1
|
Liu Y, Kim E, Lei M, Wu S, Yan K, Shen J, Bentley WE, Shi X, Qu X, Payne GF. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023. [PMID: 37155361 DOI: 10.1021/acs.biomac.3c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Taghizadeh M, Taghizadeh A, Yazdi MK, Zarrintaj P, Stadler FJ, Ramsey JD, Habibzadeh S, Hosseini Rad S, Naderi G, Saeb MR, Mozafari M, Schubert US. Chitosan-based inks for 3D printing and bioprinting. GREEN CHEMISTRY 2022; 24:62-101. [DOI: 10.1039/d1gc01799c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
3D printing gave biomedical engineering great potential to mimic native tissues, accelerated regenerative medicine, and enlarged capacity of drug delivery systems; thus, advanced biomimetic functional biomaterial developed by 3D-printing for tissue engineering demands.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Ali Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-39675, Iran
| | - Somayeh Hosseini Rad
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, H3C 3A7, Canada
| | - Ghasem Naderi
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11, /12 80-233, Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
3
|
Bhokisham N, Liu Y, Brown AD, Payne GF, Culver JN, Bentley WE. Transglutaminase-mediated assembly of multi-enzyme pathway onto TMV brush surfaces for synthesis of bacterial autoinducer-2. Biofabrication 2020; 12:045017. [DOI: 10.1088/1758-5090/ab9e7a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Li J, Maniar D, Qu X, Liu H, Tsao CY, Kim E, Bentley WE, Liu C, Payne GF. Coupling Self-Assembly Mechanisms to Fabricate Molecularly and Electrically Responsive Films. Biomacromolecules 2019; 20:969-978. [PMID: 30616349 DOI: 10.1021/acs.biomac.8b01592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biomacromolecules often possess information to self-assemble through low energy competing interactions which can make self-assembly responsive to environmental cues and can also confer dynamic properties. Here, we coupled self-assembling systems to create biofunctional multilayer films that can be cued to disassemble through either molecular or electrical signals. To create functional multilayers, we: (i) electrodeposited the pH-responsive self-assembling aminopolysaccharide chitosan, (ii) allowed the lectin Concanavalin A (ConA) to bind to the chitosan-coated electrode (presumably through electrostatic interactions), (iii) performed layer-by-layer self-assembly by sequential contacting with glycogen and ConA, and (iv) conferred biological (i.e., enzymatic) function by assembling glycoprotein (i.e., enzymes) to the ConA-terminated multilayer. Because the ConA tetramer dissociates at low pH, this multilayer can be triggered to disassemble by acidification. We demonstrate two approaches to induce acidification: (i) glucose oxidase can induce multilayer disassembly in response to molecular cues, and (ii) anodic reactions can induce multilayer disassembly in response to electrical cues.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Drishti Maniar
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
5
|
Shang W, Liu Y, Kim E, Tsao CY, Payne GF, Bentley WE. Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. LAB ON A CHIP 2018; 18:3578-3587. [PMID: 30351330 PMCID: PMC7046091 DOI: 10.1039/c8lc00583d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report a novel strategy for bridging information transfer between electronics and biological systems within microdevices. This strategy relies on our "electrobiofabrication" toolbox that uses electrode-induced signals to assemble biopolymer films at spatially defined sites and then electrochemically "activates" the films for signal processing capabilities. Compared to conventional electrode surface modification approaches, our signal-guided assembly and activation strategy provides on-demand electrode functionalization, and greatly simplifies microfluidic sensor design and fabrication. Specifically, a chitosan film is selectively localized in a microdevice and is covalently modified with phenolic species. The redox active properties of the phenolic species enable the film to transduce molecular to electronic signals (i.e., "molectronic"). The resulting "molectronic" sensors are shown to facilitate the electrochemical analysis in real time of biomolecules, including small molecules and enzymes, to cell-based measurements such as cytotoxicity. We believe this strategy provides an alternative, simple, and promising avenue for connecting electronics to biological systems within microfluidic platforms, and eventually will enrich our abilities to study biology in a variety of contexts.
Collapse
Affiliation(s)
- Wu Shang
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA.
| | - Yi Liu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Eunkyoung Kim
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Xu H, Matysiak S. Effect of pH on chitosan hydrogel polymer network structure. Chem Commun (Camb) 2018; 53:7373-7376. [PMID: 28612070 DOI: 10.1039/c7cc01826f] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.
Collapse
Affiliation(s)
- Hongcheng Xu
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
7
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
8
|
Li K, Correa SO, Pham P, Raub CB, Luo X. Birefringence of flow-assembled chitosan membranes in microfluidics. Biofabrication 2017; 9:034101. [PMID: 28664877 DOI: 10.1088/1758-5090/aa786e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biopolymer membrane assembly in microfluidics offers precise spatial and temporal resolution for biomolecular and cellular interactions during and after assembly. Control over molecular transport across the biofabricated membranes requires microstructural characterization. This study investigates, for the first time, the birefringence of chitosan membranes assembled with flow in a microfluidic environment, and the effects of pH and flow rate on the membrane's micro-alignment. The optical anisotropy of the formed membranes was quantified using a de Sénarmont compensator for transmitted quantitative polarized light microscopy. The chitosan membranes were biofabricated within a small aperture in a microfluidic network with various flow and pH conditions of chitosan and alginate solutions. The measured optical retardance and parallelism index clearly indicate that the microstructure of the flow-assembled membrane was well organized and aligned along the direction of chitosan flow. Optical retardance increased significantly with the pH of the alginate solution, but was less sensitive to the variation of the flow rates of the polymer solutions during the biofabrication process. It was also determined that the birefringence signal dropped significantly across the membrane growth direction regardless of the molecular density in the membrane. The mechanism of the micro-alignment was discussed, which was presumably due to the molecular un-wrapping by shear flow. We envision that the current study paves a path to further understand and actively manipulate the microstructure of flow-assembled membranes for broad lab-on-a-chip applications.
Collapse
Affiliation(s)
- K Li
- Department of Mechanical Engineering, Catholic University of America, Washington, DC, 20064, United States of America
| | | | | | | | | |
Collapse
|
9
|
Mross S, Pierrat S, Zimmermann T, Kraft M. Microfluidic enzymatic biosensing systems: A review. Biosens Bioelectron 2015; 70:376-91. [DOI: 10.1016/j.bios.2015.03.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/17/2022]
|
10
|
Wasay A, Sameoto D. Gecko gaskets for self-sealing and high-strength reversible bonding of microfluidics. LAB ON A CHIP 2015; 15:2749-2753. [PMID: 26016928 DOI: 10.1039/c5lc00342c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report in this work a novel reversible bonding technique for elastomeric microfluidic devices by integrating gecko-inspired dry adhesives with microfluidic channels which greatly enhances the bonding strength of reversibly sealed channels. The concept is applicable to nearly any elastomer and can be used to bond against any smooth surface which allows for van der Waals interactions. It does not require any solvents or glues or sources for plasma activation or thermal-compressive loading to aid the bonding process and is achievable at zero extra cost. We also demonstrate a quick fabrication technique involving soft master thermo-compressive molding of these microfluidic devices with thermoplastic elastomers. The resultant devices can be used for both pressure driven and non-pressure driven flows. We report the maximum contained pressure of these devices manufactured from two grades of styrene ethylene butylene styrene (SEBS) by conducting a burst pressure test with various substrates.
Collapse
Affiliation(s)
- A Wasay
- Mechanical Engineering Department, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| | | |
Collapse
|
11
|
Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface. Polymers (Basel) 2014. [DOI: 10.3390/polym7010001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Gordonov T, Kim E, Cheng Y, Ben-Yoav H, Ghodssi R, Rubloff G, Yin JJ, Payne GF, Bentley WE. Electronic modulation of biochemical signal generation. NATURE NANOTECHNOLOGY 2014; 9:605-10. [PMID: 25064394 DOI: 10.1038/nnano.2014.151] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/25/2014] [Indexed: 05/03/2023]
Abstract
Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes.
Collapse
Affiliation(s)
- Tanya Gordonov
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Yi Cheng
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Hadar Ben-Yoav
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Reza Ghodssi
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Gary Rubloff
- 1] Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA [2] Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland 20740, USA
| | - Gregory F Payne
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - William E Bentley
- 1] Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA [2] Institute for Bioscience &Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
13
|
Jia F, Narasimhan B, Mallapragada S. Materials-based strategies for multi-enzyme immobilization and co-localization: A review. Biotechnol Bioeng 2013; 111:209-22. [DOI: 10.1002/bit.25136] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/13/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Feng Jia
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| | - Surya Mallapragada
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| |
Collapse
|
14
|
Shi XW, Qiu L, Nie Z, Xiao L, Payne GF, Du Y. Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’ chemistry. Biofabrication 2013; 5:041001. [DOI: 10.1088/1758-5082/5/4/041001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Huang SH, Wei LS, Chu HT, Jiang YL. Light-addressed electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device. SENSORS 2013; 13:10711-24. [PMID: 23959236 PMCID: PMC3812624 DOI: 10.3390/s130810711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/05/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022]
Abstract
This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR).
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mails: (L.-S.W.); (H.-T.C.)
- Center for Marine Mechatronic Systems, CMMS, National Taiwan Ocean University, Keelung 202-24, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-246-22-192 (ext. 3209); Fax: +886-2-246-20-836
| | - Lu-Shiuan Wei
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mails: (L.-S.W.); (H.-T.C.)
| | - Hsiao-Tzu Chu
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mails: (L.-S.W.); (H.-T.C.)
| | - Yeu-Long Jiang
- Graduate Institute of Optoelectronic Engineering, Department of Electrical Engineering, National Chung Hsing University, Taichung 402-27, Taiwan; E-Mail:
| |
Collapse
|
16
|
Plug and Play? Interconnected multifunctional chips for enhancing efficiency of biopharmaceutical R&D. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Kim D, Herr AE. Protein immobilization techniques for microfluidic assays. BIOMICROFLUIDICS 2013; 7:41501. [PMID: 24003344 PMCID: PMC3747845 DOI: 10.1063/1.4816934] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches-here with a specific emphasis on immunoassays and enzymatic reactors. Recent "smart immobilization" methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, South Korea
| | | |
Collapse
|
18
|
Gordonov T, Liba B, Terrell JL, Cheng Y, Luo X, Payne GF, Bentley WE. Bridging the bio-electronic interface with biofabrication. J Vis Exp 2012:e4231. [PMID: 22710498 DOI: 10.3791/4231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Advancements in lab-on-a-chip technology promise to revolutionize both research and medicine through lower costs, better sensitivity, portability, and higher throughput. The incorporation of biological components onto biological microelectromechanical systems (bioMEMS) has shown great potential for achieving these goals. Microfabricated electronic chips allow for micrometer-scale features as well as an electrical connection for sensing and actuation. Functional biological components give the system the capacity for specific detection of analytes, enzymatic functions, and whole-cell capabilities. Standard microfabrication processes and bio-analytical techniques have been successfully utilized for decades in the computer and biological industries, respectively. Their combination and interfacing in a lab-on-a-chip environment, however, brings forth new challenges. There is a call for techniques that can build an interface between the electrode and biological component that is mild and is easy to fabricate and pattern. Biofabrication, described here, is one such approach that has shown great promise for its easy-to-assemble incorporation of biological components with versatility in the on-chip functions that are enabled. Biofabrication uses biological materials and biological mechanisms (self-assembly, enzymatic assembly) for bottom-up hierarchical assembly. While our labs have demonstrated these concepts in many formats, here we demonstrate the assembly process based on electrodeposition followed by multiple applications of signal-based interactions. The assembly process consists of the electrodeposition of biocompatible stimuli-responsive polymer films on electrodes and their subsequent functionalization with biological components such as DNA, enzymes, or live cells. Electrodeposition takes advantage of the pH gradient created at the surface of a biased electrode from the electrolysis of water. Chitosan and alginate are stimuli-responsive biological polymers that can be triggered to self-assemble into hydrogel films in response to imposed electrical signals. The thickness of these hydrogels is determined by the extent to which the pH gradient extends from the electrode. This can be modified using varying current densities and deposition times. This protocol will describe how chitosan films are deposited and functionalized by covalently attaching biological components to the abundant primary amine groups present on the film through either enzymatic or electrochemical methods. Alginate films and their entrapment of live cells will also be addressed. Finally, the utility of biofabrication is demonstrated through examples of signal-based interaction, including chemical-to-electrical, cell-to-cell, and also enzyme-to-cell signal transmission. Both the electrodeposition and functionalization can be performed under near-physiological conditions without the need for reagents and thus spare labile biological components from harsh conditions. Additionally, both chitosan and alginate have long been used for biologically-relevant purposes. Overall, biofabrication, a rapid technique that can be simply performed on a benchtop, can be used for creating micron scale patterns of functional biological components on electrodes and can be used for a variety of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Tanya Gordonov
- Fischell Department of Bioengineering, University of Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cheng Y, Luo X, Payne GF, Rubloff GW. Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16215f] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Juskova P, Foret F. Application of thin metal film elements in bioanalysis. J Sep Sci 2011; 34:2779-89. [DOI: 10.1002/jssc.201100288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 03/31/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022]
|
21
|
Luo XL, Buckhout-White S, Bentley WE, Rubloff GW. Biofabrication of chitosan–silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift. Biofabrication 2011; 3:034108. [DOI: 10.1088/1758-5082/3/3/034108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
|
23
|
Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R. Chitosan: an integrative biomaterial for lab-on-a-chip devices. LAB ON A CHIP 2010; 10:3026-3042. [PMID: 20877781 DOI: 10.1039/c0lc00047g] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chitosan is a naturally derived polymer with applications in a variety of industrial and biomedical fields. Recently, it has emerged as a promising material for biological functionalization of microelectromechanical systems (bioMEMS). Due to its unique chemical properties and film forming ability, chitosan serves as a matrix for the assembly of biomolecules, cells, nanoparticles, and other substances. The addition of these components to bioMEMS devices enables them to perform functions such as specific biorecognition, enzymatic catalysis, and controlled drug release. The chitosan film can be integrated in the device by several methods compatible with standard microfabrication technology, including solution casting, spin casting, electrodeposition, and nanoimprinting. This article surveys the usage of chitosan in bioMEMS to date. We discuss the common methods for fabrication, modification, and characterization of chitosan films, and we review a number of demonstrated chitosan-based microdevices. We also highlight the advantages of chitosan over some other functionalization materials for micro-scale devices.
Collapse
Affiliation(s)
- S T Koev
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Priest C. Surface patterning of bonded microfluidic channels. BIOMICROFLUIDICS 2010; 4:32206. [PMID: 21045927 PMCID: PMC2967238 DOI: 10.1063/1.3493643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 05/02/2023]
Abstract
Microfluidic channels in which multiple chemical and biological processes can be integrated into a single chip have provided a suitable platform for high throughput screening, chemical synthesis, detection, and alike. These microchips generally exhibit a homogeneous surface chemistry, which limits their functionality. Localized surface modification of microchannels can be challenging due to the nonplanar geometries involved. However, chip bonding remains the main hurdle, with many methods involving thermal or plasma treatment that, in most cases, neutralizes the desired chemical functionality. Postbonding modification of microchannels is subject to many limitations, some of which have been recently overcome. Novel techniques include solution-based modification using laminar or capillary flow, while conventional techniques such as photolithography remain popular. Nonetheless, new methods, including localized microplasma treatment, are emerging as effective postbonding alternatives. This Review focuses on postbonding methods for surface patterning of microchannels.
Collapse
Affiliation(s)
- Craig Priest
- Ian Wark Research Institute, ARC Special Research Centre for Particle and Material Interfaces, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
25
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Fernandes R, Luo X, Tsao CY, Payne GF, Ghodssi R, Rubloff GW, Bentley WE. Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing bacteria in a bioMEMS device. LAB ON A CHIP 2010; 10:1128-34. [PMID: 20390130 DOI: 10.1039/b926846d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The emergence of bacteria that evade antibiotics has accelerated research on alternative approaches that do not target cell viability. One such approach targets cell-cell communication networks mediated by small molecule signaling. In this report, we assemble biological nanofactories within a bioMEMS device to capture and manipulate the behavior of quorum sensing (QS) bacteria as a step toward modifying small molecule signaling. Biological nanofactories are bio-inspired nanoscale constructs which can include modules with different functionalities, such as cell targeting, molecular sensing, product synthesis, and ultimately self-destruction. The biological nanofactories reported here consist of targeting, sensing, synthesis and, importantly, assembly modules. A bacteria-specific antibody constitutes the targeting module while a genetically engineered fusion protein contains the sensing, synthesis and assembly modules. The nanofactories are assembled on chitosan electrodeposited within a microchannel of the bioMEMS device; they capture QS bacteria in a spatially selective manner and locally synthesize and deliver the "universal" small signaling molecule autoinducer-2 (AI-2) at the captured cell surface. The nanofactory based AI-2 delivery is demonstrated to alter the progression of the native AI-2 based QS response of the captured bacteria. Prospects are envisioned for utilizing our technique as a test-bed for understanding the AI-2 based QS response of bacteria as a means for developing the next generation of antimicrobials.
Collapse
Affiliation(s)
- Rohan Fernandes
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Luo X, Berlin DL, Betz J, Payne GF, Bentley WE, Rubloff GW. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. LAB ON A CHIP 2010; 10:59-65. [PMID: 20024051 DOI: 10.1039/b916548g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report the in situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. The pH-stimuli-responsive polysaccharide chitosan was enlisted to form a freestanding hydrophilic membrane structure in microfluidic networks where pH gradients are generated at the converging interface between a slightly acidic chitosan solution and a slightly basic buffer solution. A simple and effective pumping strategy was devised to realize a stable flow interface thereby generating a stable, well-controlled and localized pH gradient. Chitosan molecules were deprotonated at the flow interface, causing gelation and solidification of a freestanding chitosan membrane from a nucleation point at the junction of two converging flow streams to an anchoring point where the two flow streams diverge to two output channels. The fabricated chitosan membranes were about 30-60 microm thick and uniform throughout the flow interface inside the microchannels. A T-shaped membrane formed by sequentially fabricating orthogonal membranes demonstrates flexibility of the assembly process. The membranes are permeable to aqueous solutions and are removed by mildly acidic solutions. Permeability tests suggested that the membrane pore size was a few nanometres, i.e., the size range of antibodies. Building on the widely reported use of chitosan as a soft interconnect for biological components and microfabricated devices and the broad applications of membrane functionalities in microsystems, we believe that the facile, rapid biofabrication of freestanding chitosan membranes can be applied to many biochemical, bioanalytical, biosensing applications and cellular studies.
Collapse
Affiliation(s)
- Xiaolong Luo
- University of Maryland Biotechnology Institute (UMBI), University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
28
|
Koev ST, Fernandes R, Bentley WE, Ghodssi R. A cantilever sensor with an integrated optical readout for detection of enzymatically produced homocysteine. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2009; 3:415-423. [PMID: 23853289 DOI: 10.1109/tbcas.2009.2026634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microcantilever sensors have been recognized as a promising sensor platform for various chemical and biological applications. One of their major limitations is that the measurement of cantilever displacement typically involves elaborate off-chip setups with free-space optics. An improved device, known as the optical cantilever, has been proposed recently to eliminate the external optics. The response of the optical cantilever is measured on-chip through integrated waveguides. However, this method has been previously demonstrated only for devices operating in air, whereas most chemical and biological samples are in solution state. We present the first optical cantilever capable of operation in liquid. We test it with the detection of homocysteine with a minimal concentration of 10 muM. The minimal measurable cantilever displacement and surface stress are 5 nm and 1 mN/m, respectively. The presented device will be used in studies of a homocysteine-producing bacterial pathway for the purpose of drug discovery. It can also be extended to various other chemical- or biological-sensing applications by selecting an appropriate surface coating.
Collapse
|
29
|
Wu HC, Shi XW, Tsao CY, Lewandowski AT, Fernandes R, Hung CW, DeShong P, Kobatake E, Valdes JJ, Payne GF, Bentley WE. Biofabrication of antibodies and antigens via IgG-binding domain engineered with activatable pentatyrosine pro-tag. Biotechnol Bioeng 2009; 103:231-40. [DOI: 10.1002/bit.22238] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Fernandes R, Bentley WE. AI-2 biosynthesis module in a magnetic nanofactory alters bacterial response via localized synthesis and delivery. Biotechnol Bioeng 2009; 102:390-9. [PMID: 18949758 DOI: 10.1002/bit.22078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nanofactories are nano-dimensioned and comprised of modules serving various functions that alter the response of targeted cells when deployed by locally synthesizing and delivering cargo to the surfaces of the targeted cells. In its basic form, a nanofactory consists of a minimum of two functional modules: a cell capture module and a synthesis module. In this work, magnetic nanofactories that alter the response of targeted bacteria by the localized synthesis and delivery of the "universal" bacterial quorum sensing signal molecule autoinducer AI-2 are demonstrated. The magnetic nanofactories consist of a cell capture module (chitosan-mag nanoparticles) and an AI-2 biosynthesis module that contains both AI-2 biosynthetic enzymes Pfs and LuxS on a fusion protein (His-LuxS-Pfs-Tyr, HLPT) assembled together. HLPT is hypothesized to be more efficient than its constituent enzymes (used separately) at conversion of the substrate SAH to product AI-2 on account of the proximity of the two enzymes within the fusion protein. HLPT is demonstrated to be more active than the constituent enzymes, Pfs and LuxS, over a wide range of experimental conditions. The magnetic nanofactories (containing bound HLPT) are also demonstrated to be more active than free, unbound HLPT. They are also shown to elicit an increased response in targeted Escherichia coli cells, due to the localized synthesis and delivery of AI-2, when compared to the response produced by the addition of AI-2 directly to the cells. Studies investigating the universality of AI-2 and unraveling AI-2 based quorum sensing in bacteria using magnetic nanofactories are envisioned. The prospects of using such multi-modular nanofactories in developing the next generation of antimicrobials based on intercepting and interrupting quorum sensing based signaling are discussed.
Collapse
Affiliation(s)
- Rohan Fernandes
- Fischell Department of Bioengineering, University of Maryland, 5115 Plant Sciences Building #036, College Park, Maryland 20742, USA
| | | |
Collapse
|
31
|
Yang X, Shi XW, Liu Y, Bentley WE, Payne GF. Orthogonal enzymatic reactions for the assembly of proteins at electrode addresses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:338-44. [PMID: 19115870 DOI: 10.1021/la802618q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ability to interface proteins to device surfaces is important for a range of applications. Here, we enlist the unique capabilities of enzymes and biologically derived polymers to assemble target proteins to electrode addresses. First, the stimuli-responsive aminopolysaccharide chitosan is directed to assemble at the electrode address in response to electrode-imposed signals. The electrodeposited chitosan film serves as the biodevice interface for subsequent protein assembly. Next, tyrosinase is used to catalyze grafting of a protein or peptide tether to the chitosan film. Finally, microbial transglutaminase (mTG) catalyzes the assembly of target proteins to the tether. mTG covalently links proteins through their glutamine (Gln) and lysine (Lys) residues. Since Gln and Lys residues of globular proteins are often inaccessible to mTG, we engineered our target proteins to have fusion tags with added Gln or Lys residues. This assembly method employs the electrical signal to confer spatial selectivity (during chitosan electrodeposition) and employs the enzymes to confer chemical selectivity (i.e., amino acid residue selectivity). Further, this method is mild, since no reactive reagents or protection steps are required, and all steps are performed in aqueous solution. These results demonstrate the potential for employing biological materials and mechanisms to biofabricate the biodevice interface.
Collapse
Affiliation(s)
- Xiaohua Yang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
32
|
From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 2008; 19:550-5. [PMID: 18977301 DOI: 10.1016/j.copbio.2008.10.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 11/20/2022]
Abstract
Cell-cell communication and coordinated population-based behavior among single cell organisms have gained considerable attention in the recent years. The ability to send, receive, and process information allows unicellular organisms to act as multicellular entities and increases their chances of survival in complex environments. Quorum sensing (QS), a density-dependent cell-signaling mechanism, is one way by which bacteria 'talk' to one another. QS is commonly associated with adverse health effects such as biofilm formation, bacteria pathogenicity, and virulence. But there exists great potential to harness QS circuitry and its properties for other applications, enabling even wider societal impact. Interesting avenues are envisioned for the detection of chemicals and pathogens, the navigation of interspecies communication, the synchronization and control of cell phenotype, and the creation of novel materials based on synthetic biology. In this review, we first highlight the recent discoveries of the molecular underpinnings of QS function, with emphasis on the formation of biofilms. We then discuss how researchers have used QS circuitry to their advantage to build synthetic networks, rewire native metabolic pathways, and engineer cells for a variety of applications.
Collapse
|
33
|
Towards area-based in vitro metabolic engineering: Assembly of Pfs enzyme onto patterned microfabricated chips. Biotechnol Prog 2008; 24:1042-51. [DOI: 10.1002/btpr.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Luo X, Larios Berlin D, Buckhout-White S, Bentley WE, Payne GF, Ghodssi R, Rubloff GW. Design optimization for bioMEMS studies of enzyme-controlled metabolic pathways. Biomed Microdevices 2008; 10:899-908. [DOI: 10.1007/s10544-008-9204-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|