1
|
Gavrilov GA, Nguyen TK, Katkova SA, Rostovskii NV, Rogacheva EV, Kraeva LA, Kinzhalov MA. Oxidative Coupling of Guanidines and Isocyanides Catalyzed by Nickel(II): Access to Imidazoline Derivatives with Antibacterial Activity. ChemMedChem 2025; 20:e202400904. [PMID: 39894778 DOI: 10.1002/cmdc.202400904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
A novel and concise approach to rare 2,3,5-triamino-imidazole scaffolds via Ni-catalyzed coupling of alkylisocyanides and N,N'-diarylguanidines has been developed. This reaction features include mild conditions (thermal or visible light activation), a wide substrate scope, and high efficiency. The coupling proceeds through a NiII/NiIV catalytic cycle, involving two-electron aerobic oxidation and the sequential insertion of two isocyanide units into Ni-N bonds.Testing these compounds against pathogens of the ESKAPE panel showed their high activity with a minimum inhibitory concentration down to 0.38 μg/mL.
Collapse
Affiliation(s)
- Georgii A Gavrilov
- Saint Petersburg State University, 7-9-11 Universitetskaya Nab., St., Petersburg, 199034, Russian Federation
| | - Tuan K Nguyen
- Saint Petersburg State University, 7-9-11 Universitetskaya Nab., St., Petersburg, 199034, Russian Federation
| | - Svetlana A Katkova
- Saint Petersburg State University, 7-9-11 Universitetskaya Nab., St., Petersburg, 199034, Russian Federation
| | - Nikolai V Rostovskii
- Saint Petersburg State University, 7-9-11 Universitetskaya Nab., St., Petersburg, 199034, Russian Federation
| | - Elizaveta V Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira st., Saint Petersburg, 197101, Russian Federation
| | - Liudmila A Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira st., Saint Petersburg, 197101, Russian Federation
| | - Mikhail A Kinzhalov
- Saint Petersburg State University, 7-9-11 Universitetskaya Nab., St., Petersburg, 199034, Russian Federation
| |
Collapse
|
2
|
Hirozumi R, Kudo Y, Cho Y, Konoki K, Yotsu-Yamashita M. Total Synthesis and Structural Revision of (±)-Mauritamide B. JOURNAL OF NATURAL PRODUCTS 2025; 88:806-814. [PMID: 39981783 PMCID: PMC11959599 DOI: 10.1021/acs.jnatprod.5c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Mauritamide B (1a) is a taurine-connected cyclic guanidino-bromopyrrole alkaloid originally isolated from the marine sponge Agelas linnaei. To date, the total synthesis of taurine-connected guanidino-bromopyrrole alkaloids, including this compound, has not yet been reported. Herein, a total synthesis of (±)-mauritamide B (1b) was achieved by oxidation of 2-aminoimidazole of dihydro-sventrin (10) using activated carbon and air in the presence of taurine. The synthetic precursor of 10, 4-(3-aminopropyl)-2-aminoimidazole (22), was synthesized via our original route. The NMR data of the obtained product agreed with that reported for mauritamide B (1a). However, a detailed analysis of the NMR data of synthetic (±)-mauritamide B (1b) including 1H-15N HSQC spectrum revealed the need for a structural revision of the reported structure for mauritamide B (1b).
Collapse
Affiliation(s)
- Ryosuke Hirozumi
- Graduate
School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuta Kudo
- Graduate
School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3
Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuko Cho
- Graduate
School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keiichi Konoki
- Graduate
School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate
School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
3
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
4
|
Das B, Sahoo AK, Banjare SK, Panda SJ, Purohit CS, Doddi A. Dicationic copper(I) complexes bearing ENE (E = S, Se) pincer ligands; catalytic applications in regioselective cyclization of 1,6-diynes. Dalton Trans 2023; 52:16151-16158. [PMID: 37603440 DOI: 10.1039/d3dt01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Two novel dicationic binuclear Cu(I) complexes of the type [{(BPPP)E2}Cu]2[BF4]2 (E = S (3a); Se (3b)) bearing (BPPP)E2 (BPPP = bis(diphenylphosphino)pyridine) pincer systems were isolated, and structurally characterized. The solid-state structures of 3a/3b display the presence of intermolecular cuprophilic (Cu⋯Cu) interactions between the two monocationic species, and consist of weak Cu⋯S bonding between the two cations. Besides, complex 3a was introduced as a molecular copper(I) catalyst in cyclization reactions, and new protocols were developed for the synthesis of a series of new oxazole and triazole derivatives bearing alkyne-phenyl propargylic ether substituents. 3a was also found to be active in achieving these two classes of heterocyclic compounds by the mechanical grinding method. One of the key intermediate copper-azide species was detected by the high-resolution mass spectrometry technique, which supports the proposed catalytic pathway. All the reported transformations were accomplished sustainably by employing a well-defined, earth-abundant, and cheap copper(I) catalytic system.
Collapse
Affiliation(s)
- Bhagyashree Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| | - Amiya Kumar Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Adinarayana Doddi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| |
Collapse
|
5
|
Cummings C, Kleiner I, Walker NR. Noncovalent Interactions in the Molecular Geometries of 4-Methylthiazole···H 2O and 5-Methylthiazole···H 2O Revealed by Microwave Spectroscopy. J Phys Chem A 2023; 127:8133-8145. [PMID: 37751499 PMCID: PMC10561259 DOI: 10.1021/acs.jpca.3c05360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Indexed: 09/28/2023]
Abstract
The pure rotational spectra of 4-methylthiazole···H2O and 5-methylthiazole···H2O were recorded by chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. Each complex was generated within the rotationally cold environment of a gas sample undergoing supersonic expansion in the presence of an argon buffer gas. The spectra of five isotopologues of each complex have been measured and analyzed to determine the rotational constants, A0, B0, and C0; centrifugal distortion constants, DJ, DJK, and d1; nuclear quadrupole coupling constants, χaa(N3) and [χbb(N3) - χcc(N3)]; and parameters describing the internal rotation of the CH3 group, V3 and ∠(i,b). The experimentally deduced parameters were obtained using the XIAM and the BELGI-Cs-hyperfine code. For each complex, parameters in the molecular geometry are fitted to experimentally determined moments of inertia. DFT calculations have been performed at the ωB97X-D/aug-cc-pVQZ level in support of the experiments. Each complex contains two hydrogen bonds; a comparatively strong, primary interaction between the N of thiazole and an O-H of H2O, and a weaker, secondary interaction between O and either the hydrogen atom attached to C2 (in 5-methylthiazole···H2O) or the CH3 group attached to C4 (in 4-methylthiazole···H2O). The barrier to internal rotation of the CH3 group, V3, is slightly lower for 4-methylthiazole···H2O (XIAM result is 340.05(56) cm-1) than that for the 4-methylthiazole monomer (357.6 cm-1). This is likely to be a result of internal charge redistribution within the 4-methylthiazole subunit following its coordination by H2O. At the precision of the experiments, V3 of 5-methylthiazole···H2O (XIAM result is 325.16(38) cm-1) is not significantly different from V3 of the 5-methylthiazole monomer (332.0 cm-1).
Collapse
Affiliation(s)
- Charlotte
N. Cummings
- Chemistry-
School of Natural and Environmental Sciences, Newcastle University, Bedson
Building, Newcastle-upon-Tyne, NE1 7RU, U.K.
| | - Isabelle Kleiner
- Université
de Paris and Université Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Nicholas R. Walker
- Chemistry-
School of Natural and Environmental Sciences, Newcastle University, Bedson
Building, Newcastle-upon-Tyne, NE1 7RU, U.K.
| |
Collapse
|
6
|
Chen SJ, Zhong WQ, Huang JM. Electrochemical Trifluoromethylation and Sulfonylation of N-Allylamides: Synthesis of Oxazoline Derivatives. J Org Chem 2023; 88:12630-12640. [PMID: 37579302 DOI: 10.1021/acs.joc.3c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
We report a new method for the synthesis of trifluoromethylated and sulfonylated oxazolines by electrochemical radical cascade cyclizations of N-allylamides with sodium trifluoromethanesulfinate or sulfonylhydrazines. This protocol provides a green and useful strategy to synthesize trifluoromethylated and sulfonylated oxazolines with a broad substrate scope under ambient conditions.
Collapse
Affiliation(s)
- Shu-Jun Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
7
|
Lu S, Ding CH, Xu B. Triple-Consecutive Isocyanide Insertions with Aldehydes: Synthesis of 4-Cyanooxazoles. Org Lett 2023; 25:849-854. [PMID: 36705938 DOI: 10.1021/acs.orglett.3c00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient TMSOTf-promoted selective triple consecutive insertions of tert-butyl isocyanide into aldehydes has been developed, affording pharmacological interesting 4-cyanooxazoles in high yields in a one pot manner. The given method encompasses a wide range of substrates with tert-butyl isocyanide serving as sources of critical "CN" and "C-N═C" moieties. The versatile transformations of the resulting 4-cyanooxazoles were demonstrated. The key reaction intermediates for plausible mechanisms were determined.
Collapse
Affiliation(s)
- Shaohang Lu
- Department of Chemistry, Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chang-Hua Ding
- Department of Chemistry, Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Yan H, Shao X, Xu X, Li Z, Yang WL. Ir-Catalyzed Asymmetric Cascade Allylation/Spiroketalization Reaction for Stereoselective Synthesis of Oxazoline-Spiroketals. Org Lett 2023; 25:325-330. [PMID: 36607168 DOI: 10.1021/acs.orglett.2c03885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An asymmetric cascade allylation/spiroketalization reaction between 2-(1-hydroxyallyl)phenols and 5-methyleneoxazolines is accomplished by using a chiral Ir(I) catalyst derived from commercially available iridium precursor and the Carreira ligand. This protocol furnishes a class of structurally novel and unique oxazoline-spiroketals in up to 86% yield, >99% ee and >20:1 dr. Moreover, control experiments reveal that 4,4-disubstitution on 5-methyleneoxazolines is necessary to avoid the aromatization and for the spiroketalization to occur. On the basis of this, a plausible reaction mechanism is illustrated.
Collapse
Affiliation(s)
- Hui Yan
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Li A, Zhao J, Zhang C, Jiang Q, Zhu B, Cao H. Lewis Acid-Promoted Three-Component Cyclization for the Construction of Functionalized Oxazoles. J Org Chem 2023; 88:27-38. [PMID: 36563287 DOI: 10.1021/acs.joc.2c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A simple and efficient synthetic strategy from amides, ynals, and sodium sulfinates via a Lewis acid-promoted three-component reaction has been reported. Thus, a broad range of various aryl (not alkyl)-substituted oxazoles could be synthesized via the formation of C-N, C-O, and C-S bonds in a one-pot process. In addition, this reaction possesses other unique advantages, such as transition metal-free catalysis, high step economy, good functional group tolerance, and good regioselectivity.
Collapse
Affiliation(s)
- Anquan Li
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Qiuxia Jiang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Baofu Zhu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
10
|
Crown Ether as Organocatalyst for Reductive Upgrading of CO2 to N-Containing Benzoheterocyclics and N-Formamides. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Zhao M, Guo W, Wu L, Qiu FG. I
2
‐Promoted Oxidative Metal‐Free [3+2] Tandem Annulation for the Synthesis of Multisubstituted Imidazoles in the Presence of Base. ChemistrySelect 2022. [DOI: 10.1002/slct.202203729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingming Zhao
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Linping Wu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
12
|
Prashanth S, Adarsh D, Bantu R, Sridhar B, Subba Reddy B. Cu(II)-catalyzed synthesis of 2,4,5-trisubstituted oxazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Li Z, Zhao L, Zhang Y, Yan H, Huang X, Shen G. Cascade Nucleophilic Attack/Addition Cyclization Reactions to Synthesize Oxazolidin-2-imines via ( Z)-2-Bromo-3-phenylprop-2-en-1-ols/3-phenylprop-2-yn-1-ols and Diphenyl Carbodiimides. J Org Chem 2022; 87:12721-12732. [PMID: 36099272 DOI: 10.1021/acs.joc.2c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two concise strategies to synthesize oxazolidin-2-imines by cascade nucleophilic attack/addition cyclization reactions of (Z)-2-bromo-3-phenylprop-2-en-1-ols/3-phenylprop-2-yn-1-ols and diphenyl carbodiimides without a transition-metal catalyst have been developed. The reactions exhibited good substrate applicability tolerance, and a variety of substituted (Z)-4-((Z)-benzylidene)-N,3-diphenyloxazolidin-2-imines were synthesized in moderate to excellent yields with good stereoselectivity. The reports also provided a convenient strategy to synthesize 3-phenylprop-2-yn-1-ols by (Z)-2-bromo-3-phenylprop-2-en-1-ols. The economic and practical methods provide a great advantage for potential industrial synthesis of oxazolidin-2-imines.
Collapse
Affiliation(s)
- Zhanjun Li
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Lingyu Zhao
- Chemistry and Chemical Engineering, Jinan University, 106 Jiwei Road, Jinan, Shandong 250022, P. R. China
| | - Yalin Zhang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Hui Yan
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China.,Chemistry and Chemical Engineering, Jinan University, 106 Jiwei Road, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
14
|
Wang Y, Zhao X, Wu X, Zhang L, Li G, He Y. Electrochemical Synthesis of Trisubstituted Oxazoles and Imines from β‐Diketones and Amines. ChemElectroChem 2022. [DOI: 10.1002/celc.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yangli Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Xiao‐Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Lizhu Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| |
Collapse
|
15
|
Kumar V, Dhawan S, Bala R, Girase PS, Singh P, Karpoormath R. Metal-free direct annulation of 2-aminophenols and 2-aminothiophenols with unactivated amides through transamidation: Access to polysubstituted benzoxazole and benzothiazole derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Ahmad H, Ahmed W, Hassan A. Goldberg Coupling of Thiazole Substituted Aryl Bromide Demands Stoichiometric Copper Compared to Oxazole. ChemistrySelect 2022. [DOI: 10.1002/slct.202103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haseen Ahmad
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Waqar Ahmed
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Abbas Hassan
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
17
|
Mandal PS, A VK. Metal‐Free One‐Pot Domino Synthesis of Oxazolidinone Derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prashant S Mandal
- Institute of Chemical Technology Chemistry Department of ChemistryNP MargMatunga 400019 Mumbai INDIA
| | - Vijay Kumar A
- Institute of Chemical Technology Department of Chemistry C304,Advance CentreDepartment of Chemistry, Institute of Chemical TechnologyNP Marg,Matunga 400019 Mumbai INDIA
| |
Collapse
|
18
|
Cao S, Ma C, Teng X, Chen R, Li Y, Yuan W, Zhu Y. Facile synthesis of fully substituted 1 H-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel and efficient photoredox/copper cocatalyzed domino cyclization of oxime esters, aldehydes, and amines has been achieved, affording a broad range of fully substituted 1H-imidazoles in good yields.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongchong Ma
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Jindal G, Vashisht P, Kaur N. Benzimidazole appended optical sensors for ionic species: Compilation of literature reports from 2017 to 2022. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Farajpour B, Alizadeh A. Recent advances in the synthesis of cyclic compounds using α,α-dicyanoolefins as versatile vinylogous nucleophiles. Org Biomol Chem 2022; 20:8366-8394. [DOI: 10.1039/d2ob01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides a review of the applications of α,α-dicyanoolefins as versatile vinylogous nucleophiles in the synthesis of various cyclic compounds, covering the literature from the past 13 years.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
21
|
Ghouse S, Sreenivasulu C, Kishore DR, Satyanarayana G. Recent developments by zinc based reagents/catalysts promoted organic transformations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Asressu KH, Chan CK, Wang CC. TMSOTf-catalyzed synthesis of trisubstituted imidazoles using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. RSC Adv 2021; 11:28061-28071. [PMID: 35480777 PMCID: PMC9039414 DOI: 10.1039/d1ra05802a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
In the process of drug discovery and development, an efficient and expedient synthetic method for imidazole-based small molecules from commercially available and cheap starting materials has great significance. Herein, we developed a TMSOTf-catalyzed synthesis of trisubstituted imidazoles through the reaction of 1,2-diketones and aldehydes using hexamethyldisilazane as a nitrogen source under microwave heating and solvent-free conditions. The chemical structures of representative trisubstituted imidazoles were confirmed using X-ray single-crystal diffraction analysis. This synthetic method has several advantages including the involvement of mild Lewis acid, being metal- and additive-free, wide substrate scope with good to excellent yields and short reaction time. Furthermore, we demonstrate the application of the methodology in the synthesis of biologically active imidazole-based drugs. Trisubstituted imidazoles are synthesized efficiently from the readily available 1,2-diketones and aldehydes using hexamethyldisilazane as a new and stable nitrogen source under TMSOTf-catalysis system, microwave heating and solvent-free conditions.![]()
Collapse
Affiliation(s)
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica Taipei 115 Taiwan
| | | |
Collapse
|
23
|
Nadar VM, Manivannan S, Chinnaiyan R, Govarthanan M, Ponnuchamy K. Review on marine sponge alkaloid, aaptamine: A potential antibacterial and anticancer drug. Chem Biol Drug Des 2021; 99:103-110. [PMID: 34331335 DOI: 10.1111/cbdd.13932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/27/2022]
Abstract
In recent years, biological macromolecules have piqued the interest of researchers owing to their vast variety of biological uses. As a result, the marine sponge is a multicellular heterotrophic parazoan with chemicals for defence against predator assaults, biofouling and microbial diseases. These priceless molecules are known as secondary metabolites, and they are essential for survival in a highly competitive environment. So far, over 5,000 marine natural compounds have been extracted from marine sponges, making them an excellent option for drug formulation. One among them is, aaptamine, a marine alkaloid with a benzo[de][1,6]-napthyridine framework extensively distributed in marine sponges. Due to this reason, aaptamine has been intensively researched for various biological purposes, including cancer and protease inhibition, offering fresh insights into novel treatments. Keeping this in mind, we reviewed the biological significance of the marine sponge alkaloid aaptamine.
Collapse
Affiliation(s)
- Vinita Manimaran Nadar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - Selvambigai Manivannan
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | | | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, Korea
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, India
| |
Collapse
|
24
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Bouchakour M, Daaou M, Duguet N. Synthesis of Imidazoles from Fatty 1,2‐Diketones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mansouria Bouchakour
- Univ Lyon CNRS INSA-Lyon CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS UMR 5246 Equipe CAtalyse SYnthèse et ENvironnement (CASYEN) Université Claude Bernard Lyon 1 Bâtiment Lederer, 1 rue Victor Grignard 69100 Villeurbanne France
- Faculté de Chimie Département de Chimie Organique lndustrielle Laboratoire de Synthèse organique Physico-chimie Biomolécules et Environnement (LSPBE) Université des Sciences et de la Technologie d'Oran (USTO) Mohamed Boudiaf BP 1505, El'Mnaouer Oran 31000 Algeria
| | - Mortada Daaou
- Faculté de Chimie Département de Chimie Organique lndustrielle Laboratoire de Synthèse organique Physico-chimie Biomolécules et Environnement (LSPBE) Université des Sciences et de la Technologie d'Oran (USTO) Mohamed Boudiaf BP 1505, El'Mnaouer Oran 31000 Algeria
| | - Nicolas Duguet
- Univ Lyon CNRS INSA-Lyon CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS UMR 5246 Equipe CAtalyse SYnthèse et ENvironnement (CASYEN) Université Claude Bernard Lyon 1 Bâtiment Lederer, 1 rue Victor Grignard 69100 Villeurbanne France
| |
Collapse
|
26
|
Wu D, Lu Y, Hao W, Tu S, Jiang B. Synthesis of Fully Substituted Oxazoles via an NFSI/KF‐Mediated Double Bond Cleavage‐Rearrangement Cascade. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Wu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Yi Lu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Wen‐Juan Hao
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Shu‐Jiang Tu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Bo Jiang
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
27
|
Singh VN, Sharma S. The facile and efficient synthesis of novel monocyclic cis-β-lactam conjugates with a 1-methyl-1 H-imidazole-2-thiol nucleus. NEW J CHEM 2021. [DOI: 10.1039/d1nj03566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a facile and efficient synthesis of novel monocyclic cis-β-lactam conjugates with a 1-methyl-1H-imidazole-2-thiol nucleus through a ketene-imine [2+2] cycloaddition reaction of acyl chloride and different Schiff bases.
Collapse
Affiliation(s)
- Vedeshwar Narayan Singh
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna-800005, Bihar, India
| | - Sitaram Sharma
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna-800005, Bihar, India
| |
Collapse
|
28
|
Khan S, Buğday N, Yaşar S, Ullah N, Özdemir İ. Pd-N-heterocyclic carbene complex catalysed C–H bond activation of 2-isobutylthiazole at the C5 position with aryl bromides. NEW J CHEM 2021. [DOI: 10.1039/d1nj00514f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An effective and efficient catalytic system has been reported for the synthesis of C5-arylated 2-isobutylthiazoles.
Collapse
Affiliation(s)
- Siraj Khan
- Quaid-i-Azam University
- Faculty of Biological Sciences
- Department of Pharmacy
- Islamabad
- Pakistan
| | - Nesrin Buğday
- İnönü University
- Faculty of Science and art
- Department of Chemistry
- Malatya
- Turkey
| | - Sedat Yaşar
- İnönü University
- Faculty of Science and art
- Department of Chemistry
- Malatya
- Turkey
| | - Naseem Ullah
- Quaid-i-Azam University
- Faculty of Biological Sciences
- Department of Pharmacy
- Islamabad
- Pakistan
| | - İsmail Özdemir
- İnönü University
- Faculty of Science and art
- Department of Chemistry
- Malatya
- Turkey
| |
Collapse
|
29
|
Karuppusamy V, Ilangovan A. BF 3·OEt 2-TFAA Mediated Tetra-Functionalization of Amino Acids - Synthesis of Di- and Tri-Substituted 2-Trifluoromethyl Oxazoles in One Pot. Org Lett 2020; 22:7147-7151. [PMID: 32903018 DOI: 10.1021/acs.orglett.0c02484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient, TFAA-BF3·OEt2 mediated multicomponent coupling of amino acid, TFAA, and aromatics provides a broad library of 2-trifluoromethyl equipped 2,5-disubstituted/2,4,5-trisubstituted oxazoles or N-(trifluoroacetyl)-β-aminoalkyl ketones. This amino acid tetra-functionalization approach involves amidation (C-N), anhydride (C-O), Friedel-Crafts acylation (C-C), and Robinson-Gabriel annulation (C-O) followed by dehydrative aromatization. This reaction takes place under operationally simple, mild, and metal-free conditions using readily available amino acids and aromatic compounds.
Collapse
Affiliation(s)
- Velusamy Karuppusamy
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India.,Department of Pharmaceutical Research & Development, Biocon Limited, Biocon Campus, Bangalore-560100, India
| | - Andivelu Ilangovan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
30
|
Baby Sherlymole P, Ronaldo Anuf A, Anjali Krishna G, Sreekumar K. Dendrimer with Interior Cavity as Catalytic Pockets for Substrate Molecules: Synthesis of Bisimidazoles and Molecular Docking Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202000770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parackal Baby Sherlymole
- Department of Applied ScienceGovernment Model Engineering College Thrikkakara, Cochin 682021, Kerala India
| | - Alexander Ronaldo Anuf
- Department of BiotechnologyKamaraj College of Engineering and Technology Madurai 626001, Tamilnadu India
| | | | - Krishnapillai Sreekumar
- Department of Applied ScienceGovernment Model Engineering College Thrikkakara, Cochin 682021, Kerala India
- Department of Applied ChemistryCochin University of Science and Technology Cochin 682022 Kerala India
| |
Collapse
|
31
|
Zhuo JR, Quan BX, Zhao JQ, Zhang ML, Chen YZ, Zhang XM, Yuan WC. Base-mediated [4+2] annulation of electron-deficient nitrobenzoheterocycles and α,α-dicyanoalkenes in water: Facile access to structurally diverse functionalized dibenzoheterocyclic compounds. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Song GT, Qu CH, Chen JH, Xu ZG, Zhou CH, Chen ZZ. Synthesis of monofluorooxazoles with quaternary C-F centers through photoredox-catalyzed radical addition of methylene-2-oxazolines. Org Biomol Chem 2020; 18:2223-2226. [PMID: 32162639 DOI: 10.1039/d0ob00267d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed radical addition of methylene-2-oxazolines has been developed under visible light irradiation to synthesize monofluorooxazoles with a quaternary carbon center using 2-bromo-2-fluoro-3-oxo-3-phenylpropionates as radical source. This method with a simple protocol, scalability and high yield offers a facile path to get diverse monofluorinated oxazoles with quaternary C-F centers, which are a class of highly valuable motifs and synthons.
Collapse
Affiliation(s)
- Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China. and Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Jin-Hong Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| |
Collapse
|
33
|
Yamamoto K, Tsuda Y, Kuriyama M, Demizu Y, Onomura O. Copper-Catalyzed Enantioselective Synthesis of Oxazolines from Aminotriols via Asymmetric Desymmetrization. Chem Asian J 2020; 15:840-844. [PMID: 32030893 DOI: 10.1002/asia.201901742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/28/2020] [Indexed: 11/06/2022]
Abstract
A copper-catalyzed enantioselective transformation of tris(hydroxymethyl)aminomethane-derived aminotriols was developed to provide multisubstituted oxazolines with a tetrasubstituted carbon center. The present transformation consisted of sequential reactions involving mono-sulfonylation of aminotriols, subsequent intramolecular cyclization to afford prochiral oxazoline diols, and sulfonylative asymmetric desymmetrization of resultant oxazoline diols. In addition, the kinetic resolution process would be involved in the sulfonylative asymmetric desymmetrization step, which would amplify the enantiopurities of the desired products. Various aminotriols were tolerated in the present reaction, affording the desired oxazolines in good to high yields with excellent enantioselectivities. The synthetic utility of the present reaction was demonstrated by the transformation of the optically active oxazoline into a chiral α-tertiary amine motif.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yutaro Tsuda
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yosuke Demizu
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
34
|
Kotha S, Rao Cheekatla S. Design and Synthesis of Pentacycloundecane Cage Compound Containing Oxazole Moiety. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Ji C, Jie S, Braunstein P, Li BG. Fast and controlled ring-opening polymerization of δ-valerolactone catalyzed by benzoheterocyclic urea/MTBD catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
New benzoheterocyclic urea/MTBD catalysts are highly efficient and controllable in the ring-opening polymerization of δ-valerolactone under solvent-free conditions or in solution.
Collapse
Affiliation(s)
- Chenlin Ji
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Suyun Jie
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Pierre Braunstein
- Laboratoire de Chimie de Coordination
- CNRS, CHIMIE UMR 7177
- Université de Strasbourg
- 67081 Strasbourg Cedex
- France
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
36
|
Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). RECENT ADVANCES IN NATURAL PRODUCTS ANALYSIS 2020. [PMCID: PMC7153348 DOI: 10.1016/b978-0-12-816455-6.00015-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
|
38
|
Song GT, Qu CH, Meng JP, Xu ZG, Zhou CH, Chen ZZ. Photoredox catalytic cascade radical addition/aromatization of methylene-2-oxazolines: Mild access to C(sp)-difluoro-oxazole derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Kachaeva MV, Hodyna DM, Obernikhina NV, Pilyo SG, Kovalenko YS, Prokopenko VM, Kachkovsky OD, Brovarets VS. Dependence of the anticancer activity of 1,3‐oxazole derivatives on the donor/acceptor nature of his substitues. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maryna V. Kachaeva
- Department of chemistry of bioactive nitrogen containing heterocyclic basesV.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine 1, Murmanskaya str Kyiv 02094 Ukraine
| | - Diana M. Hodyna
- Department of chemistry of bioactive nitrogen containing heterocyclic basesV.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine 1, Murmanskaya str Kyiv 02094 Ukraine
| | - Nataliya V. Obernikhina
- Department of Bioorganic and Biological ChemistryO.O. Bogomolets National Medical University 13 T. Shevchenko boul. 01601 Kyiv Ukraine
| | - Stepan G. Pilyo
- Department of chemistry of bioactive nitrogen containing heterocyclic basesV.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine 1, Murmanskaya str Kyiv 02094 Ukraine
| | - Yulia S. Kovalenko
- Nizhyn Mykola Gogol State University 2, Grafska Str Nizhyn 16600 Ukraine
| | - Volodymyr M. Prokopenko
- Department of chemistry of bioactive nitrogen containing heterocyclic basesV.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine 1, Murmanskaya str Kyiv 02094 Ukraine
| | - Oleksiy D. Kachkovsky
- Department of chemistry of bioactive nitrogen containing heterocyclic basesV.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine 1, Murmanskaya str Kyiv 02094 Ukraine
| | - Volodymyr S. Brovarets
- Department of chemistry of bioactive nitrogen containing heterocyclic basesV.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine 1, Murmanskaya str Kyiv 02094 Ukraine
| |
Collapse
|
40
|
Wang TL, Qi HT, Wang XC, Quan ZJ. Iodine-catalyzed direct allylation of chiral oxazolidinones by the amide-aldehyde-alkene condensation. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Chu X, Ge D, Wang M, Rao W, Loh T, Shen Z. Chemo‐ and Regioselective Ring Construction Driven by Visible‐Light Photoredox Catalysis: an Access to Fluoroalkylated Oxazolidines Featuring an All‐Substituted Carbon Stereocenter. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xue‐Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Mao‐Lin Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Teck‐Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhi‐Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|
42
|
Babu VN, Murugan A, Katta N, Devatha S, Sharada DS. Exocyclic N-Acyliminium Ion (NAI) Cyclization: Access to Fully Substituted Oxazoles and Furocoumarins. J Org Chem 2019; 84:6631-6641. [DOI: 10.1021/acs.joc.9b00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Venkata Nagarjuna Babu
- Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502285, Sangareddy, Telangana, India
| | - Arumugavel Murugan
- Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502285, Sangareddy, Telangana, India
| | - Narenderreddy Katta
- Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502285, Sangareddy, Telangana, India
| | - Suman Devatha
- Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502285, Sangareddy, Telangana, India
| | - Duddu S. Sharada
- Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502285, Sangareddy, Telangana, India
| |
Collapse
|
43
|
Tian X, Song L, Han C, Zhang C, Wu Y, Rudolph M, Rominger F, Hashmi ASK. Gold(III)-Catalyzed Formal [3 + 2] Annulations of N-Acyl Sulfilimines with Ynamides for the Synthesis of 4-Aminooxazoles. Org Lett 2019; 21:2937-2940. [DOI: 10.1021/acs.orglett.9b01011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lina Song
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Chunyu Han
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Cheng Zhang
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Yufeng Wu
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Frank Rominger
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
44
|
Zhang D, Song H, Cheng N, Liao WW. Synthesis of 2,4,5-Trisubstituted Oxazoles via Pd-Catalyzed C-H Addition to Nitriles/Cyclization Sequences. Org Lett 2019; 21:2745-2749. [PMID: 30931572 DOI: 10.1021/acs.orglett.9b00700] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A practical and flexible intermolecular protocol for the diverse synthesis of trisubstituted oxazole derivatives via a Pd-catalyzed direct C-H addition of electronic-rich heteroarenes to O-acyl cyanohydrins bearing an α-hydrogen/cyclization sequence is described. A wide range of trisubstituted oxazoles can be prepared from readily available starting materials in good to high yields with high efficiency under redox neutral reaction conditions.
Collapse
Affiliation(s)
- Di Zhang
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Hao Song
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Na Cheng
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| |
Collapse
|
45
|
Cao Z, Lv H, Liu Y, Nie Z, Liu H, Yang T, Luo W, Liu Q, Guo C. Dimethyl Sulfoxide Oxygen Donor‐Based Annulation of Ketones and Ammonium Persulfate: Regioselective Synthesis of 2,4‐disubstituted Oxazoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhongzhong Cao
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Huifang Lv
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Yufeng Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Haiping Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Weiping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Cancheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| |
Collapse
|
46
|
Sundar S, Rengan R. Direct synthesis of 2,4,5-trisubstituted imidazoles from primary alcohols by diruthenium(ii) catalysts under aerobic conditions. Org Biomol Chem 2019; 17:1402-1409. [DOI: 10.1039/c8ob02785d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthetic approach to 2,4,5-trisubstituted imidazoles from readily available primary alcohols using arene diruthenium(ii) catalysts has been described.
Collapse
Affiliation(s)
- Saranya Sundar
- Centre for Organometallic Chemistry
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| |
Collapse
|
47
|
Xie S, Bernhardt PV, Gahan LR, Williams CM. Contemplating 1,2,4-Thiadiazole-Inspired Cyclic Peptide Mimics: A Computational Investigation. Aust J Chem 2019. [DOI: 10.1071/ch19248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Marine derived cyclic peptides have inspired chemists for decades as the cavitand architecture can be compared with macrocyclic ligands, and hence easily conceived as mediators of metal-ion transport. Lissoclinamide 5 and ascidiacyclamide are two such cyclic peptides that have received much attention both for their metal ion complexation properties and biological activity; the metal ion binding properties of mimics of these two systems have been reported. Reported herein is a computational study aimed at evaluating the stability, and potential for copper(ii) ion binding by lissoclinamide 5 mimics that substitute the naturally occurring 4-carboxy-1,3-thiazole units for novel valine- and phenylalanine-derived 1,2,4-thiadiazole units. Our results suggest that one lissoclinamide 5 mimic, 1,2,4-thiadiazole (TDA)-lissoclinamide 9, may be capable of forming a complex with one CuII ion, [Cu(9-H)(H2O)]+. A complex with two CuII ions, [Cu2(9-H)(μ-OH)]2+, was also considered. These results set the stage for synthetic and experimental metal binding studies.
Collapse
|
48
|
An H, Mai S, Xuan Q, Zhou Y, Song Q. Gold-Catalyzed Radical-Involved Intramolecular Cyclization of Internal N-Propargylamides for the Construction of 5-Oxazole Ketones. J Org Chem 2018; 84:401-408. [DOI: 10.1021/acs.joc.8b02334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hejun An
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
- Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People’s Republic of China
| |
Collapse
|
49
|
Prevost JR, Kozlova A, Es Saadi B, Yildiz E, Modaffari S, Lambert DM, Pochet L, Wouters J, Dolušić E, Frédérick R. Convenient one-pot formation of highly functionalized 5-bromo-2-aminothiazoles, potential endocannabinoid hydrolase MAGL inhibitors. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Yi W, Liu QY, Fang XX, Lou SC, Liu GQ. Preparation of oxazolines and oxazoles via a PhI(OAc) 2-promoted cyclization of N-propargylamides. Org Biomol Chem 2018; 16:7012-7018. [PMID: 30232498 DOI: 10.1039/c8ob01474d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A metal-free cyclization of N-propargylamides for the synthesis of various oxazolines and oxazoles via a 5-exo-dig process is presented. Using (diacetoxyiodo)benzene (PIDA) as a reaction promoter and lithium iodide (LiI) as an iodine source, intramolecular iodooxygenation of N-propargylamides proceeded readily, leading to the corresponding (E)-5-iodomethylene-2-oxazolines in good to excellent isolated yields. In addition, using the PhI(OAc)2/LiI system, N-propargylamides can be converted to the corresponding oxazole-5-carbaldehydes in the presence of oxygen under visible light irradiation. The resulting products can be further converted into various oxazoline and oxazole derivatives after simple derivatizations, and this method ultimately offers an efficient route to a variety of biologically active structures.
Collapse
Affiliation(s)
- Wei Yi
- College of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China.
| | | | | | | | | |
Collapse
|