1
|
Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer 2022; 126:1125-1139. [PMID: 34893761 PMCID: PMC8661339 DOI: 10.1038/s41416-021-01659-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Despite significant improvements in the way breast cancer is managed and treated, it continues to persist as a leading cause of death worldwide. If detected and diagnosed early, when tumours are small and localised, there is a considerably higher chance of survival. However, current methods for detection and diagnosis lack the required sensitivity and specificity for identifying breast cancer at the asymptomatic or very early stages. Thus, there is a need to develop more rapid and reliable methods, capable of detecting disease earlier, for improved disease management and patient outcome. Raman spectroscopy is a non-destructive analytical technique that can rapidly provide highly specific information on the biochemical composition and molecular structure of samples. In cancer, it has the capacity to probe very early biochemical changes that accompany malignant transformation, even prior to the onset of morphological changes, to produce a fingerprint of disease. This review explores the application of Raman spectroscopy in breast cancer, including discussion on its capabilities in analysing both ex-vivo tissue and liquid biopsy samples, and its potential in vivo applications. The review also addresses current challenges and potential future uses of this technology in cancer research and translational clinical application.
Collapse
|
2
|
Kothari R, Jones V, Mena D, Bermúdez Reyes V, Shon Y, Smith JP, Schmolze D, Cha PD, Lai L, Fong Y, Storrie-Lombardi MC. Raman spectroscopy and artificial intelligence to predict the Bayesian probability of breast cancer. Sci Rep 2021; 11:6482. [PMID: 33753760 PMCID: PMC7985361 DOI: 10.1038/s41598-021-85758-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
This study addresses the core issue facing a surgical team during breast cancer surgery: quantitative prediction of tumor likelihood including estimates of prediction error. We have previously reported that a molecular probe, Laser Raman spectroscopy (LRS), can distinguish healthy and tumor tissue. We now report that combining LRS with two machine learning algorithms, unsupervised k-means and stochastic nonlinear neural networks (NN), provides rapid, quantitative, probabilistic tumor assessment with real-time error analysis. NNs were first trained on Raman spectra using human expert histopathology diagnostics as gold standard (74 spectra, 5 patients). K-means predictions using spectral data when compared to histopathology produced clustering models with 93.2-94.6% accuracy, 89.8-91.8% sensitivity, and 100% specificity. NNs trained on k-means predictions generated probabilities of correctness for the autonomous classification. Finally, the autonomous system characterized an extended dataset (203 spectra, 8 patients). Our results show that an increase in DNA|RNA signal intensity in the fingerprint region (600-1800 cm-1) and global loss of high wavenumber signal (2800-3200 cm-1) are particularly sensitive LRS warning signs of tumor. The stochastic nature of NNs made it possible to rapidly generate multiple models of target tissue classification and calculate the inherent error in the probabilistic estimates for each target.
Collapse
Affiliation(s)
- Ragini Kothari
- Department of Surgery, City of Hope National Medical Center, 1500 E. Duarte Rd, Furth 1116, Duarte, CA, 91010, USA.
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA.
| | - Veronica Jones
- Department of Surgery, City of Hope National Medical Center, 1500 E. Duarte Rd, Furth 1116, Duarte, CA, 91010, USA
| | - Dominique Mena
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA
| | - Viviana Bermúdez Reyes
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA
| | - Youkang Shon
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA
| | - Jennifer P Smith
- Department of Physics, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Philip D Cha
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA
| | - Lily Lai
- Department of Surgery, City of Hope National Medical Center, 1500 E. Duarte Rd, Furth 1116, Duarte, CA, 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, 1500 E. Duarte Rd, Furth 1116, Duarte, CA, 91010, USA
| | - Michael C Storrie-Lombardi
- Department of Physics, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA
- Kinohi Institute, Inc, Santa Barbara, CA, 93109, USA
| |
Collapse
|
3
|
Vardaki MZ, Kourkoumelis N. Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review. Biomed Eng Comput Biol 2020; 11:1179597220948100. [PMID: 32884391 PMCID: PMC7440735 DOI: 10.1177/1179597220948100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Raman spectroscopy is a group of analytical techniques, currently applied in several research fields, including clinical diagnostics. Tissue-mimicking optical phantoms have been established as an essential intermediate stage for medical applications with their employment from spectroscopic techniques to be constantly growing. This review outlines the types of tissue phantoms currently employed in different biomedical applications of Raman spectroscopy, focusing on their composition and optical properties. It is therefore an attempt to present an informed range of options for potential use to the researchers.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
4
|
Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast. CRYSTALS 2020. [DOI: 10.3390/cryst10030198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dual energy (DE) technique has been used by numerous studies in order to detect breast cancer in early stages. Although mammography is the gold standard, the dual energy technique offers the advantage of the suppression of the contrast between adipose and glandular tissues and reveals pathogenesis that is not present in conventional mammography. Both dual energy subtraction and dual energy contrast enhanced techniques were used in order to study the potential of dual energy technique to assist in detection or/and visualization of calcification minerals, masses and lesions obscured by overlapping tissue. This article reviews recent developments in this field, regarding: i) simulation studies carried out for the optimizations of the dual energy technique used in order to characterize and quantify calcification minerals or/and visualize suspected findings, and ii) the subsequent experimental verifications, and finally, the adaptation of the dual energy technique in clinical practice.
Collapse
|
5
|
Auner GW, Koya SK, Huang C, Broadbent B, Trexler M, Auner Z, Elias A, Mehne KC, Brusatori MA. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev 2018; 37:691-717. [PMID: 30569241 PMCID: PMC6514064 DOI: 10.1007/s10555-018-9770-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel approaches toward understanding the evolution of disease can lead to the discovery of biomarkers that will enable better management of disease progression and improve prognostic evaluation. Raman spectroscopy is a promising investigative and diagnostic tool that can assist in uncovering the molecular basis of disease and provide objective, quantifiable molecular information for diagnosis and treatment evaluation. This technique probes molecular vibrations/rotations associated with chemical bonds in a sample to obtain information on molecular structure, composition, and intermolecular interactions. Raman scattering occurs when light interacts with a molecular vibration/rotation and a change in polarizability takes place during molecular motion. This results in light being scattered at an optical frequency shifted (up or down) from the incident light. By monitoring the intensity profile of the inelastically scattered light as a function of frequency, the unique spectroscopic fingerprint of a tissue sample is obtained. Since each sample has a unique composition, the spectroscopic profile arising from Raman-active functional groups of nucleic acids, proteins, lipids, and carbohydrates allows for the evaluation, characterization, and discrimination of tissue type. This review provides an overview of the theory of Raman spectroscopy, instrumentation used for measurement, and variation of Raman spectroscopic techniques for clinical applications in cancer, including detection of brain, ovarian, breast, prostate, and pancreatic cancers and circulating tumor cells.
Collapse
Affiliation(s)
- Gregory W Auner
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA.
- Henry Ford Health Systems, Detroit Institute of Ophthalmology, Grosse Pointe Park, MI, 48230, USA.
| | - S Kiran Koya
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Changhe Huang
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Brandy Broadbent
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Micaela Trexler
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Zachary Auner
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
- Department of Physics & Astronomy, Wayne State University, Detroit, MI, 48202, USA
| | - Angela Elias
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Katlyn Curtin Mehne
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Michelle A Brusatori
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
6
|
Park MH, Lim W, Jo D, Jung JS, Kim S, Kim J, Lim HS, Lee JS, Min JJ, Hyun H. Rapid Differential Diagnosis of Breast Microcalcification Using Targeted Near-Infrared Fluorophores. Adv Healthc Mater 2018; 7:e1701062. [PMID: 29210533 DOI: 10.1002/adhm.201701062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/15/2017] [Indexed: 11/06/2022]
Abstract
Early detection and differential diagnosis of breast microcalcifications are of significant importance in effective treatment of early breast cancer, because mineral composition of breast calcification is directly associated with different pathological states. However, applying image-based modalities for component identification in breast calcification remains challenging, because no calcification-specific contrast agent is available to distinguish between benign and malignant (type I and type II, respectively) calcifications of breast lesions. In this study, real-time near-infrared (NIR) fluorescence imaging of breast microcalcifications using targeted NIR fluorophores in combination with dual-channel NIR fluorescence imaging system is reported. This strategy can be used to solve major problem in mammography and ultrasonography methods for the differentiation of benign and malignant microcalcifications. Thus, this novel technology shows significant potential for breast cancer diagnosis and image-guided surgery performed with increased precision and efficiency by providing differential diagnosis of breast microcalcifications.
Collapse
Affiliation(s)
- Min Ho Park
- Department of Surgery; Chonnam National University Medical School; Gwangju 61469 South Korea
| | - Wonbong Lim
- Department of Premedical Program; School of Medicine; Chosun University; Gwangju 61452 South Korea
| | - Danbi Jo
- Department of Biomedical Sciences; Chonnam National University Medical School; Gwangju 61469 South Korea
| | - Jin Seok Jung
- Department of Biomedical Sciences; Chonnam National University Medical School; Gwangju 61469 South Korea
| | - Subin Kim
- Department of Biomedical Sciences; Chonnam National University Medical School; Gwangju 61469 South Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering; Chonnam National University; Gwangju 61186 South Korea
| | - Hyo Soon Lim
- Department of Radiology; Chonnam National University Medical School; Gwangju 61469 South Korea
| | - Ji Shin Lee
- Department of Pathology; Chonnam National University Medical School; Gwangju 61469 South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine; Chonnam National University Medical School; Gwangju 61469 South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences; Chonnam National University Medical School; Gwangju 61469 South Korea
| |
Collapse
|
7
|
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur 247 001, Uttar Pradesh, India
| | - Sangram K. Samal
- Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
8
|
Martini N, Koukou V, Fountos G, Michail C, Bakas A, Kandarakis I, Speller R, Nikiforidis G. Characterization of breast calcification types using dual energy x-ray method. ACTA ACUST UNITED AC 2017; 62:7741-7764. [DOI: 10.1088/1361-6560/aa8445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Combining field effect scanning electron microscopy, deep UV fluorescence, Raman, classical and synchrotron radiation Fourier transform Infra-Red Spectroscopy in the study of crystal-containing kidney biopsies. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Ben Lakhdar A, Daudon M, Mathieu MC, Kellum A, Balleyguier C, Bazin D. Underlining the complexity of the structural and chemical characteristics of ectopic calcifications in breast tissues through FE-SEM and μFTIR spectroscopy. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Manciu FS, Ciubuc JD, Parra K, Manciu M, Bennet KE, Valenzuela P, Sundin EM, Durrer WG, Reza L, Francia G. Label-Free Raman Imaging to Monitor Breast Tumor Signatures. Technol Cancer Res Treat 2016; 16:461-469. [PMID: 27381847 DOI: 10.1177/1533034616655953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for further label-free optical tools to diagnose the disease.
Collapse
Affiliation(s)
- Felicia S Manciu
- 1 Department of Physics, University of Texas at El Paso, El Paso, TX, USA.,2 Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - John D Ciubuc
- 1 Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| | - Karla Parra
- 3 Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Marian Manciu
- 1 Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| | - Kevin E Bennet
- 4 Division of Engineering, Mayo Clinic, Rochester, MN, USA
| | - Paloma Valenzuela
- 3 Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Emma M Sundin
- 1 Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| | - William G Durrer
- 1 Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| | - Luis Reza
- 1 Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| | - Giulio Francia
- 2 Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.,3 Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
12
|
Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL, Walsh MJ, McAinsh MR, Stone N, Martin FL. Using Raman spectroscopy to characterize biological materials. Nat Protoc 2016; 11:664-87. [PMID: 26963630 DOI: 10.1038/nprot.2016.036] [Citation(s) in RCA: 694] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis.
Collapse
Affiliation(s)
- Holly J Butler
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.,Centre for Global Eco-Innovation, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lorna Ashton
- Department of Chemistry, Lancaster University, Lancaster, UK
| | | | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Oxfordshire, UK
| | - Kelly Curtis
- Department of Biomedical Physics, Physics and Astronomy, University of Exeter, Exeter, UK
| | - Jennifer Dorney
- Department of Biomedical Physics, Physics and Astronomy, University of Exeter, Exeter, UK
| | - Karen Esmonde-White
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nigel J Fullwood
- Department of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | - Benjamin Gardner
- Department of Biomedical Physics, Physics and Astronomy, University of Exeter, Exeter, UK
| | - Pierre L Martin-Hirsch
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.,School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Michael J Walsh
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Nicholas Stone
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
13
|
Ghita A, Matousek P, Stone N. Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy. Analyst 2016; 141:5738-5746. [DOI: 10.1039/c6an00490c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this research was to find the optimal Raman excitation wavelength to attain the largest possible sensitivity in deep Raman spectroscopy of breast tissue.
Collapse
Affiliation(s)
- Adrian Ghita
- School of Physics and Astronomy
- University of Exeter
- Exeter
- UK
| | | | - Nicholas Stone
- School of Physics and Astronomy
- University of Exeter
- Exeter
- UK
| |
Collapse
|
14
|
Bocklitz TW, Guo S, Ryabchykov O, Vogler N, Popp J. Raman Based Molecular Imaging and Analytics: A Magic Bullet for Biomedical Applications!? Anal Chem 2015; 88:133-51. [DOI: 10.1021/acs.analchem.5b04665] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Thomas W. Bocklitz
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Shuxia Guo
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| | - Oleg Ryabchykov
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| | - Nadine Vogler
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
15
|
Zheng C, Shao W, Paidi SK, Han B, Fu T, Wu D, Bi L, Xu W, Fan Z, Barman I. Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications. NANOSCALE 2015; 7:16960-8. [PMID: 26415633 DOI: 10.1039/c5nr05319f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Although tissue staining followed by morphologic identification remains the gold standard for diagnosis of most cancers, such determinations relying solely on morphology are often hampered by inter- and intra-observer variability. Vibrational spectroscopic techniques, in contrast, offer objective markers for diagnoses and can afford disease detection prior to alterations in cellular and extracellular architecture by furnishing a rapid "omics"-like view of the biochemical status of the probed specimen. Here, we report a classification approach to concomitantly detect microcalcification status and local pathological state in breast tissue, featuring a combination of vibrational spectroscopy that focuses on the tumor and its microenvironment, and multivariate data analysis of spectral markers reflecting molecular expression. We employ the unprecedented sensitivity and exquisite molecular specificity offered by Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) to probe the presence of calcified deposits and distinguish between normal breast tissues, fibroadenoma, atypical ductal hyperplasia, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). By correlating the spectra with the corresponding histologic assessment, we developed partial least squares-discriminant analysis derived decision algorithm that provides excellent diagnostic power in the fresh frozen sections (overall accuracy of 99.4% and 93.6% using SHINs for breast lesions with and without microcalcifications, respectively). The performance of this decision algorithm is competitive with or supersedes that of analogous algorithms employing spontaneous Raman spectroscopy while enabling facile detection due to the considerably higher intensity of SHINERS. Our results pave the way for rapid tissue spectral pathology measurements using SHINERS that can offer a novel stain-free route to accurate and economical diagnoses without human interpretation.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gao F, Ong YH, Li G, Feng X, Liu Q, Zheng Y. Fast photoacoustic-guided depth-resolved Raman spectroscopy: a feasibility study. OPTICS LETTERS 2015; 40:3568-3571. [PMID: 26258359 DOI: 10.1364/ol.40.003568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this Letter, photoacoustic-guided Raman spectroscopy (PARS) is proposed for a fast depth-resolved Raman measurement with accurate depth localization. The approach was experimentally demonstrated to receive both photoacoustic and Raman signals from a three-layer agar phantom based on a developed synergic photoacoustic-Raman probe, showing strong depth correlation and achieving magnitude of faster operation speed due to photoacoustic time-of-flight measurement and guidance, compared with the conventional depth-resolved Raman spectroscopy method. In addition, further combination with advanced optical-focusing techniques in biological-scattering medium could potentially enable the proposed approach for cancer diagnostics with both tight and fast optical focusing at the desired depth of tumor.
Collapse
|
17
|
Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Adv Drug Deliv Rev 2015; 89:3-20. [PMID: 25868453 DOI: 10.1016/j.addr.2015.04.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022]
Abstract
Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed.
Collapse
|
18
|
Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 2015; 89:121-34. [PMID: 25809988 DOI: 10.1016/j.addr.2015.03.009] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/24/2015] [Accepted: 03/14/2015] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications.
Collapse
|
19
|
De Luca AC, Dholakia K, Mazilu M. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level. SENSORS 2015; 15:13680-704. [PMID: 26110401 PMCID: PMC4507596 DOI: 10.3390/s150613680] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 11/28/2022]
Abstract
Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting.
Collapse
Affiliation(s)
- Anna Chiara De Luca
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino, 111, 80131 Naples, Italy.
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh KY16 9SS, St Andrews, UK.
| | - Michael Mazilu
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh KY16 9SS, St Andrews, UK.
| |
Collapse
|
20
|
Liang L, Zheng C, Zhang H, Xu S, Zhang Z, Hu C, Bi L, Fan Z, Han B, Xu W. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 132:397-402. [PMID: 24887501 DOI: 10.1016/j.saa.2014.04.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 05/14/2023]
Abstract
The characteristics of type II microcalcifications in fibroadenoma (FB), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) breast tissues has been analyzed by the fingerprint features of Raman spectroscopy. Fresh breast tissues were first handled to frozen sections and then they were measured by normal Raman spectroscopy. Due to inherently low sensitivity of Raman scattering, Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique was utilized. A total number of 71 Raman spectra and 70 SHINERS spectra were obtained from the microcalcifications in benign and premalignant breast tissues. Principal component analysis (PCA) was used to distinguish the type II microcalcifications between these tissues. This is the first time to detect type II microcalcifications in premalignant (ADH and DCIS) breast tissue frozen sections, and also the first time SHINERS has been utilized for breast cancer detection. Conclusions demonstrated in this paper confirm that SHINERS has great potentials to be applied to the identification of breast lesions as an auxiliary method to mammography in the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Lijia Liang
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Chao Zheng
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Haipeng Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuping Xu
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zhe Zhang
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Chengxu Hu
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Lirong Bi
- Pathology Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Bing Han
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Weiqing Xu
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| |
Collapse
|
21
|
Raman spectroscopy for in-line water quality monitoring--instrumentation and potential. SENSORS 2014; 14:17275-303. [PMID: 25230309 PMCID: PMC4208224 DOI: 10.3390/s140917275] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.
Collapse
|
22
|
Bazin D, Haymann JP, Letavernier E, Rode J, Daudon M. Calcifications pathologiques : un diagnostic médical basé sur leurs paramètres physicochimiques. Presse Med 2014; 43:135-48. [DOI: 10.1016/j.lpm.2013.02.333] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/28/2013] [Accepted: 02/27/2013] [Indexed: 10/26/2022] Open
|
23
|
Krishna CM, Kurien J, Mathew S, Rao L, Maheedhar K, Kumar KK, Chowdary MVP. Raman spectroscopy of breast tissues. Expert Rev Mol Diagn 2014; 8:149-66. [DOI: 10.1586/14737159.8.2.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Barman I, Dingari NC, Saha A, McGee S, Galindo LH, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy. Cancer Res 2014; 73:3206-15. [PMID: 23729641 DOI: 10.1158/0008-5472.can-12-2313] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcalcifications are a feature of diagnostic significance on a mammogram and a target for stereotactic breast needle biopsy. Here, we report development of a Raman spectroscopy technique to simultaneously identify microcalcification status and diagnose the underlying breast lesion, in real-time, during stereotactic core needle biopsy procedures. Raman spectra were obtained ex vivo from 146 tissue sites from fresh stereotactic breast needle biopsy tissue cores from 33 patients, including 50 normal tissue sites, 77 lesions with microcalcifications, and 19 lesions without microcalcifications, using a compact clinical system. The Raman spectra were modeled on the basis of the breast tissue components, and a support vector machine framework was used to develop a single-step diagnostic algorithm to distinguish normal tissue, fibrocystic change (FCC), fibroadenoma, and breast cancer, in the absence and presence of microcalcifications. This algorithm was subjected to leave-one-site-out cross-validation, yielding a positive predictive value, negative predictive value, sensitivity, and specificity of 100%, 95.6%, 62.5%, and 100% for diagnosis of breast cancer (with or without microcalcifications) and an overall accuracy of 82.2% for classification into specific categories of normal tissue, FCC, fibroadenoma, or breast cancer (with and without microcalcifications). Notably, the majority of breast cancers diagnosed are ductal carcinoma in situ (DCIS), the most common lesion associated with microcalcifications, which could not be diagnosed using previous Raman algorithm(s). Our study shows the potential of Raman spectroscopy to concomitantly detect microcalcifications and diagnose associated lesions, including DCIS, and thus provide real-time feedback to radiologists during such biopsy procedures, reducing nondiagnostic and false-negative biopsies.
Collapse
Affiliation(s)
- Ishan Barman
- G.R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials 2013; 35:2312-21. [PMID: 24360718 DOI: 10.1016/j.biomaterials.2013.11.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Microcalcifications are one of the most common abnormalities detected by mammography for the diagnosis of breast cancer. However, the detection of microcalcifications and correct diagnosis of breast cancer are limited by the sensitivity and specificity of mammography. Therefore, the objective of this study was to investigate the potential of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) for contrast-enhanced radiographic detection of breast microcalcifications using two models of breast microcalcifications, which allowed for precise control over levels of hydroxyapatite (HA) mineral within a low attenuating matrix. First, an in vitro imaging phantom was prepared with varying concentrations of HA uniformly dispersed in an agarose hydrogel. The X-ray attenuation of HA-agarose compositions labeled by BP-Au NPs was increased by up to 26 HU compared to unlabeled compositions for HA concentrations ranging from 1 to 10 mg/mL. Second, an ex vivo tissue model was developed to more closely mimic the heterogeneity of breast tissue by injecting varying concentrations of HA in a Matrigel carrier into murine mammary glands. The X-ray attenuation of HA-Matrigel compositions labeled by BP-Au NPs was increased by up to 289 HU compared to unlabeled compositions for HA concentrations ranging from 0.5 to 25 mg/mL, which included an HA concentration (0.5 mg/mL) that was otherwise undetectable by micro-computed tomography. Cumulatively, both models demonstrated the ability of BP-Au NPs to enhance contrast for radiographic detection of microcalcifications, including at a clinically-relevant imaging resolution. Therefore, BP-Au NPs may have potential to improve clinical detection of breast microcalcifications by mammography.
Collapse
|
26
|
Kallaway C, Almond LM, Barr H, Wood J, Hutchings J, Kendall C, Stone N. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis Photodyn Ther 2013; 10:207-19. [PMID: 23993846 DOI: 10.1016/j.pdpdt.2013.01.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/26/2013] [Accepted: 01/30/2013] [Indexed: 12/20/2022]
Abstract
Light interacts with tissue in a number of ways including, elastic and inelastic scattering, reflection and absorption, leading to fluorescence and phosphorescence. These interactions can be used to measure abnormal changes in tissue. Initial optical biopsy systems have potential to be used as an adjunct to current investigative techniques to improve the targeting of blind biopsy. Future prospects with molecular-specific techniques may enable objective optical detection providing a real-time, highly sensitive and specific measurement of the histological state of the tissue. Raman spectroscopy has the potential to identify markers associated with malignant change and could be used as diagnostic tool for the early detection of precancerous and cancerous lesions in vivo. The clinical requirements for an objective, non-invasive, real-time probe for the accurate and repeatable measurement of pathological state of the tissue are overwhelming. This paper discusses some of the recent advances in the field.
Collapse
Affiliation(s)
- Charlotte Kallaway
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester GL1 3NN, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Ellis DI, Cowcher DP, Ashton L, O'Hagan S, Goodacre R. Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 2013; 138:3871-84. [PMID: 23722248 DOI: 10.1039/c3an00698k] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of the Raman effect in 1928 not only aided fundamental understanding about the quantum nature of light and matter but also opened up a completely novel area of optics and spectroscopic research that is accelerating at a greater rate during the last decade than at any time since its inception. This introductory overview focuses on some of the most recent developments within this exciting field and how this has enabled and enhanced disease diagnosis and biomedical applications. We highlight a small number of stimulating high-impact studies in imaging, endoscopy, stem cell research, and other recent developments such as spatially offset Raman scattering amongst others. We hope this stimulates further interest in this already exciting field, by 'illuminating' some of the current research being undertaken by the latest in a very long line of dedicated experimentalists interested in the properties and potential beneficial applications of light.
Collapse
Affiliation(s)
- David I Ellis
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7ND, UK.
| | | | | | | | | |
Collapse
|
28
|
Surmacki J, Musial J, Kordek R, Abramczyk H. Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol Cancer 2013; 12:48. [PMID: 23705882 PMCID: PMC3681552 DOI: 10.1186/1476-4598-12-48] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/22/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND One of the most important areas of Raman medical diagnostics is identification and characterization of cancerous and noncancerous tissues. The methods based on Raman scattering has shown significant potential for probing human breast tissue to provide valuable information for early diagnosis of breast cancer. A vibrational fingerprint from the biological tissue provides information which can be used to identify, characterize and discriminate structures in breast tissue, both in the normal and cancerous environment. RESULTS The paper reviews recent progress in understanding structure and interactions at biological interfaces of the human tissue by using confocal Raman imaging and IR spectroscopy. The important differences between the noncancerous and cancerous human breast tissues were found in regions characteristic for vibrations of carotenoids, fatty acids, proteins, and interfacial water. Particular attention was paid to the role played by unsaturated fatty acids and their derivatives as well as carotenoids and interfacial water. CONCLUSIONS We demonstrate that Raman imaging has reached a clinically relevant level in regard to breast cancer diagnosis applications. The results presented in the paper may have serious implications on understanding mechanisms of interactions in living cells under realistically crowded conditions of biological tissue.
Collapse
Affiliation(s)
- Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, Lodz 93-590, Poland
| | - Jacek Musial
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Paderewskiego 4, Lodz 93-509, Poland
| | - Radzislaw Kordek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Paderewskiego 4, Lodz 93-509, Poland
| | - Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, Lodz 93-590, Poland
| |
Collapse
|
29
|
Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 2013; 113:5766-81. [PMID: 23697873 DOI: 10.1021/cr300147r] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology , Wroblewskiego 15, 93-590 Lodz, Poland
| | | |
Collapse
|
30
|
Matousek P, Stone N. Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. JOURNAL OF BIOPHOTONICS 2013; 6:7-19. [PMID: 23129567 DOI: 10.1002/jbio.201200141] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 05/21/2023]
Abstract
Raman spectroscopy has recently undergone major advances in the area of deep non-invasive characterisation of biological tissues. The progress stems from the development of spatially offset Raman spectroscopy (SORS) and renaissance of transmission Raman spectroscopy permitting the assessment of diffusely scattering samples at depths several orders of magnitude deeper than possible with conventional Raman spectroscopy. Examples of emerging applications include non-invasive diagnosis of bone disease, cancer and monitoring of glucose levels. This article reviews this fast moving field focusing on recent developments within the medical area.
Collapse
Affiliation(s)
- Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, UK.
| | | |
Collapse
|
31
|
Majzner K, Kaczor A, Kachamakova-Trojanowska N, Fedorowicz A, Chlopicki S, Baranska M. 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst 2013; 138:603-10. [DOI: 10.1039/c2an36222h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Saha A, Barman I, Dingari NC, Galindo LH, Sattar A, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M. Precision of Raman spectroscopy measurements in detection of microcalcifications in breast needle biopsies. Anal Chem 2012; 84:6715-22. [PMID: 22746329 DOI: 10.1021/ac3011439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microcalcifications are an early mammographic sign of breast cancer and a target for stereotactic breast needle biopsy. We developed Raman spectroscopy decision algorithms to detect breast microcalcifications, based on fit coefficients (FC) derived by modeling tissue Raman spectra as a linear combination of the Raman spectra of 9 chemical and morphologic components of breast tissue. However, little or no information is available on the precision of such measurements and its effect on the ability of Raman spectroscopy to make predictions for breast microcalcification detection. Here we report the precision, that is, the closeness of agreement between replicate Raman spectral measurements--and the model FC derived from them--obtained ex vivo from fresh breast biopsies from patients undergoing stereotactic breast needle biopsy, using a compact clinical Raman system. The coefficients of variation of the model FC averaged 0.03 for normal breast tissue sites, 0.12 for breast lesions without, and 0.22 for breast lesions with microcalcifications. Imprecision in the FC resulted in diagnostic discordance among replicates only for line-sitters, that is, tissue sites with FC values near the decision line or plane. The source of this imprecision and their implications for the use of Raman spectroscopy for guidance of stereotactic breast biopsies for microcalcifications are also discussed. In summary, we conclude that the precision of Raman spectroscopy measurements in breast tissue obtained using our compact clinical system is more than adequate to make accurate and repeatable predictions of microcalcifications in breast tissue using decision algorithms based on model FC. This provides strong evidence of the potential of Raman spectroscopy guidance of stereotactic breast needle biopsies for microcalcifications.
Collapse
Affiliation(s)
- Anushree Saha
- Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents. Talanta 2012; 94:342-7. [DOI: 10.1016/j.talanta.2012.03.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 11/20/2022]
|
34
|
Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs. Forensic Sci Int 2011; 212:69-77. [DOI: 10.1016/j.forsciint.2011.05.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 11/23/2022]
|
35
|
Near-Infrared Multichannel Raman Spectroscopy with a 1064 nm Excitation Wavelength for Ex Vivo Diagnosis of Gastric Cancer. J Surg Res 2011; 169:e137-43. [DOI: 10.1016/j.jss.2011.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/29/2011] [Accepted: 04/18/2011] [Indexed: 01/08/2023]
|
36
|
Buckley K, Matousek P. Non-invasive analysis of turbid samples using deep Raman spectroscopy. Analyst 2011; 136:3039-50. [DOI: 10.1039/c0an00723d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Baker R, Rogers KD, Shepherd N, Stone N. New relationships between breast microcalcifications and cancer. Br J Cancer 2010; 103:1034-9. [PMID: 20842116 PMCID: PMC2965876 DOI: 10.1038/sj.bjc.6605873] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/26/2010] [Accepted: 08/03/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Breast microcalcifications are key diagnostically significant radiological features for localisation of malignancy. This study explores the hypothesis that breast calcification composition is directly related to the local tissue pathological state. METHODS A total of 236 human breast calcifications from 110 patients were analysed by mid-Fouries transform infrared (FTIR) spectroscopy from three different pathology types (112 invasive carcinoma (IC), 64 in-situ carcinomas and 60 benign). The biochemical composition and the incorporation of carbonate into the hydroxyapatite lattice of the microcalcifications were studied by infrared microspectroscopy. This allowed the spectrally identified composition to be directly correlated with the histopathology grading of the surrounding tissue. RESULTS The carbonate content of breast microcalcifications was shown to significantly decrease when progressing from benign to malignant disease. In this study, we report significant correlations (P<0.001) between microcalcification chemical composition (carbonate content and protein matrix : mineral ratios) and distinct pathology grades (benign, in-situ carcinoma and ICs). Furthermore, a significant correlation (P<0.001) was observed between carbonate concentrations and carcinoma in-situ sub-grades. Using the two measures of pathology-specific calcification composition (carbonate content and protein matrix : mineral ratios) as the inputs to a two-metric discriminant model sensitivities of 79, 84 and 90% and specificities of 98, 82 and 96% were achieved for benign, ductal carcinoma in situ and invasive malignancies, respectively. CONCLUSIONS We present the first demonstration of a direct link between the chemical nature of microcalcifications and the grade of the pathological breast disease. This suggests that microcalcifications have a significant association with cancer progression, and could be used for future objective analytical classification of breast pathology. A simple two-metric model has been demonstrated, more complex spectral analysis may yeild greater discrimination performance. Furthermore there appears to be a sequential progression of calcification composition.
Collapse
Affiliation(s)
- R Baker
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester, GL1 3NN,UK
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
| | - K D Rogers
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
| | - N Shepherd
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
- Department of Histopathology, Gloucestershire department already included Hospital NHS Foundation Trust, Great Western Road, Gloucester, GL1 3NN, UK
| | - N Stone
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Great Western Road, Gloucester, GL1 3NN,UK
- Cranfield Health, Cranfield University (Shrivenham Campus), Shrivenham, Swindon, Wiltshire, SN6 8LA,UK
| |
Collapse
|
38
|
Knorr F, Smith ZJ, Wachsmann-Hogiu S. Development of a time-gated system for Raman spectroscopy of biological samples. OPTICS EXPRESS 2010; 18:20049-58. [PMID: 20940895 DOI: 10.1364/oe.18.020049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A time gating system has been constructed that is capable of recording high quality Raman spectra of highly fluorescing biological samples while operating below the photodamage threshold. Using a collinear gating geometry and careful attention to power conservation, we have achieved all-optical switching with a one picosecond gating time and 5% peak gating efficiency. The energy per pulse in this instrument is more than 3 orders of magnitude weaker than previous reports. Using this system we have performed proof-of-concept experiments on a sample composed of perylene dissolved in toluene, and the stem of a Jasminum multiflorum plant, the latter case being particularly important for the study of plants used in production of cellulosic biofuels. In both cases, a high SNR spectrum of the high-wavenumber region of the spectrum was recorded in the presence of an overwhelming fluorescence background.
Collapse
Affiliation(s)
- Florian Knorr
- Center for Biophotonics Science and Technology, University of California, Davis, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
39
|
Raman Spectroscopy for Early Cancer Detection, Diagnosis and Elucidation of Disease-Specific Biochemical Changes. EMERGING RAMAN APPLICATIONS AND TECHNIQUES IN BIOMEDICAL AND PHARMACEUTICAL FIELDS 2010. [DOI: 10.1007/978-3-642-02649-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N. Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 2009; 134:1029-45. [PMID: 19475128 DOI: 10.1039/b822130h] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vibrational spectroscopy techniques have demonstrated potential to provide non-destructive, rapid, clinically relevant diagnostic information. Early detection is the most important factor in the prevention of cancer. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analysed. In conjunction with advanced chemometrics such measurements can contribute to the diagnostic assessment of biological material. This paper also illustrates the complementary advantage of using Raman and FTIR spectroscopy technologies together. Clinical requirements are increasingly met by technological developments which show promise to become a clinical reality. This review summarises recent advances in vibrational spectroscopy and their impact on the diagnosis of cancer.
Collapse
Affiliation(s)
- Catherine Kendall
- Biophotonics Research Unit, Leadon House, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK GL1 3NN
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
This article reviews emerging Raman techniques for deep, non-invasive characterisation of biological tissues. As generic analytical tools, the new methods pave the way for a host of new applications including non-invasive bone disease diagnosis, chemical characterisation of 'stone-like' materials in urology and cancer detection in a number of organs.
Collapse
Affiliation(s)
- Pavel Matousek
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK OX11 0QX.
| | | |
Collapse
|
42
|
Abramczyk H, Surmacki J, Brożek-Płuska B, Morawiec Z, Tazbir M. The hallmarks of breast cancer by Raman spectroscopy. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.12.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Ariese F, Meuzelaar H, Kerssens MM, Buijs JB, Gooijer C. Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media. Analyst 2009; 134:1192-7. [PMID: 19475147 DOI: 10.1039/b821437a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A spectroscopic depth profiling approach is demonstrated for layers of non-transparent, diffusely scattering materials. The technique is based on the temporal discrimination between Raman photons emitted from the surface and Raman photons originating from a deeper layer. Excitation was carried out with a frequency-doubled, 3 ps Ti:sapphire laser system (398 nm; 76 MHz repetition rate). Time-resolved detection was carried out with an intensified CCD camera that can be gated with a 250 ps gate width. The performance of the system was assessed using 1 mm and 2 mm pathlength cuvettes with powdered PMMA and trans-stilbene (TS) crystals, respectively, or solid white polymer blocks: Arnite (polyethylene terephthalate), Delrin (polyoxymethylene), polythene (polyethylene) and Teflon (polytetrafluoroethylene). These samples were pressed together in different configurations and Raman photons were collected in backscatter mode in order to study the time difference in such media corresponding with several mm of extra net photon migration distance. We also studied the lateral contrast between two different second layers. The results demonstrate that by means of a picosecond laser system and the time discrimination of a gated intensified CCD camera, molecular spectroscopic information can be obtained through a turbid surface layer. In the case of the PMMA/TS two-layer system, time-resolved detection with a 400 ps delay improved the relative intensity of the Raman bands of the second layer with a factor of 124 in comparison with the spectrum recorded with a 100 ps delay (which is more selective for the first layer) and with a factor of 14 in comparison with a non-gated setup. Possible applications will be discussed, as well as advantages/disadvantages over other Raman techniques for diffusely scattering media.
Collapse
Affiliation(s)
- Freek Ariese
- Department of Analytical Chemistry and Applied Spectroscopy, Laser Centre Vrije Universiteit Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Krafft C, Dietzek B, Popp J. Raman and CARS microspectroscopy of cells and tissues. Analyst 2009; 134:1046-57. [DOI: 10.1039/b822354h] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Bazant-Hegemark F, Edey K, Swingler GR, Read MD, Stone N. Review: optical micrometer resolution scanning for non-invasive grading of precancer in the human uterine cervix. Technol Cancer Res Treat 2008; 7:483-96. [PMID: 19044328 DOI: 10.1177/153303460800700610] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Management of cervical precancer is archetypal for other cancer prevention programmes but has to consider diagnostic and logistic challenges. Numerous optical tools are emerging for non-destructive near real-time early diagnosis of precancerous lesions of the cervix. Non-destructive, real-time imaging modalities have reached pre-commercial status, but high resolution mapping tools are not yet introduced in clinical settings. The NCBI PubMed web page was searched using the keywords 'CIN diagnosis' and the combinations of 'cervix {confocal, optical coherence tomography, ftir, infrared, Raman, vibrational, spectroscopy}'. Suitable titles were identified and their relevant references followed. Challenges in precancer management are discussed. The following tools capable of non-destructive high resolution mapping in a clinical environment were selected: confocal microscopy, optical coherence tomography, IR spectroscopy, and Raman spectroscopy. Findings on the clinical performance of these techniques are put into context in order to assist the reader in judging the likely performance of these methods as diagnostic tools. Rationale for carrying out research under the prospect of the HPV vaccine is given.
Collapse
Affiliation(s)
- F Bazant-Hegemark
- Cranfield Health, Cranfield University at Silsoe, Bedfordshire MK45 4DT, UK
| | | | | | | | | |
Collapse
|
46
|
Macleod NA, Matousek P. Deep noninvasive Raman spectroscopy of turbid media. APPLIED SPECTROSCOPY 2008; 62:291A-304A. [PMID: 19007455 DOI: 10.1366/000370208786401527] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Neil A Macleod
- Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | | |
Collapse
|
47
|
McGoverin CM, Rades T, Gordon KC. Recent pharmaceutical applications of raman and terahertz spectroscopies. J Pharm Sci 2008; 97:4598-621. [DOI: 10.1002/jps.21340] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Kawabata T, Mizuno T, Okazaki S, Hiramatsu M, Setoguchi T, Kikuchi H, Yamamoto M, Hiramatsu Y, Kondo K, Baba M, Ohta M, Kamiya K, Tanaka T, Suzuki S, Konno H. Optical diagnosis of gastric cancer using near-infrared multichannel Raman spectroscopy with a 1064-nm excitation wavelength. J Gastroenterol 2008; 43:283-90. [PMID: 18458844 DOI: 10.1007/s00535-008-2160-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/10/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastric cancer is one of the most common cancers in Japan. The use of endoscopy is increasing, along with the number of histological examinations of specimens obtained by endoscopy. However, it takes several days to reach a diagnosis, which increases the medical expense. Raman spectroscopy is one of the available optical techniques, and the Raman spectrum for each molecule and tissue is characteristic and specific. The present study investigated whether Raman spectroscopy can be used to diagnose gastric cancer. METHODS A total of 251 fresh biopsy specimens of gastric carcinoma and non-neoplastic mucosa were obtained from 49 gastric cancer patients at endoscopy. Without any pretreatment, the fresh specimens were measured with a near-infrared multichannel Raman spectroscopic system with an excitation wavelength of 1064 nm, and Raman spectra specific for the specimens were obtained. A principal component analysis (PCA) was performed to distinguish gastric cancer and non-neoplastic tissue, and a discriminant analysis was used to evaluate the accuracy of the gastric cancer diagnosis. RESULTS The Raman spectra for cancer specimens differed from those for non-neoplastic specimens, especially at around 1644 cm(-1). Sensitivity was 66%, specificity was 73%, and accuracy was 70%. The accuracy of diagnosis using the single Raman scattering intensity at 1644 cm(-1) was 70%, consistent with the PCA result. CONCLUSIONS The present results indicate that near-infrared multichannel Raman spectroscopy with a 1064-nm excitation wavelength is useful for gastric cancer diagnosis. Establishment of a Raman diagnostic system for gastric cancer may improve the clinical diagnosis of gastric cancer and be beneficial for patients.
Collapse
Affiliation(s)
- Toshiki Kawabata
- Second Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Brożek-Płuska B, Placek I, Kurczewski K, Morawiec Z, Tazbir M, Abramczyk H. Breast cancer diagnostics by Raman spectroscopy. J Mol Liq 2008. [DOI: 10.1016/j.molliq.2008.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Stone N, Matousek P. Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res 2008; 68:4424-30. [PMID: 18519705 DOI: 10.1158/0008-5472.can-07-6557] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel approach to noninvasively probe the composition of endogenous materials concealed deeply within mammalian tissue is presented. The method relies upon transmission Raman spectroscopy and permits the detailed characterization of the chemical composition of the probed volume. The technique has been enhanced by the deployment of chemometric methods and the use of a dielectric optical element at the surface to force escaping photons back into the tissue and, thus, enhance the relatively weak signals from the deeper tissue and its components. This permitted reaching both the clinically relevant depth and sufficient sensitivity in phantoms for the noninvasive identification of the calcification types associated with benign or malignant breast disease. Both calcium hydroxyapatite and calcium oxalate monohydrate have been chemically identified from depths of up to 2.7 cm within a breast phantom made up of porcine tissues. The technique has shown significant potential for probing human breasts to provide complementary data in the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Nicholas Stone
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester, United Kingdom.
| | | |
Collapse
|