1
|
Wang X, Zhou N, Gao XJ, Zhu Z, Sun M, Wang Q, Cao H, Wu X, Zhou C, Zheng Q, Yuan Y, Liu Y, Chen L, Jiang J, Bu P, Gao L. Selective G6PDH inactivation for Helicobacter pylori eradication with transformed polysulfide. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1158-1173. [PMID: 39821832 DOI: 10.1007/s11427-024-2775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025]
Abstract
Alternative treatment for the highly prevalent Helicobacter pylori infection is imperative due to rising antibiotic resistance. We unexpectedly discovered that the anti-H. pylori component in garlic is hydrogen polysulfide (H2Sn, n⩾2), not organic polysulfides. Studies on the mechanism of action (MoA) show that H2Sn specifically inactivates H. pylori glucose-6-phosphate dehydrogenase (G6PDH) by interfering with electron transfer from glucose-6-phosphate (G6P) to nicotinamide adenine dinucleotide phosphate (NADP+). However, low H2Sn yield makes garlic derivatives hard to be a reliable donor of H2Sn to treat H. pylori infection. To address this challenge, we established a polysulfide transformation process from garlic organosulfur compounds into Fe3S4 that generates H2Sn with a 25-58 times increase in yield. Through chitosan encapsulation, we designed a gastric-adaptive H2Sn microreactor (GAPSR) that eradicates H. pylori with 250 times higher efficiency under gastric conditions. A single GAPSR achieves more rapid H. pylori eradication than combined antibiotics therapy without disturbing the gut microbiota. These findings indicate a distinct MoA transformation mediated by polysulfide as an alternative candidate to treat H. pylori infection.
Collapse
Affiliation(s)
- Xiaonan Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zijing Zhu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuetong Wu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingkang Zheng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ye Yuan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Liu
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
| |
Collapse
|
2
|
Wu J, He W, Xu R, Li Y, Wu D, Yang Z, Li Y. Asymmetric porous hydrogel encapsulating vulcanized molecular brushes with anti-bacterial adhesion, anti-infection, and pro-healing properties towards infected wound treatment. NANOSCALE 2024; 16:20489-20495. [PMID: 39420797 DOI: 10.1039/d4nr02343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inspired by the hierarchical structure of the skin, asymmetric porous hydrogel encapsulating vulcanized molecular brushes (VMB@APH) as multifunctional wound dressing has been integrally constructed. The as-obtained VMB@APH effectively combines the anti-bacterial adhesion, anti-infection, and pro-healing properties, which is of great significance for accelerating the recovery of infected wounds.
Collapse
Affiliation(s)
- Jinlun Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Wenyi He
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ruijun Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zifeng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Arumugam G, Alagar Yadav S. Synergistic inhibitory actions of resveratrol, epigallocatechin-3-gallate, and diallyl trisulfide against skin cancer cell line A431 through mitochondrial caspase dependent pathway: a combinational drug approach. Med Oncol 2024; 41:64. [PMID: 38280077 DOI: 10.1007/s12032-023-02292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/26/2023] [Indexed: 01/29/2024]
Abstract
The harmful effect of chemotherapeutic side effects has paid a way to discover a novel with curative way for skin cancer treatment. Skin cancer prevention is more viable with the use of combination of bioactive agents than using of single bioactive compounds. Present work was demonstrated to evaluate the interaction of Resveratrol (Res), Epigallocatechin-3-gallate (EGCG), and diallyl trisulfide (DATS) with each other as a binary combination on A431 cells. Nuclear fragmentation analysis of combination of bioactive agents using DAPI analysis, detection of apoptosis, analysis of cell cycle, ROS assay, antimigration assays, and western blotting were implemented to study the combination of bioactive compounds on A431 cell line. Among the selected combination EGCG + DATS had a synergetic effect reducing cellular migration, increased intercellular reactive oxygen species generation, condensation, cell phagocytosis induced by phosphatidylserine externalization, rise in sub-G1 DNA content, and S-phase were cell cycle arrest. The combinations EGCG + DATS induced apoptotic proteins in A431 cells by upregulation of proapoptotic Bax and Bad proteins, a downmodulation of anti-apoptotic proteins Bcl2 and caspases (caspase-3, and -9) activity got triggered by intrinsic pathway. The combination of EGCG + DATS showed good anticancer potential against A431 skin cancer cell line via the mitochondrial caspase dependent pathway with very strong synergism. This finding will help to produce a novel combination/chemoprevention using dietary bioactive agents (EGCG + DATS) for the treatment of skin cancer after clinical trial.
Collapse
Affiliation(s)
- Gobika Arumugam
- Department of Biotechnology, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
4
|
Karpisheh E, Sadjjadi SM, Nekooeian AA, Sharifi Y. Evaluation of structural changes of Echinococcus granulosus protoscoleces following exposure to different protoscolicidal solutions evaluated by differential interference contrast microscopy. J Parasit Dis 2023; 47:850-858. [PMID: 38009156 PMCID: PMC10667190 DOI: 10.1007/s12639-023-01632-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023] Open
Abstract
The present study was aimed to assess the structural changes in protoscoleces of Echinococcus granulosus sensu stricto following exposure to different natural and chemical protoscolicidal agents using differential interference contrast (DIC)/Nomarski microscopy. Protoscoleces of sheep's liver cysts were collected aseptically. Individually, about 1000 protoscoleces were exposed to 0.5% silver nitrate, 20% hypertonic saline solution, 0.5% cetrimide solution and two different concentrations of garlic chloroformic extraction as well as phosphate-buffered saline (PBS). The protoscoleces viability was assessed using 0.1% eosin solution, and structural modifications in the protoscoleces were examined by DIC/Nomarski microscopy. The results revealed the degeneration of the tegument, disorganization of the hooks, and reduction of the size of the protoscoleces exposed to cetrimide, hypertonic sodium chloride, and silver nitrate. Furthermore, calcareous corpuscles became blurred and opaque and their numbers decreased in all the exposed samples except, those in PBS. The exposed protoscoleces to cetrimide and hypertonic sodium chloride solution showed extensive degeneration of the tegument and disorganization of the hooks. In the group exposed to 200 mg/ml chloroformic garlic extract, the protoscoleces' width decreased. The length, width, and number of calcareous corpuscles also decreased significantly in the silver nitrate-exposed protoscoleces. The study concludes that protoscoleces exposed to different solutions; cetrimide 0.5% and hypertonic sodium chloride 20% caused more pronounced structural changes in the exposed protoscoleces. These changes were well demonstrated by DIC microscopy and can be used as a supplementary tool to evaluate the effects of protoscolicidal agents. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-023-01632-4.
Collapse
Affiliation(s)
- Elaheh Karpisheh
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-1735, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-1735, Shiraz, Iran
| | - Ali Akbar Nekooeian
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-1735, Shiraz, Iran
| |
Collapse
|
5
|
Dop RA, Neill DR, Hasell T. Sulfur-Polymer Nanoparticles: Preparation and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20822-20832. [PMID: 37074085 PMCID: PMC10165599 DOI: 10.1021/acsami.3c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High sulfur content polymers prepared by inverse vulcanization have many reported potential applications, including as novel antimicrobial materials. High sulfur content polymers usually have limited water-solubility and dispersibility due to their hydrophobic nature, which could limit the development of their applications. Herein, we report the formulation of high sulfur content polymeric nanoparticles by a nanoprecipitation and emulsion-based method. High sulfur content polymeric nanoparticles were found to have an inhibitory effect against important bacterial pathogens, including Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. Salt-stable particles were formulated with the addition of a surfactant, which did not inhibit the antibacterial activity of the polymeric particles. Furthermore, the polymeric nanoparticles were found to inhibit S. aureus biofilm formation and exhibited low cytotoxicity against mammalian liver cells. Interaction of the polymeric particles with cellular thiols could be a potential mechanism of action against bacterial cells, as demonstrated by reaction with cysteine as a model thiol. The findings presented demonstrate methods of preparing aqueous dispersions of high sulfur content polymeric nanoparticles that could have useful biological applications.
Collapse
Affiliation(s)
- Romy A Dop
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
6
|
D’Addabbo T, Ladurner E, Troccoli A. Nematicidal Activity of a Garlic Extract Formulation against the Grapevine Nematode Xiphinema index. PLANTS (BASEL, SWITZERLAND) 2023; 12:739. [PMID: 36840087 PMCID: PMC9966491 DOI: 10.3390/plants12040739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The nematicidal activity of garlic extracts is known on root-knot nematodes but never investigated on the grapevine nematode Xiphinema index. In this study, the nematicidal activity of a commercial garlic extract formulate (GEF) was assessed on X. index, both in vitro and in a pot assay. In the in vitro assays, mixed specimens of X. index were exposed to a 0-4 mL L-1 range of GEF concentrations, checking nematode immotility and mortality after 2, 4 or 8 h. In the experiments on potted grapevines, plants cultivated in soil infested by X. index were irrigated twice at a 15-day interval with 0.05, 0.2 and 0.5 mL L-1 solutions of GEF, including nontreated soil as a control. An almost complete mortality of X. index specimens occurred after a 2 h exposure to a 2 mL L-1 GEF concentration, while an 8 h exposure to even the 0.0312 and 0.0156 mL L-1 solutions resulted in about 50% and 30% mortality, respectively. Soil treatment with a 0.5 mL L-1 GEF solution significantly reduced the population of X. index and increased the grapevine root growth compared to nontreated soil or soil treated with the lower dosages. Results of this study indicated that garlic-based nematicides could be an effective tool for X. index management in organic and integrated vineyards.
Collapse
Affiliation(s)
- Trifone D’Addabbo
- Institute for Sustainable Plant Protection—CNR, 70126 Bari, BA, Italy
| | - Edith Ladurner
- CBC Europe—Biogard Division, 24050 Grassobbio, BG, Italy
| | - Alberto Troccoli
- Institute for Sustainable Plant Protection—CNR, 70126 Bari, BA, Italy
| |
Collapse
|
7
|
Rong F, Wang T, Zhou Q, Peng H, Yang J, Fan Q, Li P. Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications. Bioact Mater 2023; 19:198-216. [PMID: 35510171 PMCID: PMC9034248 DOI: 10.1016/j.bioactmat.2022.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) plays an important role in regulating various pathological processes such as protecting mammalian cell from harmful injuries, promoting tissue regeneration, and regulating the process of various diseases caused by physiological disorders. Studies have revealed that the physiological effects of H2S are highly associated with its concentrations. At relatively low concentration, H2S shows beneficial functions. However, long-time and high-dose donation of H2S would inhibit regular biological process, resulting in cell dysfunction and apoptosis. To regulate the dosage of H2S delivery for precision medicine, H2S delivery systems with intelligent characteristics were developed and a variety of biocompatibility polymers have been utilized to establish intelligent polymeric H2S delivery systems, with the abilities to specifically target the lesions, smartly respond to pathological microenvironments, as well as real-timely monitor H2S delivery and lesion conditions by incorporating imaging-capable moieties. In this review, we focus on the design, preparation, and therapeutic applications of intelligent polymeric H2S delivery systems in cardiovascular therapy, inflammatory therapy, tissue regenerative therapy, cancer therapy and bacteria-associated therapy. Strategies for precise H2S therapies especially imaging-guided H2S theranostics are highlighted. Since H2S donors with stimuli-responsive characters are vital components for establishing intelligent H2S delivery systems, the development of H2S donors is also briefly introduced. H2S is an endogenous gasotransmitter that plays important role in regulating various physiological and pathological pathways. Controlled H2S delivery is vital since the therapeutic effects of H2S are highly associated with its concentrations. Intelligent polymeric H2S delivery systems possess specific targeting, stimuli responsive and imaging guided capabilities, representing a strategic option for next generation of therapies.
Collapse
|
8
|
Dodd LJ, Lima C, Costa-Milan D, Neale AR, Saunders B, Zhang B, Sarua A, Goodacre R, Hardwick LJ, Kuball M, Hasell T. Raman analysis of inverse vulcanised polymers. Polym Chem 2023. [DOI: 10.1039/d2py01408d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Raman analysis has been found to provide otherwise hard to obtain information on inverse vulcanised polymers, including their homogeneity, sulfur rank, and unpolymerised sulfur content.
Collapse
Affiliation(s)
- Liam J. Dodd
- University of Liverpool, School of Physical Sciences, Department of Chemistry, Crown Street, Liverpool, L697ZD, Merseyside, UK
| | - Cássio Lima
- University of Liverpool, Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Crown Street, Liverpool, L697BE, Merseyside, UK
| | - David Costa-Milan
- University of Liverpool, Stephenson Institute for Renewable Energy, Chadwick Building, Peach Street, Liverpool, L697ZF, Merseyside, UK
| | - Alex R. Neale
- University of Liverpool, Stephenson Institute for Renewable Energy, Chadwick Building, Peach Street, Liverpool, L697ZF, Merseyside, UK
| | - Benedict Saunders
- University College London, Department of Chemistry, Gower Street, London, WC1E6BT, UK
| | - Bowen Zhang
- University of Liverpool, School of Physical Sciences, Department of Chemistry, Crown Street, Liverpool, L697ZD, Merseyside, UK
| | - Andrei Sarua
- University of Bristol, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS81TL, UK
| | - Royston Goodacre
- University of Liverpool, Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Crown Street, Liverpool, L697BE, Merseyside, UK
| | - Laurence J. Hardwick
- University of Liverpool, Stephenson Institute for Renewable Energy, Chadwick Building, Peach Street, Liverpool, L697ZF, Merseyside, UK
| | - Martin Kuball
- University of Bristol, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS81TL, UK
| | - Tom Hasell
- University of Liverpool, School of Physical Sciences, Department of Chemistry, Crown Street, Liverpool, L697ZD, Merseyside, UK
| |
Collapse
|
9
|
Ameera Rosli N, Yeit Haan T, Mahmoudi E. Optimisation for the Synthesis of Uniformly Dispersed Antimicrobial Ag/GO Nanohybrid Latex Film. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Marques CS, Arruda TR, Silva RRA, Ferreira ALV, Oliveira WLDA, Rocha F, Mendes LA, de Oliveira TV, Vanetti MCD, Soares NDFF. Exposure to cellulose acetate films incorporated with garlic essential oil does not lead to homologous resistance in Listeria innocua ATCC 33090. Food Res Int 2022; 160:111676. [DOI: 10.1016/j.foodres.2022.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
|
11
|
Development and Investigation of Zein and Cellulose Acetate Polymer Blends Incorporated with Garlic Essential Oil and β-Cyclodextrin for Potential Food Packaging Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The obtainment of new materials with distinct properties by mixing two or more polymers is a potential strategy in sustainable packaging research. In the present work, a blend of cellulose acetate (CA) and zein (60:40 wt/wt CA:zein) was manufactured by adding glycerol or tributyrin as plasticizers (30% wt/wt), and garlic essential oil (GEO), complexed (IC) or not with β-cyclodextrin (βCD), to produce active packaging. Blends plasticized with tributyrin exhibited a more homogeneous surface than those containing glycerol, which showed major defects. The blends underperformed compared with the CA films regarding mechanical properties and water vapor permeability. The presence of IC also impaired the films’ performance. However, the blends were more flexible than zein brittle films. The films added with GEO presented in vitro activity against Listeria innocua and Staphylococcus aureus. The IC addition into films, however, did not ensure antibacterial action, albeit that IC, when tested alone, showed activity against both bacteria. These findings suggest that the mixture of CA and plasticizers could increase the range of application of zein as a sustainable packaging component, while essential oils act as a natural bioactive to produce active packaging.
Collapse
|
12
|
Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022; 11:cells11030325. [PMID: 35159135 PMCID: PMC8834412 DOI: 10.3390/cells11030325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Giuliana Gobbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Elena Masselli
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (P.M.)
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Valentina Presta
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Luca Ambrosini
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Marco Vitale
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Italian Foundation for the Research in Balneology, Via Po 22, 00198 Rome, Italy
| | - Prisco Mirandola
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- Correspondence: (E.M.); (P.M.)
| |
Collapse
|
13
|
Davis AE, Sayer KB, Jenkins CL. A comparison of adhesive polysulfides initiated by garlic essential oil and elemental sulfur to create recyclable adhesives. Polym Chem 2022. [DOI: 10.1039/d2py00418f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur and garlic essential oil can initiate polymerization with a variety of natural monomers to form sustainable adhesives. The sulfur source has a substantial impact on the adhesion strength and material properties.
Collapse
Affiliation(s)
- Anthony E. Davis
- Department of Chemistry, Idaho State University, 921 South 8th Ave, Pocatello, ID 83209, USA
| | - Kyler B. Sayer
- Department of Chemistry, Idaho State University, 921 South 8th Ave, Pocatello, ID 83209, USA
| | - Courtney L. Jenkins
- Department of Chemistry, Idaho State University, 921 South 8th Ave, Pocatello, ID 83209, USA
| |
Collapse
|
14
|
Dop RA, Neill DR, Hasell T. Antibacterial Activity of Inverse Vulcanized Polymers. Biomacromolecules 2021; 22:5223-5233. [PMID: 34784205 PMCID: PMC7614836 DOI: 10.1021/acs.biomac.1c01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inverse vulcanization is a bulk polymerization method for synthesizing high sulfur content polymers from elemental sulfur, a byproduct of the petrochemical industry, with vinylic comonomers. There is growing interest in polysulfides as novel antimicrobial agents due to the antimicrobial activity of natural polysulfides found in garlic and onions (Tsao et al. J. Antimicrob. Chemother. 2001, 47, 665-670). Herein, we report the antibacterial properties of several inverse vulcanized polymers against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, two common causes of nosocomial infection and pathogens identified by the World Health Organization as priorities for antimicrobial development. High sulfur content polymers were synthesized with different divinyl comonomers and at different sulfur/comonomer ratios, to determine the effect of such variables on the antibacterial properties of the resulting materials. Furthermore, polymers were tested for their potential as antibacterial materials at different temperatures. It was found that the test temperature influenced the antibacterial efficacy of the polymers and could be related to the glass transition temperature of the polymer. These findings provide further understanding of the antibacterial properties of inverse vulcanized polymers and show that such polymers have the potential to be used as antibacterial surfaces.
Collapse
Affiliation(s)
- Romy A Dop
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
15
|
Mösbauer K, Fritsch VN, Adrian L, Bernhardt J, Gruhlke MCH, Slusarenko AJ, Niemeyer D, Antelmann H. The Effect of Allicin on the Proteome of SARS-CoV-2 Infected Calu-3 Cells. Front Microbiol 2021; 12:746795. [PMID: 34777295 PMCID: PMC8581659 DOI: 10.3389/fmicb.2021.746795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Allicin (diallyl thiosulfinate) is the major thiol-reactive organosulfur compound produced by garlic plants (Allium sativum) upon tissue damage. Allicin exerts its strong antimicrobial activity against bacteria and fungi via S-thioallylation of protein thiols and low molecular weight thiols. Here, we investigated the effect of allicin on SARS-CoV-2 infected Vero E6 and Calu-3 cells. Toxicity tests revealed that Calu-3 cells showed greater allicin tolerance, probably due to >4-fold higher GSH levels compared to the very sensitive Vero E6 cells. Exposure of infected Vero E6 and Calu-3 cells to biocompatible allicin doses led to a ∼60–70% decrease of viral RNA and infectious viral particles. Label-free quantitative proteomics was used to investigate the changes in the Calu-3 proteome after SARS-CoV-2 infection and the effect of allicin on the host-virus proteome. SARS-CoV-2 infection of Calu-3 cells caused a strong induction of the antiviral interferon-stimulated gene (ISG) signature, including several antiviral effectors, such as cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, OAS, and ISG15, pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTCL1, and ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin treatment of infected Calu-3 cells reduced the expression of IFN signaling pathways and ISG effectors and reverted several host pathways to levels of uninfected cells. Allicin further reduced the abundance of the structural viral proteins N, M, S and ORF3 in the host-virus proteome. In conclusion, our data demonstrate the antiviral and immunomodulatory activity of biocompatible doses of allicin in SARS-CoV-2-infected cell cultures. Future drug research should be directed to exploit the thiol-reactivity of allicin derivatives with increased stability and lower human cell toxicity as antiviral lead compounds.
Collapse
Affiliation(s)
- Kirstin Mösbauer
- Institute of Virology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | | | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | - Daniela Niemeyer
- Institute of Virology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
17
|
Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, Mollazadeh S, Rezaei M, Pourghadamyari H, Masoud Khooy M, Aschner M, Khan H, Rezaei N, Shojaie L, Mirzaei H. Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities. Front Oncol 2021; 11:650256. [PMID: 33987085 PMCID: PMC8111078 DOI: 10.3389/fonc.2021.650256] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancer tumors are one of the major causes of cancer-related fatalities; the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence confirmed that allium-containing food, such as garlic, reduces the risk of developing malignancies. Among all compounds in garlic, allicin has been most researched, as it contains sulfur and produces many second degradation compounds, such as sulfur dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in the presence of enzymatic reactions in gastric juice. These substances have shown anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers. Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.
Collapse
Affiliation(s)
- Mahshad Sarvizadeh
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hasanpour
- School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Nima Rezaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Abstract
This article highlights recent discoveries within the field of polysulfides which are created from waste sulfur through inverse vulcanisation. Due to the current environmental climate, making materials from renewable resources or industrial waste is highly desirable. Sulfur is an impurity refined out of petroleum and gas reserves at a rate of more than 70 million tonnes a year and is currently used in the rubber, fertiliser and chemical industries. However, even with these applications, the usage is significantly below the amount refined each year, leading to large stockpiles of sulfur. Inverse vulcanisation is an attractive method to synthesize new sulfur based materials by trapping the polysulfide using crosslinkers containing diene functionalities. A wide variety of unsaturated crosslinkers can be incorporated into polysulfide materials resulting in inorganic rubbers, combining the benefits of both components. The materials produced have been shown to selectively absorb mercury, are prominsing replacements for existing mid IR lenses, and can be used as capsules for controlled release fertilisers. An overview of the field, including the breadth of crosslinkers employed, synthetic strategies, and the properties and potential applications of polysulfides created through inverse vulcanisation, is captured.
Collapse
Affiliation(s)
- Kun Woo Park
- School of chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.
| | | |
Collapse
|
19
|
Hepatoprotective Effect of Mixture of Dipropyl Polysulfides in Concanavalin A-Induced Hepatitis. Nutrients 2021; 13:nu13031022. [PMID: 33809904 PMCID: PMC8004208 DOI: 10.3390/nu13031022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
The main biologically active components of plants belonging to the genus Allium, responsible for their biological activities, including anti-inflammatory, antioxidant and immunomodulatory, are organosulfur compounds. The aim of this study was to synthetize the mixture of dipropyl polysulfides (DPPS) and to test their biological activity in acute hepatitis. C57BL/6 mice were administered orally with DPPS 6 h before intravenous injection of Concanavalin A (ConA). Liver inflammation, necrosis and hepatocytes apoptosis were determined by histological analyses. Cytokines in liver tissue were determined by ELISA, expression of adhesive molecules and enzymes by RT PCR, while liver mononuclear cells were analyzed by flow cytometry. DPPS pretreatment significantly attenuated liver inflammation and injury, as evidenced by biochemical and histopathological observations. In DPPS-pretreated mice, messenger RNA levels of adhesion molecules and NADPH oxidase complex were significantly reduced, while the expression of SOD enzymes was enhanced. DPPS pretreatment decreased protein level of inflammatory cytokines and increased percentage of T regulatory cells in the livers of ConA mice. DPPS showed hepatoprotective effects in ConA-induced hepatitis, characterized by attenuation of inflammation and affection of Th17/Treg balance in favor of T regulatory cells and implicating potential therapeutic usage of DPPS mixture in inflammatory liver diseases.
Collapse
|
20
|
Dao NV, Ercole F, Kaminskas LM, Davis TP, Sloan EK, Whittaker MR, Quinn JF. Trisulfide-Bearing PEG Brush Polymers Donate Hydrogen Sulfide and Ameliorate Cellular Oxidative Stress. Biomacromolecules 2020; 21:5292-5305. [PMID: 33210534 DOI: 10.1021/acs.biomac.0c01347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A potential approach to combat cellular dysfunction is to manipulate cell communication and signaling pathways to restore physiological functions while protecting unaffected cells. For instance, delivering the signaling molecule H2S to certain cells has been shown to restore cell viability and re-normalize cell behavior. We have previously demonstrated the ability to incorporate a trisulfide-based H2S-donating moiety into linear polymers with good in vitro releasing profiles and demonstrated their potential for ameliorating oxidative stress. Herein, we report two novel series of brush polymers decorated with higher numbers of H2S-releasing segments. These materials contain two trisulfide-based monomers co-polymerized with oligo(ethylene glycol methyl ether methacrylate) via reversible addition-fragmentation chain-transfer polymerization. The macromolecules were characterized to have a range of trisulfide densities with similar, well-defined molecular weight distribution, good H2S-releasing profiles, and high cellular tolerance. Using an amperometric technique, the H2S liberated and total sulfide release were found to depend on concentrations and chemical nature of triggering molecules (glutathione and cysteine) and, importantly, the position of reactive groups within the brush structure. Notably, when introduced to cells at well-tolerated doses, two macromolecular donors which have the same proportion as of the H2S-donating monomer (30%) but differ in releasing moiety location show similar cellular H2S-releasing kinetics. These donors can restore reactive oxygen species levels to baseline values, when polymer pretreated cells are exposed to exogenous oxidants (H2O2). Our work opens up a new aspect in preparing H2S macromolecule donors and their application to arresting cellular oxidative cascades.
Collapse
Affiliation(s)
- Nam V Dao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Linzner N, Loi VV, Fritsch VN, Antelmann H. Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol Chem 2020; 402:333-361. [PMID: 33544504 DOI: 10.1515/hsz-2020-0272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which encounters reactive oxygen, nitrogen, chlorine, electrophile and sulfur species (ROS, RNS, RCS, RES and RSS) by the host immune system, during cellular metabolism or antibiotics treatments. To defend against redox active species and antibiotics, S. aureus is equipped with redox sensing regulators that often use thiol switches to control the expression of specific detoxification pathways. In addition, the maintenance of the redox balance is crucial for survival of S. aureus under redox stress during infections, which is accomplished by the low molecular weight (LMW) thiol bacillithiol (BSH) and the associated bacilliredoxin (Brx)/BSH/bacillithiol disulfide reductase (YpdA)/NADPH pathway. Here, we present an overview of thiol-based redox sensors, its associated enzymatic detoxification systems and BSH-related regulatory mechanisms in S. aureus, which are important for the defense under redox stress conditions. Application of the novel Brx-roGFP2 biosensor provides new insights on the impact of these systems on the BSH redox potential. These thiol switches of S. aureus function in protection against redox active desinfectants and antimicrobials, including HOCl, the AGXX® antimicrobial surface coating, allicin from garlic and the naphthoquinone lapachol. Thus, thiol switches could be novel drug targets for the development of alternative redox-based therapies to combat multi-drug resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| |
Collapse
|
22
|
Cheng Y, Pham AT, Kato T, Lim B, Moreau D, López-Andarias J, Zong L, Sakai N, Matile S. Inhibitors of thiol-mediated uptake. Chem Sci 2020; 12:626-631. [PMID: 34163793 PMCID: PMC8179002 DOI: 10.1039/d0sc05447j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ellman's reagent has caused substantial confusion and concern as a probe for thiol-mediated uptake because it is the only established inhibitor available but works neither efficiently nor reliably. Here we use fluorescent cyclic oligochalcogenides that enter cells by thiol-mediated uptake to systematically screen for more potent inhibitors, including epidithiodiketopiperazines, benzopolysulfanes, disulfide-bridged γ-turned peptides, heteroaromatic sulfones and cyclic thiosulfonates, thiosulfinates and disulfides. With nanomolar activity, the best inhibitors identified are more than 5000 times better than Ellman's reagent. Different activities found with different reporters reveal thiol-mediated uptake as a complex multitarget process. Preliminary results on the inhibition of the cellular uptake of pseudo-lentivectors expressing SARS-CoV-2 spike protein do not exclude potential of efficient inhibitors of thiol-mediated uptake for the development of new antivirals. Thiol-reactive inhibitors for the cellular entry of cyclic oligochalcogenide (COC) transporters and SARS-CoV-2 spike pseudo-lentivirus are reported.![]()
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Lili Zong
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
23
|
González-Gordo S, Palma JM, Corpas FJ. Appraisal of H 2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:579-588. [PMID: 32846393 DOI: 10.1016/j.plaphy.2020.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 05/15/2023]
Abstract
Hydrogen sulfide (H2S) has become a new signal molecule in higher plants which seems to be involved in almost all physiological processes from seed germination, root and plant growth until flowering and fruit ripening. Moreover, H2S also participates in the mechanism of response against adverse environmental stresses. However, its basic biochemistry in plant cells can be considered in a nascent stage. Using the available information of the model plant Arabidopsis thaliana, the goal of the present study is to provide a broad overview of H2S metabolism and to display an in silico analysis of the 26 enzymatic components involved in the metabolism of H2S and their subcellular compartmentation (cytosol, chloroplast and mitochondrion) thus providing a wide picture of the cross-talk inside the organelles and amongst them and, consequently, to get a better understanding of the cellular and tissue implications of H2S. This information will be also relevant for other crop species, especially those whose whole genome is not yet available.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| |
Collapse
|
24
|
Ercole F, Li Y, Whittaker MR, Davis TP, Quinn JF. H 2S-Donating trisulfide linkers confer unexpected biological behaviour to poly(ethylene glycol)-cholesteryl conjugates. J Mater Chem B 2020; 8:3896-3907. [PMID: 32227031 DOI: 10.1039/c9tb02614b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inspired by the properties of the naturally occurring H2S donor, diallyl trisulfide (DATS, extracted from garlic), the biological behaviour of trisulfide-bearing PEG-conjugates was explored. Specifically, three conjugates comprising an mPEG tail and a cholesteryl head were investigated: conjugates bridged by a trisulfide linker (T), a disulfide linker (D) or a carbamate linker (C), and a fourth comprising two mPEG tails bridged by a trisulfide linker (P). H2S testing using both a fluorescent chemical probe in HEK293 cells and an amperometric sensor to monitor release in suspended cells, demonstrated the ability of the trisulfide conjugates, T and P, to release H2S in the presence of cellular thiols. Cytotoxicity and cyto-protective capacity on HEK293 cells showed that T was the best tolerated of the conjugates studied, and remarkably more so than D or C. Moreover, it was noted that application of T conferred a protective effect to the cells, effectively abolishing the toxicity associated with co-administered C. The interaction of conjugates and combinations thereof with the cell membrane of HEK cells, as well as ROS generation were also investigated. It was found that C caused significant membrane perturbation, correlating with high losses in cell viability and pronounced generation of ROS, especially in the mitochondria. T, however, did not disturb the membrane and was able to mitigate the generation of ROS, especially in the mitochondria. The interplay of the cholesteryl group and H2S donation for conferring cytoprotective effects was clearly demonstrated as P did not display the same beneficial characteristics as T.
Collapse
Affiliation(s)
- Francesca Ercole
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | | | | | | | | |
Collapse
|
25
|
Smith J, Mulhall R, Goodman S, Fleming G, Allison H, Raval R, Hasell T. Investigating the Antibacterial Properties of Inverse Vulcanized Sulfur Polymers. ACS OMEGA 2020; 5:5229-5234. [PMID: 32201811 PMCID: PMC7081397 DOI: 10.1021/acsomega.9b04267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
More than 60 million tons of sulfur are produced as a byproduct of the petrochemical industry annually. Recently, the inverse vulcanization process has transformed this excess sulfur into functional polymers by stabilization with organic cross-linkers. These interesting new polymers have many potential applications covering diverse areas. However, there has been very little focus on the potential of these high-sulfur polymers for their antibacterial properties. These properties are examined here by exposing two common bacteria species, Escherichia coli (E. Coli) and Staphylococcus aureus (S. aureus), to two structurally different, inverse vulcanized sulfur polymers: sulfur-co-diisopropenyl benzene (S-DIB) and sulfur dicyclopentadiene (S-DCPD). We report the highest bacteria log reduction (>log 4.3) of adhered bacterial cells (S. aureus) to an inverse vulcanized sulfur polymer to date and investigate the potential pathways in which antibacterial activity may occur.
Collapse
Affiliation(s)
- Jessica
A. Smith
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Ross Mulhall
- Open
Innovation Hub for Antimicrobial Surfaces at the Surface Science Research
Centre and Department of Chemistry, University
of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Sean Goodman
- Open
Innovation Hub for Antimicrobial Surfaces at the Surface Science Research
Centre and Department of Chemistry, University
of Liverpool, Liverpool L69 3BX, United Kingdom
| | - George Fleming
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Heather Allison
- Institute
of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Rasmita Raval
- Open
Innovation Hub for Antimicrobial Surfaces at the Surface Science Research
Centre and Department of Chemistry, University
of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Tom Hasell
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
26
|
Zaorska E, Tomasova L, Koszelewski D, Ostaszewski R, Ufnal M. Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules 2020; 10:biom10020323. [PMID: 32085474 PMCID: PMC7072623 DOI: 10.3390/biom10020323] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the important biological mediators involved in physiological and pathological processes in mammals. Recently developed H2S donors show promising effects against several pathological processes in preclinical and early clinical studies. For example, H2S donors have been found to be effective in the prevention of gastrointestinal ulcers during anti-inflammatory treatment. Notably, there are well-established medicines used for the treatment of a variety of diseases, whose chemical structure contains sulfur moieties and may release H2S. Hence, the therapeutic effect of these drugs may be partly the result of the release of H2S occurring during drug metabolism and/or the effect of these drugs on the production of endogenous hydrogen sulfide. In this work, we review data regarding sulfur drugs commonly used in clinical practice that can support the hypothesis about H2S-dependent pharmacotherapeutic effects of these drugs.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6195
| |
Collapse
|
27
|
Braunstein I, Engelman R, Yitzhaki O, Ziv T, Galardon E, Benhar M. Opposing effects of polysulfides and thioredoxin on apoptosis through caspase persulfidation. J Biol Chem 2020; 295:3590-3600. [PMID: 32041780 DOI: 10.1074/jbc.ra119.012357] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide has been implicated in a large number of physiological processes including cell survival and death, encouraging research into its mechanisms of action and therapeutic potential. Results from recent studies suggest that the cellular effects of hydrogen sulfide are mediated in part by sulfane sulfur species, including persulfides and polysulfides. In the present study, we investigated the apoptosis-modulating effects of polysulfides, especially on the caspase cascade, which mediates the intrinsic apoptotic pathway. Biochemical analyses revealed that organic or synthetic polysulfides strongly and rapidly inhibit the enzymatic activity of caspase-3, a major effector protease in apoptosis. We attributed the caspase-3 inhibition to persulfidation of its catalytic cysteine. In apoptotically stimulated HeLa cells, short-term exposure to polysulfides triggered the persulfidation and deactivation of cleaved caspase-3. These effects were antagonized by the thioredoxin/thioredoxin reductase system (Trx/TrxR). Trx/TrxR restored the activity of polysulfide-inactivated caspase-3 in vitro, and TrxR inhibition potentiated polysulfide-mediated suppression of caspase-3 activity in situ We further found that under conditions of low TrxR activity, early cell exposure to polysulfides leads to enhanced persulfidation of initiator caspase-9 and decreases apoptosis. Notably, we show that the proenzymes procaspase-3 and -9 are basally persulfidated in resting (unstimulated) cells and become depersulfidated during their processing and activation. Inhibition of TrxR attenuated the depersulfidation and activation of caspase-9. Taken together, our results reveal that polysulfides target the caspase-9/3 cascade and thereby suppress cancer cell apoptosis, and highlight the role of Trx/TrxR-mediated depersulfidation in enabling caspase activation.
Collapse
Affiliation(s)
- Ilana Braunstein
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, 3200003 Israel
| | - Rotem Engelman
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, 3200003 Israel
| | - Ofer Yitzhaki
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, 3200003 Israel
| | - Tamar Ziv
- Smoler Proteomics Center and Faculty of Biology, Technion Israel Institute of Technology, Haifa, 31096 Israel
| | - Erwan Galardon
- UMR 8601, CNRS, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Moran Benhar
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, 3200003 Israel.
| |
Collapse
|
28
|
Persulfides, at the crossroads between hydrogen sulfide and thiols. Essays Biochem 2020; 64:155-168. [DOI: 10.1042/ebc20190049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
AbstractPersulfides (RSSH/RSS−) can be formed in protein and non-protein thiols (RSH) through several different pathways, some of which are dependent on hydrogen sulfide (H2S/HS−). In addition to their roles in biosynthetic processes, persulfides are possible transducers of physiological effects of H2S through the modification of critical cysteines. Persulfides have a very rich biological chemistry that is currently under investigation. They are more nucleophilic and acidic than thiols and, unlike thiols, they can also be electrophilic. They are especially good one-electron reductants. Methods to detect their formation are under continuous development. In this minireview we describe the pathways of formation of persulfides, their biochemical properties and the techniques available for their detection, and we discuss the possible implications of their formation in biological systems.
Collapse
|
29
|
Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of NADP-malic enzyme activity by H 2 S and NO in sweet pepper (Capsicum annuum L.) fruits. PHYSIOLOGIA PLANTARUM 2020; 168:278-288. [PMID: 31152557 DOI: 10.1111/ppl.13000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 05/20/2023]
Abstract
NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2 S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2 S, we obtained a 50-75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2 S, we observed that, while NADP-ME activity was inhibited by up to 29-32% using 2 and 5 mM Na2 S as H2 S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2 S and NO partially modulate the NADPH-generating system.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| |
Collapse
|
30
|
Henderson CF, Bica I, Long FT, Irwin DD, Stull CH, Baker BW, Suarez Vega V, Taugher ZM, Fletes ED, Bartleson JM, Humphrey ML, Álvarez L, Akiyama M, Kumagai Y, Fukuto JM, Lin J. Cysteine Trisulfide Protects E. coli from Electrophile-Induced Death through the Generation of Cysteine Hydropersulfide. Chem Res Toxicol 2020; 33:678-686. [PMID: 31977195 DOI: 10.1021/acs.chemrestox.9b00494] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydropersulfide and polysulfide species have recently been shown to elicit a wide variety of biological and physiological responses. In this study, we examine the effects of cysteine trisulfide (Cys-SSS-Cys; also known as thiocystine) treatment on E. coli. Previous studies in mammalian cells have shown that Cys-SSS-Cys treatment results in protection from the electrophiles. Here, we show that the protective effect of Cys-SSS-Cys treatment against electrophile-induced cell death is conserved in E. coli. This protection correlates with the rapid generation of cysteine hydropersulfide (Cys-SSH) in the culture media. We go on to demonstrate that an exogenous phosphatase expressed in E. coli, containing only a single catalytic cysteine, is protected from electrophile-induced inactivation in the presence of hydropersulfides. These data together demonstrate that E. coli can utilize Cys-SSS-Cys to generate Cys-SSH and that the Cys-SSH can protect cellular thiols from reactivity with the electrophiles.
Collapse
Affiliation(s)
- Catherine F Henderson
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Iris Bica
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Faith T Long
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Drew D Irwin
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Christine H Stull
- Department of Chemistry , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Blaine W Baker
- Department of Chemistry , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Valeria Suarez Vega
- Department of Chemistry , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Zachary M Taugher
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Eliza D Fletes
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Juliet M Bartleson
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Megan L Humphrey
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Lucía Álvarez
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires , Argentina
| | - Masahiro Akiyama
- Environmental Biology Section, Faculty of Medicine , University of Tsukuba , Tsukuba , Ibaraki 305-8575 , Japan
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine , University of Tsukuba , Tsukuba , Ibaraki 305-8575 , Japan
| | - Jon M Fukuto
- Department of Chemistry , Sonoma State University , Rohnert Park , California 94928 , United States
| | - Joseph Lin
- Department of Biology , Sonoma State University , Rohnert Park , California 94928 , United States
| |
Collapse
|
31
|
Berenyiova A, Grman M, Misak A, Golas S, Cuchorova J, Cacanyiova S. The Possible Role of the Nitroso-Sulfide Signaling Pathway in the Vasomotoric Effect of Garlic Juice. Molecules 2020; 25:molecules25030590. [PMID: 32013200 PMCID: PMC7038109 DOI: 10.3390/molecules25030590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
The beneficial cardiovascular effects of garlic have been reported in numerous studies. The major bioactive properties of garlic are related to organic sulfides. This study aimed to investigate whether garlic juice works exclusively due to its sulfur compounds or rather via the formation of new products of the nitroso-sulfide signaling pathway. Changes in isometric tension were measured on the precontracted aortic rings of adult normotensive Wistar rats. We evaluated NO-donor (S-nitrosoglutathione, GSNO)-induced vasorelaxation and compare it with effects of hydrogen sulfide (H2S)/GSNO and garlic/GSNO. Incubation with garlic juice increased the maximal GSNO-induced relaxation and markedly changed the character of the relaxant response. Although incubation with an H2S donor enhanced the maximal vasorelaxant response of GSNO, neither the absolute nor the relative relaxation changed over time. The mixture of GSNO with an H2S donor evoked a response similar to GSNO-induced relaxation after incubation with garlic juice. This relaxation of the H2S and GSNO mixture was soluble guanylyl cyclase (sGC) dependent, partially reduced by HNO scavenger and it was adenosine triphosphate-sensitive potassium channels (KATP) independent. In this study, we demonstrate for the first time the suggestion that H2S itself is probably not the crucial bioactive compound of garlic juice but rather potentiates the production of new signaling molecules during the GSNO-H2S interaction.
Collapse
Affiliation(s)
- Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences,841 04 Bratislava, Slovakia; (S.G.); (S.C.)
- Correspondence:
| | - Marian Grman
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (M.G.); (A.M.)
| | - Anton Misak
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (M.G.); (A.M.)
| | - Samuel Golas
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences,841 04 Bratislava, Slovakia; (S.G.); (S.C.)
| | | | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences,841 04 Bratislava, Slovakia; (S.G.); (S.C.)
| |
Collapse
|
32
|
The Disulfide Stress Response and Protein S-thioallylation Caused by Allicin and Diallyl Polysulfanes in Bacillus subtilis as Revealed by Transcriptomics and Proteomics. Antioxidants (Basel) 2019; 8:antiox8120605. [PMID: 31795512 PMCID: PMC6943732 DOI: 10.3390/antiox8120605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Garlic plants (Allium sativum L.) produce antimicrobial compounds, such as diallyl thiosulfinate (allicin) and diallyl polysulfanes. Here, we investigated the transcriptome and protein S-thioallylomes under allicin and diallyl tetrasulfane (DAS4) exposure in the Gram-positive bacterium Bacillus subtilis. Allicin and DAS4 caused a similar thiol-specific oxidative stress response, protein and DNA damage as revealed by the induction of the OhrR, PerR, Spx, YodB, CatR, HypR, AdhR, HxlR, LexA, CymR, CtsR, and HrcA regulons in the transcriptome. At the proteome level, we identified, in total, 108 S-thioallylated proteins under allicin and/or DAS4 stress. The S-thioallylome includes enzymes involved in the biosynthesis of surfactin (SrfAA, SrfAB), amino acids (SerA, MetE, YxjG, YitJ, CysJ, GlnA, YwaA), nucleotides (PurB, PurC, PyrAB, GuaB), translation factors (EF-Tu, EF-Ts, EF-G), antioxidant enzymes (AhpC, MsrB), as well as redox-sensitive MarR/OhrR and DUF24-family regulators (OhrR, HypR, YodB, CatR). Growth phenotype analysis revealed that the low molecular weight thiol bacillithiol, as well as the OhrR, Spx, and HypR regulons, confer protection against allicin and DAS4 stress. Altogether, we show here that allicin and DAS4 cause a strong oxidative, disulfide and sulfur stress response in the transcriptome and widespread S-thioallylation of redox-sensitive proteins in B. subtilis. The results further reveal that allicin and polysulfanes have similar modes of actions and thiol-reactivities and modify a similar set of redox-sensitive proteins by S-thioallylation.
Collapse
|
33
|
Bhatwalkar SB, Shukla P, Srivastava RK, Mondal R, Anupam R. Validation of environmental disinfection efficiency of traditional Ayurvedic fumigation practices. J Ayurveda Integr Med 2019; 10:203-206. [PMID: 31427141 PMCID: PMC6822153 DOI: 10.1016/j.jaim.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Environmental disinfection greatly reduces the occurrence of nosocomial or healthcare associated infections (HCAIs) which are the major healthcare problems worldwide. In India, Ayurvedic traditional fumigation with natural plant products is used to disinfect environment. In the present study, environmental disinfection efficiency of traditional fumigation practice has been evaluated by using natural plant products such as garlic (Allium sativum) peel, turmeric (Curcuma longa) powder, Carom (Trachyspermum ammi) seeds (Ajwain) and Loban (resin of Styrax benzoin and Boswellia species). The efficiency of traditional fumigation using these natural products to disinfect air and surface was evaluated. The effect of traditional fumigation on the microbiological quality of air was revealed by active air sampling. In addition, the ability of the traditional fumigation using garlic peel to disinfect inanimate surface was evaluated using three strains of methicillin resistant Staphylococcus aureus (MRSA). Glass slide was artificially contaminated with the bacteria and fumigated whereas non-fumigated slide served as control. The control and fumigated slides were analyzed for surviving bacteria and subjected to scanning electron microscopy (SEM) analysis. Traditional fumigation performed separately with three grams of garlic peel, turmeric, carom seeds and loban powder reduced the average air borne bacterial colony forming units (cfu)/m3 compared to non-fumigated control. The SEM analysis showed reduced number of bacteria in garlic peel fumigated surface samples. The results of the study strongly suggested that the traditional Ayurvedic fumigation with natural plant products is effective in reducing air-borne bacteria and in disinfecting inanimate surfaces. The traditional fumigation with herbal products has huge potential to address the problem of nosocomial infections.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Prashant Shukla
- Department of Physics, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rajesh Mondal
- Bacteriology Division, ICMR-National Institute of Research in Tuberculosis, Chennai 600031, India
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
34
|
Loi VV, Huyen NTT, Busche T, Tung QN, Gruhlke MCH, Kalinowski J, Bernhardt J, Slusarenko AJ, Antelmann H. Staphylococcus aureus responds to allicin by global S-thioallylation - Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radic Biol Med 2019; 139:55-69. [PMID: 31121222 DOI: 10.1016/j.freeradbiomed.2019.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of methicillin-resitant Staphylococcus aureus (MRSA) in hospitals and the community poses an increasing health burden, which requires the discovery of alternative antimicrobials. Allicin (diallyl thiosulfinate) from garlic exhibits broad-spectrum antimicrobial activity against many multidrug resistant bacteria. The thiol-reactive mode of action of allicin involves its S-thioallylations of low molecular weight (LMW) thiols and protein thiols. To investigate the mode of action and stress response caused by allicin in S. aureus, we analyzed the transcriptome signature, the targets for S-thioallylation in the proteome and the changes in the bacillithiol (BSH) redox potential (EBSH) under allicin stress. Allicin caused a strong thiol-specific oxidative and sulfur stress response and protein damage as revealed by the induction of the PerR, HypR, QsrR, MhqR, CstR, CtsR, HrcA and CymR regulons in the RNA-seq transcriptome. Allicin also interfered with metal and cell wall homeostasis and caused induction of the Zur, CsoR and GraRS regulons. Brx-roGFP2 biosensor measurements revealed a strongly increased EBSH under allicin stress. In the proteome, 57 proteins were identified with S-thioallylations under allicin treatment, including translation factors (EF-Tu, EF-Ts), metabolic and redox enzymes (AldA, GuaB, Tpx, KatA, BrxA, MsrB) as well as redox-sensitive MarR/SarA-family regulators (MgrA, SarA, SarH1, SarS). Phenotype and biochemical analyses revealed that BSH and the HypR-controlled disulfide reductase MerA are involved in allicin detoxification in S. aureus. The reversal of protein S-thioallylation was catalyzed by the Brx/BSH/YpdA pathway. Finally, the BSSB reductase YpdA was shown to use S-allylmercaptobacillithiol (BSSA) as substrate to regenerate BSH in S. aureus. In conclusion, allicin results in an oxidative shift of EBSH and protein S-thioallylation, which can be reversed by YpdA and the Brx/BSH/YpdA electron pathways in S. aureus to regenerate thiol homeostasis.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany
| | - Nguyen Thi Thu Huyen
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Quach Ngoc Tung
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Jörg Bernhardt
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany; Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Alan John Slusarenko
- Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
35
|
Cheng Y, Zong L, López‐Andarias J, Bartolami E, Okamoto Y, Ward TR, Sakai N, Matile S. Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks. Angew Chem Int Ed Engl 2019; 58:9522-9526. [PMID: 31168906 PMCID: PMC6618005 DOI: 10.1002/anie.201905003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Cyclic oligochalcogenides (COCs) are emerging as promising systems to penetrate cells. Clearly better than and different to the reported diselenolanes and epidithiodiketopiperazines, we introduce the benzopolysulfanes (BPS), which show efficient delivery, insensitivity to inhibitors of endocytosis, and compatibility with substrates as large as proteins. This high activity coincides with high reactivity, selectively toward thiols, exceeding exchange rates of disulfides under tension. The result is a dynamic-covalent network of extreme sulfur species, including cyclic oligomers, from dimers to heptamers, with up to nineteen sulfurs in the ring. Selection from this unfolding adaptive network then yields the reactivities and selectivities needed to access new uptake pathways. Contrary to other COCs, BPS show high retention on thiol affinity columns. The identification of new modes of cell penetration is important because they promise new solutions to challenges in delivery and beyond.
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Lili Zong
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: School of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | | | - Eline Bartolami
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: SyMMES, UMR 5819CEA38054GrenobleFrance
| | | | - Thomas R. Ward
- Department of ChemistryUniversity of BaselBaselSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
36
|
Cheng Y, Zong L, López‐Andarias J, Bartolami E, Okamoto Y, Ward TR, Sakai N, Matile S. Cell‐Penetrating Dynamic‐Covalent Benzopolysulfane Networks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yangyang Cheng
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Lili Zong
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
- Current address: School of Pharmaceutical SciencesXiamen University Xiamen 361102 China
| | | | - Eline Bartolami
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
- Current address: SyMMES, UMR 5819CEA 38054 Grenoble France
| | | | - Thomas R. Ward
- Department of ChemistryUniversity of Basel Basel Switzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
37
|
Antimicrobial garlic-derived diallyl polysulfanes: Interactions with biological thiols in Bacillus subtilis. Biochim Biophys Acta Gen Subj 2019; 1863:1050-1058. [DOI: 10.1016/j.bbagen.2019.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
|
38
|
Kharma A, Grman M, Misak A, Domínguez-Álvarez E, Nasim MJ, Ondrias K, Chovanec M, Jacob C. Inorganic Polysulfides and Related Reactive Sulfur–Selenium Species from the Perspective of Chemistry. Molecules 2019; 24:molecules24071359. [PMID: 30959902 PMCID: PMC6479598 DOI: 10.3390/molecules24071359] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Polysulfides (H₂Sx) represent a class of reactive sulfur species (RSS) which includes molecules such as H₂S₂, H₂S₃, H₂S₄, and H₂S5, and whose presence and impact in biological systems, when compared to other sulfur compounds, has only recently attracted the wider attention of researchers. Studies in this field have revealed a facet-rich chemistry and biological activity associated with such chemically simple, still unusual inorganic molecules. Despite their chemical simplicity, these inorganic species, as reductants and oxidants, metal binders, surfactant-like "cork screws" for membranes, components of perthiol signalling and reservoirs for inorganic hydrogen sulfide (H₂S), are at the centre of complicated formation and transformation pathways which affect numerous cellular processes. Starting from their chemistry, the hidden presence and various roles of polysulfides in biology may become more apparent, despite their lack of clear analytical fingerprints and often murky biochemical footprints. Indeed, the biological chemistry of H₂Sx follows many unexplored paths and today, the relationship between H₂S and its oxidized H₂Sx species needs to be clarified as a matter of "unmistaken identity". Simultaneously, emerging species, such as HSSeSH and SenS8-n, also need to be considered in earnest.
Collapse
Affiliation(s)
- Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, D-66123 Saarbruecken, Germany.
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Centre, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovak.
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Centre, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovak.
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), 28006 Madrid, Spain.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, D-66123 Saarbruecken, Germany.
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Centre, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovak.
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Centre, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovak.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, D-66123 Saarbruecken, Germany.
| |
Collapse
|
39
|
Shinkar’ EV, Smolyaninov IV, Kuzmin VV, Berberova NT. Redox Activation of Hydrogen Sulfide, Thiols, and Sulfur in Electrosynthesis of Organic Di- and Polysulfides. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s107036321904008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Nikoo S, Meister PJ, Hayward JJ, Gauld JW. An Assessment of Computational Methods for Calculating Accurate Structures and Energies of Bio-Relevant Polysulfur/Selenium-Containing Compounds. Molecules 2018; 23:molecules23123323. [PMID: 30558190 PMCID: PMC6320821 DOI: 10.3390/molecules23123323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/02/2022] Open
Abstract
The heavier chalcogens sulfur and selenium are important in organic and inorganic chemistry, and the role of such chalcogens in biological systems has recently gained more attention. Sulfur and, to a lesser extent selenium, are involved in diverse reactions from redox signaling to antioxidant activity and are considered essential nutrients. We investigated the ability of the DFT functionals (B3LYP, B3PW91, ωB97XD, M06-2X, and M08-HX) relative to electron correlation methods MP2 and QCISD to produce reliable and accurate structures as well as thermochemical data for sulfur/selenium-containing systems. Bond lengths, proton affinities (PA), gas phase basicities (GPB), chalcogen–chalcogen bond dissociation enthalpies (BDE), and the hydrogen affinities (HA) of thiyl/selenyl radicals were evaluated for a range of small polysulfur/selenium compounds and cysteine per/polysulfide. The S–S bond length was found to be the most sensitive to basis set choice, while the geometry of selenium-containing compounds was less sensitive to basis set. In mixed chalcogens species of sulfur and selenium, the location of the sulfur atom affects the S–Se bond length as it can hold more negative charge. PA, GPB, BDE, and HA of selenium systems were all lower, indicating more acidity and more stability of radicals. Extending the sulfur chain in cysteine results in a decrease of BDE and HA, but these plateau at a certain point (199 kJ mol−1 and 295 kJ mol−1), and PA and GPB are also decreased relative to the thiol, indicating that the polysulfur species exist as thiolates in a biological system. In general, it was found that ωB97XD/6-311G(2d,p) gave the most reasonable structures and thermochemistry relative to benchmark calculations. However, nuances in performance are observed and discussed.
Collapse
Affiliation(s)
- Sahar Nikoo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - Paul J Meister
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - John J Hayward
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
41
|
Anwar A, Gould E, Tinson R, Iqbal J, Hamilton C. Redox Modulation at Work: Natural Phytoprotective Polysulfanes From Alliums Based on Redox-Active Sulfur. ACTA ACUST UNITED AC 2018; 4:397-407. [PMID: 30416940 PMCID: PMC6208768 DOI: 10.1007/s40495-018-0153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose of review This article provides a brief overview of natural phytoprotective products of allium with a special focus on the therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehensive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines. Recent findings The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5-40 mg/L and for anticancer 20-100 μM. The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain cellular proteins in cancer cell lines. Summary Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further development, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells.
Collapse
Affiliation(s)
- Awais Anwar
- Ecospray Limited, Grange Farm, Hilborough, Thetford, Norfolk, IP26 5BT UK.,2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Emma Gould
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Ryan Tinson
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Javaid Iqbal
- 3Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Chris Hamilton
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
42
|
Absence of adverse effects following the gavage administration of methyl propyl trisulfide to Sprague-Dawley rats for 90 days. Food Chem Toxicol 2018; 120:544-551. [PMID: 30075317 DOI: 10.1016/j.fct.2018.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 11/21/2022]
Abstract
Methyl propyl trisulfide is a flavoring substance found in foods such as garlic and onions. At the request of the European Food Safety Authority (EFSA) for additional toxicological data on methyl propyl trisulfide, groups of Sprague-Dawley rats (10/sex/group) were gavaged with 0 (corn oil vehicle control), 0.5, 2, or 6 mg methyl propyl trisulfide/kg bw/day in a 90-day GLP-compliant study. No effects on clinical observations, hematology and clinical chemistry parameters, organ weights, or macroscopic and histopathological examinations were found attributable to ingestion of methyl propyl trisulfide. The oral no-observed-adverse-effect level (NOAEL) for rats of both sexes was the highest dose tested of 6 mg/kg bw/day.
Collapse
|
43
|
Fukuto JM, Ignarro LJ, Nagy P, Wink DA, Kevil CG, Feelisch M, Cortese-Krott MM, Bianco CL, Kumagai Y, Hobbs AJ, Lin J, Ida T, Akaike T. Biological hydropersulfides and related polysulfides - a new concept and perspective in redox biology. FEBS Lett 2018; 592:2140-2152. [PMID: 29754415 PMCID: PMC6033183 DOI: 10.1002/1873-3468.13090] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
The chemical biology of thiols (RSH, e.g., cysteine and cysteine-containing proteins/peptides) has been a topic of extreme interest for many decades due to their reported roles in protein structure/folding, redox signaling, metal ligation, cellular protection, and enzymology. While many of the studies on thiol/sulfur biochemistry have focused on thiols, relatively ignored have been hydropersulfides (RSSH) and higher order polysulfur species (RSSn H, RSSn R, n > 1). Recent and provocative work has alluded to the prevalence and likely physiological importance of RSSH and related RSSn H. RSSH of cysteine (Cys-SSH) has been found to be prevalent in mammalian systems along with Cys-SSH-containing proteins. The RSSH functionality has not been examined to the extent of other biologically relevant sulfur derivatives (e.g., sulfenic acids, disulfides, etc.), whose roles in cell signaling are strongly indicated. The recent finding of Cys-SSH biosynthesis and translational incorporation into proteins is an unequivocal indication of its fundamental importance and necessitates a more profound look into the physiology of RSSH. In this Review, we discuss the currently reported chemical biology of RSSH (and related species) as a prelude to discussing their possible physiological roles.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, USA
| | - Louis J Ignarro
- Department of Molecular and Medical Pharmacology, Center for the Health Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - David A Wink
- Tumor Biology Section, Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana Statue University Health Sciences Center, Shreveport, LA, USA
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| | - Christopher L Bianco
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Adrian J Hobbs
- William Harvey Research Institute, Bart & London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| | - Joseph Lin
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
44
|
Krstin S, Sobeh M, Braun MS, Wink M. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. MEDICINES 2018; 5:medicines5020037. [PMID: 29690511 PMCID: PMC6023319 DOI: 10.3390/medicines5020037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods:Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.
Collapse
Affiliation(s)
- Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Soltani S, Amin GR, Salehi-Sourmaghi MH, Schneider B, Lorenz S, Iranshahi M. Sulfur-containing compounds from the roots of Ferula latisecta and their cytotoxic activities. Fitoterapia 2018; 124:108-112. [DOI: 10.1016/j.fitote.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 11/26/2022]
|
46
|
Deng Z, Hoefling A, Théato P, Lienkamp K. Surface Properties and Antimicrobial Activity of Poly(sulfur-co
-1,3-diisopropenylbenzene) Copolymers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700497] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhuoling Deng
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT); University of Freiburg; Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Alexander Hoefling
- Institute for Technical and Macromolecular Chemistry; University of Hamburg; Bundesstrasse 45 20146 Hamburg Germany
| | - Patrick Théato
- Institute for Technical and Macromolecular Chemistry; University of Hamburg; Bundesstrasse 45 20146 Hamburg Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT); University of Freiburg; Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
47
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
48
|
Álvarez L, Bianco CL, Toscano JP, Lin J, Akaike T, Fukuto JM. Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling. Antioxid Redox Signal 2017; 27:622-633. [PMID: 28398141 DOI: 10.1089/ars.2017.7081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE For >20 years, physiological signaling associated with the endogenous generation of hydrogen sulfide (H2S) has been of significant interest. Despite its presumed importance, the biochemical mechanisms associated with its actions have not been elucidated. Recent Advances: Recently it has been found that H2S-related or derived species are highly prevalent in mammalian systems and that these species may be responsible for some, if not the majority, of the biological actions attributed to H2S. One of the most prevalent and intriguing species are hydropersulfides (RSSH), which can be present at significant levels. Indeed, it appears that H2S and RSSH are intimately linked in biological systems and likely to be mutually inclusive. CRITICAL ISSUES The fact that H2S and polysulfides such as RSSH are present simultaneously means that the biological actions previously assigned to H2S can be instead because of the presence of RSSH (or other polysulfides). Thus, it remains possible that hydropersulfides are the biological effectors, and H2S serves, to a certain extent, as a marker for persulfides and polysulfides. Addressing this possibility will to a large extent be based on the chemistry of these species. FUTURE DIRECTIONS Currently, it is known that persulfides possess unique and novel chemical properties that may explain their biological prevalence. However, significantly more work will be required to establish the possible physiological roles of these species. Moreover, an understanding of the regulation of their biosynthesis and degradation will become important topics in piecing together their biology. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Lucía Álvarez
- 1 Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
| | | | - John P Toscano
- 2 Department of Chemistry, Johns Hopkins University , Baltimore, Maryland
| | - Joseph Lin
- 3 Department of Biology, Sonoma State University , Rohnert Park, California
| | - Takaaki Akaike
- 4 Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Jon M Fukuto
- 5 Department of Chemistry, Sonoma State University , Rohnert Park, California
| |
Collapse
|
49
|
Bioelectrochemical Changes during the Early Stages of Chalcopyrite Interaction with Acidithiobacillus Thiooxidans and Leptospirillum sp. MINERALS 2017. [DOI: 10.3390/min7090156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Algarra AG. Computational insights into the S 3 transfer reaction: A special case of double group transfer reaction featuring bicyclically delocalized aromatic transition state geometries. J Comput Chem 2017; 38:1966-1973. [PMID: 28573687 DOI: 10.1002/jcc.24844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/07/2022]
Abstract
An unusual pericyclic process that involves the intermolecular transfer of thiozone (S3 ) is computationally described. The process can be considered as a special case of double group transfer reaction whereby the two migrating groups are connected to the same substituent, taking place in a concerted manner via transition states featuring two five-membered C2 S3 rings fused together. Analysis of the aromaticity at the TS geometries by computing NICS values at the (3,+1) RCPS as well as ACID calculations confirms the aromatic character of each C2 S3 ring, thus resulting in bicyclically delocalized aromatic structures. The free energy barriers for the transfer of S3 are relatively similar (40-50 kcal mol-1 ) to those computed for typical double H group transfer reactions. The similarities and differences between these processes have been further analysed by applying ASM-EDA and NBO approaches to the model reactions between ethene and ethane, and ethene and 1,2,3-trithiolane. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrés G Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas, Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| |
Collapse
|