Under previously developed photocatalytic reaction conditions, only a monohydroxylated product is detected by gas chromatography. Hydroxylation occurs exclusively at the allylic position as confirmed from a synthesized authentic standard. Investigation into the stereochemistry of the reaction indicates that the R enantiomer is obtained in 85% ee. The (R)-9-hydroxy-10-undecenoic acid obtained enzymatically is a valuable synthon en route to various natural products further expanding the light-activated P450 BM3 biocatalysis and highlighting the advantages over traditional methods.
Collapse
|
17
|
Evaluation of coumarin-based fluorogenic P450 BM3 substrates and prospects for competitive inhibition screenings. Anal Biochem 2014; 456:70-81. [PMID: 24708937 DOI: 10.1016/j.ab.2014.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
Fluorescence-based assays for the cytochrome P450 BM3 monooxygenase from Bacillus megaterium address an attractive biotechnological challenge by facilitating enzyme engineering and the identification of potential substrates of this highly promising biocatalyst. In the current study, we used the scarcity of corresponding screening systems as an opportunity to evaluate a novel and continuous high-throughput assay for this unique enzyme. A set of nine catalytically diverse P450 BM3 variants was constructed and tested toward the native substrate-inspired fluorogenic substrate 12-(4-trifluoromethylcoumarin-7-yloxy)dodecanoic acid. Particularly high enzyme-mediated O-dealkylation yielding the fluorescent product 7-hydroxy-4-trifluoromethylcoumarin was observed with mutants containing the F87V substitution, with A74G/F87V showing the highest catalytic efficiency (0.458 min(-1)μM(-1)). To simplify the assay procedure and show its versatility, different modes of application were successfully demonstrated, including (i) the direct use of NADPH or its oxidized form NADP(+) along with diverse NADPH recycling systems for electron supply, (ii) the use of cell-free lysates and whole-cell preparations as the biocatalyst source, and (iii) its use for competitive inhibition screens to identify or characterize substrates and inhibitors. A detailed comparison with known, fluorescence-based P450 BM3 assays finally emphasizes the relevance of our contribution to the ongoing research.
Collapse
|
18
|
Bell SG, Spence JTJ, Liu S, George JH, Wong LL. Selective aliphatic carbon–hydrogen bond activation of protected alcohol substrates by cytochrome P450 enzymes. Org Biomol Chem 2014; 12:2479-88. [DOI: 10.1039/c3ob42417k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protected cyclohexanol and cyclohex-2-enol substrates were efficiently and selectively oxidised by different P450cam mutants providing a general methodology for generating substituted diols using biocatalysts.
Collapse
Affiliation(s)
- Stephen G. Bell
- School of Chemistry and Physics
- University of Adelaide
- , Australia
- Department of Chemistry
- University of Oxford
| | | | - Shenglan Liu
- School of Chemistry and Physics
- University of Adelaide
- , Australia
| | | | - Luet-Lok Wong
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford, UK
| |
Collapse
|
19
|
Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Curr Opin Chem Biol 2013; 17:271-5. [DOI: 10.1016/j.cbpa.2013.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
|
20
|
Pham SQ, Gao P, Li Z. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng 2012; 110:363-73. [PMID: 22886996 DOI: 10.1002/bit.24632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/07/2022]
Abstract
E. coli (P450pyrTM-GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g⁻¹ cdw) for the biohydroxylation of N-benzylpyrrolidine 1 and a GDH activity of 106 U g⁻¹ protein. The E. coli cells were used as efficient biocatalysts for highly regio- and stereoselective hydroxylation of alicyclic substrates at non-activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N-benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio- and stereoselectivity, giving (S)-N-benzyl-3-hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM-GDH) was found to be highly regio- and stereoselective for the hydroxylation of N-benzylpyrrolidin-2-one 3, improving the regioselectivity from 90% of the wild-type P450pyr to 100% and giving (S)-N-benzyl-4-hydroxylpyrrolidin-2-one 4 in 99% ee as the sole product. A high activity of 15.5 U g⁻¹ cdw was achieved and (S)-4 was obtained in 19.4 mM. E. coli (P450pyrTM-GDH) was also found to be highly regio- and stereoselective for the hydroxylation of N-benzylpiperidin-2-one 5, increasing the ee of the product (S)-N-benzyl-4-hydroxy-piperidin-2-one 6 to 94% from 33% of the wild-type P450pyr. A high activity of 15.8 U g⁻¹ cdw was obtained and (S)-6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM-GDH) represents the most productive system known thus far for P450-catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM-GDH) provide with simple and useful syntheses of (S)-2, (S)-4, and (S)-6 that are valuable pharmaceutical intermediates and difficult to prepare.
Collapse
Affiliation(s)
- Son Q Pham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
22
|
Pham SQ, Pompidor G, Liu J, Li XD, Li Z. Evolving P450pyr hydroxylase for highly enantioselective hydroxylation at non-activated carbon atom. Chem Commun (Camb) 2012; 48:4618-20. [DOI: 10.1039/c2cc30779k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
24
|
Haines DC, Hegde A, Chen B, Zhao W, Bondlela M, Humphreys JM, Mullin DA, Tomchick DR, Machius M, Peterson JA. A single active-site mutation of P450BM-3 dramatically enhances substrate binding and rate of product formation. Biochemistry 2011; 50:8333-41. [PMID: 21875028 DOI: 10.1021/bi201099j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identifying key structural features of cytochromes P450 is critical in understanding the catalytic mechanism of these important drug-metabolizing enzymes. Cytochrome P450BM-3 (BM-3), a structural and mechanistic P450 model, catalyzes the regio- and stereoselective hydroxylation of fatty acids. Recent work has demonstrated the importance of water in the mechanism of BM-3, and site-specific mutagenesis has helped to elucidate mechanisms of substrate recognition, binding, and product formation. One of the amino acids identified as playing a key role in the active site of BM-3 is alanine 328, which is located in the loop between the K helix and β 1-4. In the A328V BM-3 mutant, substrate affinity increases 5-10-fold and the turnover number increases 2-8-fold compared to wild-type enzyme. Unlike wild-type enzyme, this mutant is purified from E. coli with endogenous substrate bound due to the higher binding affinity. Close examination of the crystal structures of the substrate-bound native and A328V mutant BMPs indicates that the positioning of the substrate is essentially identical in the two forms of the enzyme, with the two valine methyl groups occupying voids present in the active site of the wild-type substrate-bound structure.
Collapse
Affiliation(s)
- Donovan C Haines
- Department of Chemistry, Sam Houston State University, Huntsville, Texas 77340, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reinen J, van Leeuwen JS, Li Y, Sun L, Grootenhuis PDJ, Decker CJ, Saunders J, Vermeulen NPE, Commandeur JNM. Efficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space. Drug Metab Dispos 2011; 39:1568-76. [PMID: 21673132 DOI: 10.1124/dmd.111.039461] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, the diversity of a library of drug-metabolizing bacterial cytochrome P450 (P450) BM3 mutants was evaluated by a liquid chromatography-mass spectrometry (LC-MS)-based screening method. A strategy was designed to identify a minimal set of BM3 mutants that displays differences in regio- and stereoselectivities and is suitable to metabolize a large fraction of drug chemistry space. We first screened the activities of six structurally diverse BM3 mutants toward a library of 43 marketed drugs (encompassing a wide range of human P450 phenotypes, cLogP values, charges, and molecular weights) using a rapid LC-MS method with an automated method development and data-processing system. Significant differences in metabolic activity were found for the mutants tested and based on this drug library screen; nine structurally diverse probe drugs were selected that were subsequently used to study the metabolism of a library of 14 BM3 mutants in more detail. Using this alternative screening strategy, we were able to select a minimal set of BM3 mutants with high metabolic activities and diversity with respect to substrate specificity and regiospecificity that could produce both human relevant and BM3 unique drug metabolites. This panel of four mutants (M02, MT35, MT38, and MT43) was capable of producing P450-mediated metabolites for 41 of the 43 drugs tested while metabolizing 77% of the drugs by more than 20%. We observed this as the first step in our approach to use of bacterial P450 enzymes as general reagents for lead diversification in the drug development process and the biosynthesis of drug(-like) metabolites.
Collapse
Affiliation(s)
- Jelle Reinen
- Vrije Universiteit, Department of Chemistry and Pharmaceutical Sciences, LACDR-Division of Molecular Toxicology, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hall M, Bommarius AS. Enantioenriched Compounds via Enzyme-Catalyzed Redox Reactions. Chem Rev 2011; 111:4088-110. [DOI: 10.1021/cr200013n] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mélanie Hall
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Reinen J, Ferman S, Vottero E, Vermeulen NPE, Commandeur JNM. Application of a fluorescence-based continuous-flow bioassay to screen for diversity of cytochrome P450 BM3 mutant libraries. ACTA ACUST UNITED AC 2011; 16:239-50. [PMID: 21297109 DOI: 10.1177/1087057110394180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fluorescence-based continuous-flow enzyme affinity detection (EAD) setup was used to screen cytochrome P450 BM3 mutants on-line for diversity. The flow-injection screening assay is based on the BM3-mediated O-dealkylation of alkoxyresorufins forming the highly fluorescent product resorufin, and can be used in different configurations, namely injection of ligands, enzymes and substrates. Screening conditions were optimized and the activity of a library of 32 BM3 mutants towards the recently synthesized new probe substrate allyloxyresorufin was measured in flow-injection analysis (FIA) mode and it was shown that large activity differences between the mutants existed. Next, six BM3 mutants containing mutations at different positions in the active site were selected for which on-line enzyme kinetics were determined. Subsequently, for these six BM3 mutants affinity towards a set of 30 xenobiotics was determined in FIA EAD mode. It was demonstrated that significant differences existed for the affinity profiles of the mutants tested and that these differences correlated to alterations in the BM3 mutant-generated metabolic profiles of the drug buspirone. In conclusion, the developed FIA EAD approach is suitable to screen for diversity within BM3 mutants and this alternative screening technology offers new perspectives for rapid and sensitive screening of compound libraries towards BM3 mutants.
Collapse
Affiliation(s)
- Jelle Reinen
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
García-Urdiales E, Alfonso I, Gotor V. Update 1 of: Enantioselective Enzymatic Desymmetrizations in Organic Synthesis. Chem Rev 2011; 111:PR110-80. [DOI: 10.1021/cr100330u] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo García-Urdiales
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| | - Ignacio Alfonso
- Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada
de Cataluña (IQAC, CSIC), Jordi Girona, 18-26, 08034, Barcelona,
Spain
| | - Vicente Gotor
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| |
Collapse
|
29
|
Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M. Application of Designed Enzymes in Organic Synthesis. Chem Rev 2011; 111:4141-64. [DOI: 10.1021/cr100386u] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gernot A. Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Oliver May
- DSM—Innovative Synthesis BV, Geleen, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | | |
Collapse
|
30
|
O'Reilly E, Köhler V, Flitsch SL, Turner NJ. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 2011; 47:2490-501. [DOI: 10.1039/c0cc03165h] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Chen Y, Tang W, Mou J, Li Z. High-Throughput Method for Determining the Enantioselectivity of Enzyme-Catalyzed Hydroxylations Based on Mass Spectrometry. Angew Chem Int Ed Engl 2010; 49:5278-83. [DOI: 10.1002/anie.201001772] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Chen Y, Tang W, Mou J, Li Z. High-Throughput Method for Determining the Enantioselectivity of Enzyme-Catalyzed Hydroxylations Based on Mass Spectrometry. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001772] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
|
34
|
|
35
|
Haines DC, Chen B, Tomchick DR, Bondlela M, Hegde A, Machius M, Peterson JA. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel. Biochemistry 2008; 47:3662-70. [PMID: 18298086 DOI: 10.1021/bi7023964] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.
Collapse
Affiliation(s)
- Donovan C Haines
- Department of Chemistry, The University of Texas at Dallas, Dallas, Texas 75083-0688, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Munro AW, Girvan HM, McLean KJ. Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 2007; 24:585-609. [PMID: 17534532 DOI: 10.1039/b604190f] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew W Munro
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
38
|
Dragan CA, Blank LM, Bureik M. Increased TCA cycle activity and reduced oxygen consumption during cytochrome P450-dependent biotransformation in fission yeast. Yeast 2006; 23:779-94. [PMID: 16921551 DOI: 10.1002/yea.1383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cytochrome P450s are haem-containing monooxygenases that catalyse a variety of oxidations utilizing a large substrate spectrum and are therefore of interest for biotechnological applications. We expressed human CYP21 in fission yeast Schizosaccharomyces pombe as a eukaryotic model for P450-dependent whole-cell biotransformation. The resulting strain displayed strong steroid hydroxylase activity that was accompanied by contrary effects on respiration and non-respiratory oxygen consumption, which combined to a significant decline in total oxygen consumption of the cells. While production of ROS (reactive oxygen species) decreased, the TCA cycle activity increased, as was shown by metabolic flux (METAFoR) analysis. Pentose phosphate pathway (PPP) activity was found to be negligible, regardless of growth phase, CYP21 expression or biocatalytic activity, indicating that NADPH levels in Sz. pombe are sufficiently high to support an exogenous P450 without adaptations of central carbon metabolism. We conclude from these data that neither oxygen supply nor NADPH availability are limiting factors in P450-dependent biocatalysis in Sz. pombe.
Collapse
|
39
|
Chefson A, Zhao J, Auclair K. Replacement of natural cofactors by selected hydrogen peroxide donors or organic peroxides results in improved activity for CYP3A4 and CYP2D6. Chembiochem 2006; 7:916-9. [PMID: 16671126 DOI: 10.1002/cbic.200600006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amandine Chefson
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 2K6, Canada
| | | | | |
Collapse
|
40
|
Landwehr M, Hochrein L, Otey CR, Kasrayan A, Bäckvall JE, Arnold FH. Enantioselective alpha-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM-3. J Am Chem Soc 2006; 128:6058-9. [PMID: 16669674 PMCID: PMC2551755 DOI: 10.1021/ja061261x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report that an engineered microbial cytochrome P450 BM-3 (CYP102A subfamily) efficiently catalyzes the alpha-hydroxylation of phenylacetic acid esters. This P450 BM-3 variant also produces the authentic human metabolite of buspirone, R-6-hydroxybuspirone, with 99.5% ee.
Collapse
Affiliation(s)
- Marco Landwehr
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, California 91125-4100, USA
| | | | | | | | | | | |
Collapse
|
41
|
Meinhold P, Peters M, Hartwick A, Hernandez A, Arnold F. Engineering Cytochrome P450 BM3 for Terminal Alkane Hydroxylation. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200505465] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Bernhardt R. Cytochromes P450 as versatile biocatalysts. J Biotechnol 2006; 124:128-45. [PMID: 16516322 DOI: 10.1016/j.jbiotec.2006.01.026] [Citation(s) in RCA: 610] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/09/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
Cytochromes P450 are ubiquitously distributed enzymes, which were discovered about 50 years ago and which possess high complexity and display a broad field of activity. They are hemoproteins encoded by a superfamily of genes converting a broad variety of substrates and catalysing a variety of interesting chemical reactions. This enzyme family is involved in the biotransformation of drugs, the bioconversion of xenobiotics, the metabolism of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins, bile acids, the conversion of alkanes, terpenes, and aromatic compounds as well as the degradation of herbicides and insecticides. There is also a broad versatility of reactions catalysed by cytochromes P450 such as carbon hydroxylation, heteroatom oxygenation, dealkylation, epoxidation, aromatic hydroxylation, reduction, dehalogenation (Sono, M., Roach, M.P., Coulter, E.D., Dawson, J.H., 1996. Heme-containing oxygenases. Chem. Rev. 96, 2841-2888), (Werck-Reichhart, D., Feyereisen, R., 2000. Cytochromes P450: a success story. Genome Biol. 1 (REVIEWS3003)), (Bernhardt, R., 2004. Cytochrome P-450. Encyclopedia Biol. Chem. 1, 544-549), (Bernhardt, R., 2004. Optimized chimeragenesis; creating diverse P450 functions. Chem. Biol. 11, 287-288), (Guengerich, F.P., 2004. Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev. 36, 159-197). More than 5000 different P450 genes have been cloned up to date (for details see: ). Members of the same gene family are defined as usually having > or =40% sequence identity to a P450 protein from any other family. Mammalian sequences within the same subfamily are always >55% identical. The numbers of individual P450 enzymes in different species differ significantly, showing the highest numbers observed so far in plants. The structure-function relationships of cytochromes P450 are far from being well understood and their catalytic power has so far hardly been used for biotechnological processes. Nevertheless, the set of interesting reactions being catalysed by these systems and the availability of new genetic engineering techniques allowing to heterologously express them and to improve and change their activity, stability and selectivity as well as the increasing interest of the industry in life sciences makes them promising candidates for biotechnological application in the future.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
43
|
Urlacher VB, Schmid RD. Recent advances in oxygenase-catalyzed biotransformations. Curr Opin Chem Biol 2006; 10:156-61. [PMID: 16488653 DOI: 10.1016/j.cbpa.2006.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 02/07/2006] [Indexed: 10/25/2022]
Abstract
Oxygenases continue to be widely studied for selective biooxidation of organic compounds. Protein engineering has resulted in heme and flavin monooxygenases with widely altered substrate specificities, and attempts have been reported to scale-up reactions catalyzed by these enzymes. Cofactor regeneration is still a key issue in these developments. Protein engineering contributed to understanding of structure versus function in dioxygenases.
Collapse
Affiliation(s)
- Vlada B Urlacher
- Institute for Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | |
Collapse
|
44
|
Kubo T, Peters MW, Meinhold P, Arnold FH. Enantioselective Epoxidation of Terminal Alkenes to (R)- and (S)-Epoxides by Engineered Cytochromes P450 BM-3. Chemistry 2006; 12:1216-20. [PMID: 16240317 DOI: 10.1002/chem.200500584] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cytochrome P450 BM-3 from Bacillus megaterium was engineered for enantioselective epoxidation of simple terminal alkenes. Screening saturation mutagenesis libraries, in which mutations were introduced in the active site of an engineered P450, followed by recombination of beneficial mutations generated two P450 BM-3 variants that convert a range of terminal alkenes to either (R)- or (S)-epoxide (up to 83 % ee) with high catalytic turnovers (up to 1370) and high epoxidation selectivities (up to 95 %). A biocatalytic system using E. coli lysates containing P450 variants as the epoxidation catalysts and in vitro NADPH regeneration by the alcohol dehydrogenase from Thermoanaerobium brockii generates each of the epoxide enantiomers, without additional cofactor.
Collapse
Affiliation(s)
- Takafumi Kubo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC210-41, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
45
|
Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH. Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol Bioeng 2006; 93:494-9. [PMID: 16224788 DOI: 10.1002/bit.20744] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Testing the toxicities and biological activities of the human metabolites of drugs is important for development of safe and effective pharmaceuticals. Producing these metabolites using human cytochrome P450s is difficult, however, because the human enzymes are costly, poorly stable, and slow. We have used directed evolution to generate variants of P450 BM3 from Bacillus megaterium that function via the "peroxide shunt" pathway, using hydrogen peroxide in place of the reductase domain, oxygen and NADPH. Here, we report further evolution of the P450 BM3 heme domain peroxygenase to enhance production of the authentic human metabolites of propranolol by this biocatalytic route. This system offers a versatile, cost-effective, and scaleable route to the synthesis of drug metabolites.
Collapse
Affiliation(s)
- Christopher R Otey
- Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, 91125, USA
| | | | | | | | | |
Collapse
|
46
|
Directed Evolution of Enantioselective Enzymes as Catalysts for Organic Synthesis. ADVANCES IN CATALYSIS 2006. [DOI: 10.1016/s0360-0564(05)49001-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|