1
|
Li X, Hu H, Yang M, Laskin J. A Low-Cost, High-Resolution Thermoplastic Microfluidic Probe for Mass Spectrometry Imaging of Biological Tissue Samples. Anal Chem 2025; 97:3207-3212. [PMID: 39903693 DOI: 10.1021/acs.analchem.4c06087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mass spectrometry imaging (MSI) using nanospray desorption electrospray ionization (nano-DESI) has been extensively used for label-free mapping of hundreds of molecules in biological samples with minimal sample pretreatment. While both nano-DESI probes made of two fused silica capillaries and glass microfluidic probes (MFP) have been developed for imaging biological tissues with high spatial resolution, MFPs significantly enhance the robustness and throughput of nano-DESI MSI experiments. Despite their advantages, the fabrication of glass microfluidic devices is costly and requires specialized equipment or cleanroom facilities. Meanwhile, plastic microfluidic devices often suffer from limited solvent compatibility and low fabrication precision, restricting their achievable spatial resolution. To overcome these limitations, we have developed a low-cost microfluidic probe made from cyclic olefin copolymer (COC), a widely used thermoplastic material known for its excellent chemical resistance. The probe is fabricated using wire imprinting and thermal bonding in a standard laboratory setting. We estimate the achievable spatial resolution of the COC-MFP of 5-7 μm and demonstrate its robustness by imaging a large (20.0 mm × 9.5 mm) human kidney tissue section with high sensitivity. This affordable thermoplastic probe makes high spatial resolution nano-DESI MSI more accessible, broadening its applications in the scientific community.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Oliveira MJ, Caetano S, Dalot A, Sabino F, Calmeiro TR, Fortunato E, Martins R, Pereira E, Prudêncio M, Byrne HJ, Franco R, Águas H. A simple polystyrene microfluidic device for sensitive and accurate SERS-based detection of infection by malaria parasites. Analyst 2023; 148:4053-4063. [PMID: 37529888 PMCID: PMC10440799 DOI: 10.1039/d3an00971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Early and accurate detection of infection by pathogenic microorganisms, such as Plasmodium, the causative agent of malaria, is critical for clinical diagnosis and ultimately determines the patient's outcome. We have combined a polystyrene-based microfluidic device with an immunoassay which utilises Surface-Enhanced Raman Spectroscopy (SERS) to detect malaria. The method can be easily translated to a point-of-care testing format and shows excellent sensitivity and specificity, when compared to the gold standard for laboratorial detection of Plasmodium infections. The device can be fabricated in less than 30 min by direct patterning on shrinkable polystyrene sheets of adaptable three-dimensional microfluidic chips. To validate the microfluidic system, samples of P. falciparum-infected red blood cell cultures were used. The SERS-based immunoassay enabled the detection of 0.0012 ± 0.0001% parasitaemia in a P. falciparum-infected red blood cell culture supernatant, an ∼7-fold higher sensitivity than that attained by most rapid diagnostic tests. Our approach successfully overcomes the main challenges of the current Plasmodium detection methods, including increased reproducibility, sensitivity, and specificity. Furthermore, our system can be easily adapted for detection of other pathogens and has excellent properties for early diagnosis of infectious diseases, a decisive step towards lowering their high burden on healthcare systems worldwide.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Soraia Caetano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana Dalot
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filipe Sabino
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tomás R Calmeiro
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Elvira Fortunato
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Rodrigo Martins
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Eulália Pereira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Street, Dublin 8, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Oliveira MJ, Dalot A, Fortunato E, Martins R, Byrne HJ, Franco R, Águas H. Microfluidic SERS devices: brightening the future of bioanalysis. DISCOVER MATERIALS 2022; 2:12. [PMID: 36536830 PMCID: PMC9751519 DOI: 10.1007/s43939-022-00033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A new avenue has opened up for applications of surface-enhanced Raman spectroscopy (SERS) in the biomedical field, mainly due to the striking advantages offered by SERS tags. SERS tags provide indirect identification of analytes with rich and highly specific spectral fingerprint information, high sensitivity, and outstanding multiplexing potential, making them very useful in in vitro and in vivo assays. The recent and innovative advances in nanomaterial science, novel Raman reporters, and emerging bioconjugation protocols have helped develop ultra-bright SERS tags as powerful tools for multiplex SERS-based detection and diagnosis applications. Nevertheless, to translate SERS platforms to real-world problems, some challenges, especially for clinical applications, must be addressed. This review presents the current understanding of the factors influencing the quality of SERS tags and the strategies commonly employed to improve not only spectral quality but the specificity and reproducibility of the interaction of the analyte with the target ligand. It further explores some of the most common approaches which have emerged for coupling SERS with microfluidic technologies, for biomedical applications. The importance of understanding microfluidic production and characterisation to yield excellent device quality while ensuring high throughput production are emphasised and explored, after which, the challenges and approaches developed to fulfil the potential that SERS-based microfluidics have to offer are described.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Dalot
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, Dublin, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| |
Collapse
|
4
|
Trinh KTL, Thai DA, Lee NY. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. MICROMACHINES 2022; 13:1503. [PMID: 36144126 PMCID: PMC9501821 DOI: 10.3390/mi13091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Microfluidics is a multidisciplinary science that includes physics, chemistry, engineering, and biotechnology. Such microscale systems are receiving growing interest in applications such as analysis, diagnostics, and biomedical research. Thermoplastic polymers have emerged as one of the most attractive materials for microfluidic device fabrication owing to advantages such as being optically transparent, biocompatible, cost-effective, and mass producible. However, thermoplastic bonding is a key challenge for sealing microfluidic devices. Given the wide range of bonding methods, the appropriate bonding approach should be carefully selected depending on the thermoplastic material and functional requirements. In this review, we aim to provide a comprehensive overview of thermoplastic fabricating and bonding approaches, presenting their advantages and disadvantages, to assist in finding suitable microfluidic device bonding methods. In addition, we highlight current applications of thermoplastic microfluidics to analyses and diagnostics and introduce future perspectives on thermoplastic bonding strategies.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Duc Anh Thai
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
5
|
Nahak BK, Mishra A, Preetam S, Tiwari A. Advances in Organ-on-a-Chip Materials and Devices. ACS APPLIED BIO MATERIALS 2022; 5:3576-3607. [PMID: 35839513 DOI: 10.1021/acsabm.2c00041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.
Collapse
Affiliation(s)
- Bishal Kumar Nahak
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| |
Collapse
|
6
|
Rich SI, Lee S, Fukuda K, Someya T. Developing the Nondevelopable: Creating Curved-Surface Electronics from Nonstretchable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106683. [PMID: 34626017 DOI: 10.1002/adma.202106683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The incorporation of electronics onto curved surfaces promises to bring new levels of intelligence to the ergonomic, aesthetic, aerodynamic, and optical surfaces that are ever-present in our lives. However, since many of these surfaces have 2D (i.e., nondevelopable) curvature, they cannot be formed from the deformation of a flat, nonstretchable sheet. This means that curved electronics cannot capitalize on the rapid technological advances taking place in the field of ultrathin electronics, since ultrathin devices, though ultraflexible, are not stretchable. In this work, a shrink-based paradigm is presented to apply such thin-film electronics to nondevelopable surfaces, expanding the capabilities of current nondevelopable electronics, and linking future developments in thin-film technology to similar developments in curved devices. The wrinkling of parylene-based devices and the effects of shrinkage on common electrical components are examined, culminating in shrinkable touch sensors and organic photovoltaics, laminated to various nondevelopable surfaces without loss of performance.
Collapse
Affiliation(s)
- Steven I Rich
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinyoung Lee
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
7
|
Mohd Asri MA, Mak WC, Norazman SA, Nordin AN. Low-cost and rapid prototyping of integrated electrochemical microfluidic platforms using consumer-grade off-the-shelf tools and materials. LAB ON A CHIP 2022; 22:1779-1792. [PMID: 35293400 DOI: 10.1039/d1lc01100f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a low-cost, accessible, and rapid fabrication process for electrochemical microfluidic sensors. This work leverages the accessibility of consumer-grade electronic craft cutters as the primary tool for patterning of sensor electrodes and microfluidic circuits, while commodity materials such as gold leaf, silver ink pen, double-sided tape, plastic transparency films, and fabric adhesives are used as its base structural materials. The device consists of three layers, the silver reference electrode layer at the top, the PET fluidic circuits in the middle and the gold sensing electrodes at the bottom. Separation of the silver reference electrode from the gold sensing electrodes reduces the possibility of cross-contamination during surface modification. A novel approach in mesoscale patterning of gold leaf electrodes can produce generic designs with dimensions as small as 250 μm. Silver electrodes with dimensions as small as 385 μm were drawn using a plotter and a silver ink pen, and fluid microchannels as small as 300 μm were fabricated using a sandwich of iron-on adhesives and PET. Device layers are then fused together using an office laminator. The integrated microfluidic electrochemical platform has electrode kinetics/performance of ΔEp = 91.3 mV, Ipa/Ipc = 0.905, characterized by cyclic voltammetry using a standard ferrocyanide redox probe, and this was compared against a commercial screen-printed gold electrode (ΔEp = 68.9 mV, Ipa/Ipc = 0.984). To validate the performance of the integrated microfluidic electrochemical platform, a catalytic hydrogen peroxide sensor and enzyme-coupled glucose biosensors were developed as demonstrators. Hydrogen peroxide quantitation achieves a limit of detection of 0.713 mM and sensitivity of 78.37 μA mM-1 cm-2, while glucose has a limit of detection of 0.111 mM and sensitivity of 12.68 μA mM-1 cm-2. This rapid process allows an iterative design-build-test cycle in under 2 hours. The upfront cost to set up the system is less than USD 520, with each device costing less than USD 0.12, making this manufacturing process suitable for low-resource laboratories or classroom settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia.
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Siti Azizah Norazman
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia.
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia.
| |
Collapse
|
8
|
Sun M, Zhou X, Quan Y, Zhang L, Xie Y. Highly flexible elastomer microfluidic chip for single cell manipulation. BIOMICROFLUIDICS 2022; 16:024104. [PMID: 35310421 PMCID: PMC8923708 DOI: 10.1063/5.0086717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
New materials and fabrication technologies have significantly boosted the development of lab-on-a-chip technologies and functionalities. In this work, we developed a highly flexible elastomer microfluidic chip with a microchannel with a minimum width of ∼5 μm manufactured by imprinting onto an SU-8 template. We found that the deformation induced in the microstructures by manual stretching of the chip is higher than that for the chip itself, which we attribute to the stress concentration of microstructures. Here, we demonstrate that the elastomer enables the manipulation of single cells, such as dynamic trapping-releasing operations, by simply stretching and releasing the elastomer chip.
Collapse
Affiliation(s)
- Miao Sun
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xi Zhou
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanbo Xie
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
9
|
Zhang Y, Hu Y, Xu B, Fan J, Zhu S, Song Y, Cui Z, Wu H, Yang Y, Zhu W, Wang F, Li J, Wu D, Chu J, Jiang L. Robust Underwater Air Layer Retention and Restoration on Salvinia-Inspired Self-Grown Heterogeneous Architectures. ACS NANO 2022; 16:2730-2740. [PMID: 35156798 DOI: 10.1021/acsnano.1c09669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salvinia's long-term underwater air layer retention ability has inspired researchers to develop artificial microstructures. However, Salvinia has an exquisite combination of a complicated hollow structure and heterogeneous chemical properties, which makes artificial reproduction beyond the capabilities of traditional fabrication techniques. In addition, under extremely low underpressure conditions, the mechanism of retention and restoration of the underwater air layer of Salvinia remains unclear. Herein, by combining the shape memory polymer "top-constrained self-branching (TCSB)" and hydrophilic SiO2 microspheres trapping, four-branch hollow microstructures with heterogeneous chemical properties are fabricated. By applying underpressure, the crucial role of hydrophilic apexes is unveiled in air layer restoration. Through the calculation of the surface energy, the underlying mechanism is well interpreted. This study holds great promise for developing Salvinia-inspired artificial structures and reveals the underlying mechanism of the robust air retention and recovery capability of Salvinia leaves in extreme environments.
Collapse
Affiliation(s)
- Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianing Fan
- Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuegan Song
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zehang Cui
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Hao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yi Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wulin Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Fengchao Wang
- Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. BIOMICROFLUIDICS 2021; 15:061502. [PMID: 34777677 PMCID: PMC8577868 DOI: 10.1063/5.0071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 05/18/2023]
Abstract
Integrated microfluidic biosensors enable powerful microscale analyses in biology, physics, and chemistry. However, conventional methods for fabrication of biosensors are dependent on cleanroom-based approaches requiring facilities that are expensive and are limited in access. This is especially prohibitive toward researchers in low- and middle-income countries. In this topical review, we introduce a selection of state-of-the-art, low-cost prototyping approaches of microfluidics devices and miniature sensor electronics for the fabrication of sensor devices, with focus on electrochemical biosensors. Approaches explored include xurography, cleanroom-free soft lithography, paper analytical devices, screen-printing, inkjet printing, and direct ink writing. Also reviewed are selected surface modification strategies for bio-conjugates, as well as examples of applications of low-cost microfabrication in biosensors. We also highlight several factors for consideration when selecting microfabrication methods appropriate for a project. Finally, we share our outlook on the impact of these low-cost prototyping strategies on research and development. Our goal for this review is to provide a starting point for researchers seeking to explore microfluidics and biosensors with lower entry barriers and smaller starting investment, especially ones from low resource settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
- Author to whom correspondence should be addressed:
| | - Nabilah Ramli
- Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| |
Collapse
|
11
|
Jesmer AH, Huynh V, Marple AST, Ding X, Moran-Mirabal JM, Wylie RG. Graft-Then-Shrink: Simultaneous Generation of Antifouling Polymeric Interfaces and Localized Surface Plasmon Resonance Biosensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52362-52373. [PMID: 34704743 DOI: 10.1021/acsami.1c14930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antifouling polymer coatings that are simple to manufacture are crucial for the performance of medical devices such as biosensors. "Grafting-to", a simple technique where presynthesized polymers are immobilized onto surfaces, is commonly employed but suffers from nonideal polymer packing leading to increased biofouling. Herein, we present a material prepared via the grafting-to method with improved antifouling surface properties and intrinsic localized surface plasmon resonance (LSPR) sensor capabilities. A new substrate shrinking fabrication method, Graft-then-Shrink, improved the antifouling properties of polymer-coated Au surfaces by altering graft-to polymer packing while simultaneously generating wrinkled Au structures for LSPR biosensing. Thiol-terminated, antifouling, hydrophilic polymers were grafted to Au-coated prestressed polystyrene (PS) followed by shrinking upon heating above the PS glass transition temperature. Interestingly, the polymer molecular weight and hydration influenced Au wrinkling patterns. Compared to Shrink-then-Graft controls, where polymers are immobilized post shrinking, Graft-then-Shrink increased the polymer content by 76% in defined footprints and improved the antifouling properties as demonstrated by 84 and 72% reduction in macrophage adhesion and protein adsorption, respectively. Wrinkled Au LSPR sensors had sensitivities of ∼200-1000 Δλ/ΔRIU, comparing favorably to commercial LSPR sensors, and detected biotin-avidin and desthiobiotin-avidin complexation in a concentration-dependent manner using a standard plate reader and a 96-well format.
Collapse
Affiliation(s)
- Alexander H Jesmer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - April S T Marple
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Xiuping Ding
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
12
|
He W, Ye X, Cui T. Progress of shrink polymer micro- and nanomanufacturing. MICROSYSTEMS & NANOENGINEERING 2021; 7:88. [PMID: 34790360 PMCID: PMC8566528 DOI: 10.1038/s41378-021-00312-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 05/31/2023]
Abstract
Traditional lithography plays a significant role in the fabrication of micro- and nanostructures. Nevertheless, the fabrication process still suffers from the limitations of manufacturing devices with a high aspect ratio or three-dimensional structure. Recent findings have revealed that shrink polymers attain a certain potential in micro- and nanostructure manufacturing. This technique, denoted as heat-induced shrink lithography, exhibits inherent merits, including an improved fabrication resolution by shrinking, controllable shrinkage behavior, and surface wrinkles, and an efficient fabrication process. These merits unfold new avenues, compensating for the shortcomings of traditional technologies. Manufacturing using shrink polymers is investigated in regard to its mechanism and applications. This review classifies typical applications of shrink polymers in micro- and nanostructures into the size-contraction feature and surface wrinkles. Additionally, corresponding shrinkage mechanisms and models for shrinkage, and wrinkle parameter control are examined. Regarding the size-contraction feature, this paper summarizes the progress on high-aspect-ratio devices, microchannels, self-folding structures, optical antenna arrays, and nanowires. Regarding surface wrinkles, this paper evaluates the development of wearable sensors, electrochemical sensors, energy-conversion technology, cell-alignment structures, and antibacterial surfaces. Finally, the limitations and prospects of shrink lithography are analyzed.
Collapse
Affiliation(s)
- Wenzheng He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street S.E., Minneapolis, MN 55455 USA
| |
Collapse
|
13
|
Mader M, Rein C, Konrat E, Meermeyer SL, Lee-Thedieck C, Kotz-Helmer F, Rapp BE. Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene. MICROMACHINES 2021; 12:1348. [PMID: 34832759 PMCID: PMC8618114 DOI: 10.3390/mi12111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Polystyrene (PS) is one of the most commonly used thermoplastic materials worldwide and plays a ubiquitous role in today's biomedical and life science industry and research. The main advantage of PS lies in its facile processability, its excellent optical and mechanical properties, as well as its biocompatibility. However, PS is only rarely used in microfluidic prototyping, since the structuring of PS is mainly performed using industrial-scale replication processes. So far, microfluidic chips in PS have not been accessible to rapid prototyping via 3D printing. In this work, we present, for the first time, 3D printing of transparent PS using fused deposition modeling (FDM). We present FDM printing of transparent PS microfluidic channels with dimensions as small as 300 µm and a high transparency in the region of interest. Furthermore, we demonstrate the fabrication of functional chips such as Tesla-mixer and mixer cascades. Cell culture experiments showed a high cell viability during seven days of culturing, as well as enabling cell adhesion and proliferation. With the aid of this new PS prototyping method, the development of future biomedical microfluidic chips will be significantly accelerated, as it enables using PS from the early academic prototyping all the way to industrial-scale mass replication.
Collapse
Affiliation(s)
- Markus Mader
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Christof Rein
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Eveline Konrat
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Sophia Lena Meermeyer
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Bastian E. Rapp
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
14
|
Escobar A, Chiu P, Qu J, Zhang Y, Xu CQ. Integrated Microfluidic-Based Platforms for On-Site Detection and Quantification of Infectious Pathogens: Towards On-Site Medical Translation of SARS-CoV-2 Diagnostic Platforms. MICROMACHINES 2021; 12:1079. [PMID: 34577722 PMCID: PMC8470930 DOI: 10.3390/mi12091079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
The rapid detection and quantification of infectious pathogens is an essential component to the control of potentially lethal outbreaks among human populations worldwide. Several of these highly infectious pathogens, such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been cemented in human history as causing epidemics or pandemics due to their lethality and contagiousness. SARS-CoV-2 is an example of these highly infectious pathogens that have recently become one of the leading causes of globally reported deaths, creating one of the worst economic downturns and health crises in the last century. As a result, the necessity for highly accurate and increasingly rapid on-site diagnostic platforms for highly infectious pathogens, such as SARS-CoV-2, has grown dramatically over the last two years. Current conventional non-microfluidic diagnostic techniques have limitations in their effectiveness as on-site devices due to their large turnaround times, operational costs and the need for laboratory equipment. In this review, we first present criteria, both novel and previously determined, as a foundation for the development of effective and viable on-site microfluidic diagnostic platforms for several notable pathogens, including SARS-CoV-2. This list of criteria includes standards that were set out by the WHO, as well as our own "seven pillars" for effective microfluidic integration. We then evaluate the use of microfluidic integration to improve upon currently, and previously, existing platforms for the detection of infectious pathogens. Finally, we discuss a stage-wise means to translate our findings into a fundamental framework towards the development of more effective on-site SARS-CoV-2 microfluidic-integrated platforms that may facilitate future pandemic diagnostic and research endeavors. Through microfluidic integration, many limitations in currently existing infectious pathogen diagnostic platforms can be eliminated or improved upon.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Phyllis Chiu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Jianxi Qu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Yushan Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| |
Collapse
|
15
|
Wang M, Li W, Tang G, Garciamendez-Mijares CE, Zhang YS. Engineering (Bio)Materials through Shrinkage and Expansion. Adv Healthc Mater 2021; 10:e2100380. [PMID: 34137213 PMCID: PMC8295236 DOI: 10.1002/adhm.202100380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Although various (bio)fabrication technologies have achieved revolutionary progress in the past decades, engineered constructs still fall short of expectations owing to their inability to attain precisely designable functions. Shrinkable and expandable (bio)materials feature unique characteristics leading to size-/shape-shifting and thus have exhibited a strong potential to equip current engineering technologies with promoted capacities toward applications in biomedicine. In this progress report, the advances of size-/shape-shifting (bio)materials enabled by various stimuli, are evaluated; furthermore, representative biomedical applications associated with size-/shape-shifting (bio)materials are also exemplified. Toward the future, the combination of size-/shape-shifting (bio)materials and 3D/4D fabrication technologies presents a wide range of possibilities for further development of intricate functional architectures.
Collapse
Affiliation(s)
- Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Salva ML, Rocca M, Niemeyer CM, Delamarche E. Methods for immobilizing receptors in microfluidic devices: A review. MICRO AND NANO ENGINEERING 2021. [DOI: 10.1016/j.mne.2021.100085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Heterogeneous Bonding of PMMA and Double-Sided Polished Silicon Wafers through H2O Plasma Treatment for Microfluidic Devices. COATINGS 2021. [DOI: 10.3390/coatings11050580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work we report on a rapid, easy-to-operate, lossless, room temperature heterogeneous H2O plasma treatment process for the bonding of poly(methyl methacrylate) (PMMA) and double-sided polished (DSP) silicon substrates by for utilization in sandwich structured microfluidic devices. The heterogeneous bonding of the sandwich structure produced by the H2O plasma is analyzed, and the effect of heterogeneous bonding of free radicals and high charge electrons (e−) in the formed plasma which causes a passivation phenomenon during the bonding process investigated. The PMMA and silicon surface treatments were performed at a constant radio frequency (RF) power and H2O flow rate. Changing plasma treatment time and powers for both processes were investigated during the experiments. The gas flow rate was controlled to cause ionization of plasma and the dissociation of water vapor from hydrogen (H) atoms and hydroxyl (OH) bonds, as confirmed by optical emission spectroscopy (OES). The OES results show the relative intensity peaks emitted by the OH radicals, H and oxygen (O). The free energy is proportional to the plasma treatment power and gas flow rate with H bonds forming between the adsorbed H2O and OH groups. The gas density generated saturated bonds at the interface, and the discharge energy that strengthened the OH-e− bonds. This method provides an ideal heterogeneous bonding technique which can be used to manufacture new types of microfluidic devices.
Collapse
|
18
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:874-883. [PMID: 33576354 DOI: 10.1039/d1ay00041a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Using the children's toy, Shrinky-Dink©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 1 ag mL-1 of the S1 subunit of the spike protein.
Collapse
Affiliation(s)
- Julia A Zakashansky
- Materials Science and Engineering, University of California - Irvine, Irvine, California 92697, USA.
| | - Amanda H Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, 13566-590 Brazil
| | - Darwin F Salgado
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | | | - Raphael F L Aguas
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Angelou M Lao
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Joseph Pariser
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA and Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, & Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Khine
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| |
Collapse
|
19
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33236028 DOI: 10.1101/2020.11.14.20231811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using the children's toy, Shrinky-Dink ©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 0.1 fg mL -1 of the S1 subunit of the spike protein.
Collapse
|
20
|
Rho HS, Veltkamp HW, Baptista D, Gardeniers H, Le Gac S, Habibović P. A 3D polydimethylsiloxane microhourglass-shaped channel array made by reflowing photoresist structures for engineering a blood capillary network. Methods 2020; 190:63-71. [PMID: 32247048 DOI: 10.1016/j.ymeth.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022] Open
Abstract
This paper describes an innovative yet straightforward fabrication technique to create three-dimensional microstructures with controllable tapered geometries by combining conventional photolithography and thermal reflow of photoresist. Positive photoresist-based microchannel structures with varying width-to-length ratios were reflowed after their fabrication to generate three-dimensional funnel structures with varying curvatures. A polydimethylsiloxane hourglass-shaped microchannel array was next cast on these photoresist structures, and primary human lung microvascular endothelial cells were cultured in the device to engineer an artificial capillary network. Our work demonstrates that this cost-effective and straightforward fabrication technique has great potential in engineering three-dimensional microstructures for biomedical and biotechnological applications such as blood vessel regeneration strategies, drug screening for vascular diseases, microcolumns for bioseparation, and other fluid dynamic studies at microscale.
Collapse
Affiliation(s)
- Hoon Suk Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, The Netherlands; Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands; Applied Microfluidics for BioEngineering Research Group, TechMed Institute, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Henk-Willem Veltkamp
- Integrated Devices and Systems Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Danielle Baptista
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research Group, TechMed Institute, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, The Netherlands.
| |
Collapse
|
21
|
Oliveira B, Veigas B, Fernandes AR, Águas H, Martins R, Fortunato E, Baptista PV. Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1624. [PMID: 32183359 PMCID: PMC7146133 DOI: 10.3390/s20061624] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
Microfluidic (MF) advancements have been leveraged toward the development of state-of-the-art platforms for molecular diagnostics, where isothermal amplification schemes allow for further simplification of DNA detection and quantification protocols. The MF integration with loop-mediated isothermal amplification (LAMP) is today the focus of a new generation of chip-based devices for molecular detection, aiming at fast and automated nucleic acid analysis. Here, we combined MF with droplet digital LAMP (ddLAMP) on an all-in-one device that allows for droplet generation, target amplification, and absolute quantification. This multilayer 3D chip was developed in less than 30 minutes by using a low-cost and extremely adaptable production process that exploits direct laser writing technology in "Shrinky-dinks" polystyrene sheets. ddLAMP and target quantification were performed directly on-chip, showing a high correlation between target concentration and positive droplet score. We validated this integrated chip via the amplification of targets ranging from five to 500,000 copies/reaction. Furthermore, on-chip amplification was performed in a 10 µL volume, attaining a limit of detection of five copies/µL under 60 min. This technology was applied to quantify a cancer biomarker, c-MYC, but it can be further extended to any other disease biomarker.
Collapse
Affiliation(s)
- Beatriz Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Bruno Veigas
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- i3N|CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hugo Águas
- i3N|CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- i3N|CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- i3N|CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication. MICROMACHINES 2019; 10:mi10090576. [PMID: 31480301 PMCID: PMC6780727 DOI: 10.3390/mi10090576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Microfluidics has become a very promising technology in recent years, due to its great potential to revolutionize life-science solutions. Generic microfabrication processes have been progressively made available to academic laboratories thanks to cost-effective soft-lithography techniques and enabled important progress in applications like lab-on-chip platforms using rapid- prototyping. However, micron-sized features are required in most designs, especially in biomimetic cell culture platforms, imposing elevated costs of production associated with lithography and limiting the use of such devices. In most cases, however, only a small portion of the structures require high-resolution and cost may be decreased. In this work, we present a replica-molding method separating the fabrication steps of low (macro) and high (micro) resolutions and then merging the two scales in a single chip. The method consists of fabricating the largest possible area in inexpensive macromolds using simple techniques such as plastics micromilling, laser microfabrication, or even by shrinking printed polystyrene sheets. The microfeatures were made on a separated mold or onto existing macromolds using photolithography or 2-photon lithography. By limiting the expensive area to the essential, the time and cost of fabrication can be reduced. Polydimethylsiloxane (PDMS) microfluidic chips were successfully fabricated from the constructed molds and tested to validate our micro–macro method.
Collapse
|
23
|
Rackus DG, Riedel-Kruse IH, Pamme N. "Learning on a chip:" Microfluidics for formal and informal science education. BIOMICROFLUIDICS 2019; 13:041501. [PMID: 31431815 PMCID: PMC6697029 DOI: 10.1063/1.5096030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 05/06/2023]
Abstract
Microfluidics is a technique for the handling of small volumes of liquids on the order of picoliters to nanoliters and has impact for miniaturized biomedical science and fundamental research. Because of its multi- and interdisciplinary nature (i.e., combining the fields of biology, chemistry, physics, and engineering), microfluidics offers much potential for educational applications, both at the university level as well as primary and secondary education. Microfluidics is also an ideal "tool" to enthuse and educate members of the general public about the interdisciplinary aspects of modern sciences, including concepts of science, technology, engineering, and mathematics subjects such as (bio)engineering, chemistry, and biomedical sciences. Here, we provide an overview of approaches that have been taken to make microfluidics accessible for formal and informal learning. We also point out future avenues and desired developments. At the extreme ends, we can distinguish between projects that teach how to build microfluidic devices vs projects that make various microscopic phenomena (e.g., low Reynolds number hydrodynamics, microbiology) accessible to learners and the general public. Microfluidics also enables educators to make experiments low-cost and scalable, and thereby widely accessible. Our goal for this review is to assist academic researchers working in the field of microfluidics and lab-on-a-chip technologies as well as educators with translating research from the laboratory into the lecture hall, teaching laboratory, or public sphere.
Collapse
Affiliation(s)
- Darius G. Rackus
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Nicole Pamme
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
24
|
Pitingolo G, Taly V, Nastruzzi C. Coins in microfluidics: From mere scale objects to font of inspiration for microchannel circuits. BIOMICROFLUIDICS 2019; 13:024106. [PMID: 31040886 PMCID: PMC6456355 DOI: 10.1063/1.5086535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The fabrication of microfluidic chips remains a complex and expensive process requiring specific equipment and protocols, often if not always limited to the most privileged laboratories. As an alternative to the most sophisticated methods, the present paper describes the fabrication of microfluidic chips by an approach that uses coins as positive master for the rapid production of multigeometry chips. All steps of chip production were carried out using inexpensive approaches by low-cost chemicals and equipment. The chips were validated by different "classic" microfluidic tasks, such as hydrodynamic focusing, droplets generation, micromixing, and on-chip cell culture. The use of coins is not only an efficient method for rapid prototyping but also represents an inspiring possibility for the design of new microfluidic chips. Finally, coin-inspired chips could represent a laboratory experiment doable at a high school level.
Collapse
Affiliation(s)
- Gabriele Pitingolo
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, F-75005 Paris, France
| | - Valerie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, F-75005 Paris, France
| | - Claudio Nastruzzi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
25
|
Chan Y, Skreta M, McPhee H, Saha S, Deus R, Soleymani L. Solution-processed wrinkled electrodes enable the development of stretchable electrochemical biosensors. Analyst 2019; 144:172-179. [PMID: 30358778 DOI: 10.1039/c8an01637b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wearable biosensors are critical for enabling real-time and continuous health monitoring and disease management. Conductors that retain their conductivity under strain are an essential building block of these systems. Strategies based on stretchable materials or structures have enabled the development of electrodes that can withstand impressive strains before loss of conductivity. In spite of this, it remains challenging to develop three-dimensional and high surface area electrodes that combine stretchability with high analytical sensitivity. Here, we develop stretchable electrochemical biosensors using solution-processed wrinkled gold electrodes. Wrinkling enhances the surface area of the electrodes and allows glucose to be detected with a sensitivity of 750-810 μA M-1 cm-2. Furthermore, wrinkling enables electrodes to be strained by up to 230% without significant loss in conductivity.
Collapse
Affiliation(s)
- Yuting Chan
- McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, L8S 4L7, Canada.
| | - Marta Skreta
- McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, L8S 4L7, Canada.
| | - Hannah McPhee
- McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, L8S 4L7, Canada.
| | - Sudip Saha
- McMaster University, School of Biomedical Engineering, 1280 Main Street West, Hamilton, L8S 4L7, Canada
| | - Ryan Deus
- McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, L8S 4L7, Canada.
| | - Leyla Soleymani
- McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, L8S 4L7, Canada. and McMaster University, School of Biomedical Engineering, 1280 Main Street West, Hamilton, L8S 4L7, Canada
| |
Collapse
|
26
|
Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Sci Rep 2019; 9:7. [PMID: 30626903 PMCID: PMC6327054 DOI: 10.1038/s41598-018-37029-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/29/2018] [Indexed: 01/27/2023] Open
Abstract
Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction time. By immersing microPADs in 0.5-M NaIO4 for 48 hours, devices were miniaturized by 78% in surface area, and this treatment allowed for the fabrication of functional channels with widths as small as 301 µm and hydrophobic barriers with widths as small as 387 µm. The miniaturized devices were shown to be compatible with redox-based colorimetric assays and enzymatic reactions. This miniaturization technique provides a new option for fabricating sub-millimeter-sized features in paper-based fluidic devices without requiring specialized equipment and could enable new capabilities and applications for microPADs.
Collapse
|
27
|
Zhang Y, Li Y, Hu Y, Zhu X, Huang Y, Zhang Z, Rao S, Hu Z, Qiu W, Wang Y, Li G, Yang L, Li J, Wu D, Huang W, Qiu C, Chu J. Localized Self-Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shape-Memory Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803072. [PMID: 30259576 DOI: 10.1002/adma.201803072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Architectures of natural organisms especially plants largely determine their response to varying external conditions. Nature-inspired shape transformation of artificial materials has motivated academic research for decades due to wide applications in smart textiles, actuators, soft robotics, and drug delivery. A "self-growth" method of controlling femtosecond laser scanning on the surface of a prestretched shape-memory polymer to realize microscale localized reconfigurable architectures transformation is introduced. It is discovered that microstructures can grow out of the original surface by intentional control of localized laser heating and ablation, and resultant structures can be further tuned by adopting an asymmetric laser scanning strategy. A distinguished paradigm of reconfigurable architectures is demonstrated by combining the flexible and programmable laser technique with a smart shape-memory polymer. Proof-of-concept experiments are performed respectively in information encryption/decryption, and microtarget capturing/release. The findings reveal new capacities of architectures with smart surfaces in various interdisciplinary fields including anti-counterfeiting, microstructure printing, and ultrasensitive detection.
Collapse
Affiliation(s)
- Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ying Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xuelin Zhu
- Centre for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yaowei Huang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, 02138, USA
| | - Zhen Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shenglong Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhijiang Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weixin Qiu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yulong Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guoqiang Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Liang Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Wenhao Huang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengwei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
28
|
Hubbard AM, Davis DS, Dickey MD, Genzer J. Shape memory polymers for self‐folding via compression of thermoplastic sheets. J Appl Polym Sci 2018. [DOI: 10.1002/app.46889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Amber M. Hubbard
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina 27695‐7905
| | - Duncan S. Davis
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina 27695‐7905
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina 27695‐7905
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina 27695‐7905
| |
Collapse
|
29
|
Odabasi IE, Gencturk E, Puza S, Mutlu S, Ulgen KO. A low cost PS based microfluidic platform to investigate cell cycle towards developing a therapeutic strategy for cancer. Biomed Microdevices 2018; 20:57. [DOI: 10.1007/s10544-018-0302-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Lee Y, Moon J, Choi J, Cho M. Self-folding Structural Design Using Multiscale Analysis on the Light-absorption Folding Behaviour of Polystyrene Sheet. Sci Rep 2017; 7:14277. [PMID: 29079754 PMCID: PMC5660224 DOI: 10.1038/s41598-017-14599-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022] Open
Abstract
Concentrated light-absorption on specific areas of polystyrene (PS) sheet induces self-folding behaviour. Such localized light-absorption control is easily realized by black-coloured line pattern printing. As the temperature in the line patterns of PS sheet increases differently due to the transparencies in each line pattern, localized thermal contraction generates folding deformation of the PS sheet. The light-activated folding technique is caused by the shape memory effect of PS sheet. The shape memory creation procedure (SMCP) is described by using molecular dynamic (MD) simulation, and the constitutive model of PS sheet is identified. This study employs the shell/cohesive line element for the folding deformation of PS sheet, and utilizes the constitutive model obtained from the MD simulation. Based on the continuum-model analysis of the PS sheet folding deformation activated by light, various self-folding structures are designed and manufactured.
Collapse
Affiliation(s)
- Yonghee Lee
- Division of Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-744, South Korea
| | - Junghwan Moon
- Division of Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-744, South Korea
| | - Joonmyung Choi
- Division of Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-744, South Korea
| | - Maenghyo Cho
- Division of Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-744, South Korea.
| |
Collapse
|
31
|
Danielson C, Mehrnezhad A, YekrangSafakar A, Park K. Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage. SOFT MATTER 2017; 13:4224-4230. [PMID: 28504284 DOI: 10.1039/c6sm02637k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.
Collapse
Affiliation(s)
- Christian Danielson
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70809, USA.
| | | | | | | |
Collapse
|
32
|
Nemati SH, Liyu DA, Canul AJ, Vasdekis AE. Solvent immersion imprint lithography: A high-performance, semi-automated procedure. BIOMICROFLUIDICS 2017; 11:024111. [PMID: 28798847 PMCID: PMC5533493 DOI: 10.1063/1.4979575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
We expand upon our recent, fundamental report on solvent immersion imprint lithography (SIIL) and describe a semi-automated and high-performance procedure for prototyping polymer microfluidics and optofluidics. The SIIL procedure minimizes manual intervention through a cost-effective (∼$200) and easy-to-assemble apparatus. We analyze the procedure's performance specifically for Poly (methyl methacrylate) microsystems and report repeatable polymer imprinting, bonding, and 3D functionalization in less than 5 min, down to 8 μm resolutions and 1:1 aspect ratios. In comparison to commercial approaches, the modified SIIL procedure enables substantial cost reductions, a 100-fold reduction in imprinting force requirements, as well as a more than 10-fold increase in bonding strength. We attribute these advantages to the directed polymer dissolution that strictly localizes at the polymer-solvent interface, as uniquely offered by SIIL. The described procedure opens new desktop prototyping opportunities, particularly for non-expert users performing live-cell imaging, flow-through catalysis, and on-chip gas detection.
Collapse
Affiliation(s)
- S H Nemati
- Department of Physics, University of Idaho, Moscow, Idaho 83844, USA
| | - D A Liyu
- Department of Physics, University of Idaho, Moscow, Idaho 83844, USA
| | - A J Canul
- Department of Physics, University of Idaho, Moscow, Idaho 83844, USA
| | - A E Vasdekis
- Department of Physics, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
33
|
Sun M, Xie Y, Zhu J, Li J, Eijkel JCT. Improving the Resolution of 3D-Printed Molds for Microfluidics by Iterative Casting-Shrinkage Cycles. Anal Chem 2017; 89:2227-2231. [DOI: 10.1021/acs.analchem.6b05148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Miao Sun
- MOE
Key Laboratory of Space Applied Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanbo Xie
- MOE
Key Laboratory of Space Applied Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jihong Zhu
- Engineering
Simulation and Aerospace Computing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jun Li
- MOE
Key Laboratory of Space Applied Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jan C. T. Eijkel
- BIOS−Lab
on a Chip Group, MESA+ Institute for Nanotechnology and MIRA Institute
for Biomedical Technology and Technical Medicine, University of Twente, 7522
NB Enschede, The Netherlands
| |
Collapse
|
34
|
Chu M, Nguyen TT, Lee EK, Morival JL, Khine M. Plasma free reversible and irreversible microfluidic bonding. LAB ON A CHIP 2017; 17:267-273. [PMID: 27990540 PMCID: PMC9300447 DOI: 10.1039/c6lc01338d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate a facile, plasma free process to fabricate both reversibly and irreversibly sealed microfluidic chips using a PDMS-based adhesive polymer mixture. This is a versatile method that is compatible with current PDMS microfluidics processes. It allows for easier fabrication of multilayer microfluidic devices and is compatible with micropatterning of proteins for cell culturing. When combined with our Shrinky-Dink microfluidic prototyping, complete microfluidic device fabrication can be performed without the need for any capital equipment, making microfluidics accessible to the classroom.
Collapse
Affiliation(s)
- M Chu
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - T T Nguyen
- Department of Chemical Engineering, University of California, Irvine, CA 92697, USA
| | - E K Lee
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - J L Morival
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - M Khine
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Jiang X, Jing W, Sun X, Liu Q, Yang C, Liu S, Qin K, Sui G. High-Throughput Microfluidic Device for LAMP Analysis of Airborne Bacteria. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00282] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiran Jiang
- Department
of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenwen Jing
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoting Sun
- Research
Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Qi Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chunguang Yang
- Research
Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Sixiu Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Kairong Qin
- Department
of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guodong Sui
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Liyu D, Nemati SH, Vasdekis AE. Solvent-assisted prototyping of microfluidic and optofluidic microsystems in polymers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Denis Liyu
- Department of Physics; University of Idaho; Moscow Idaho 83844
| | | | | |
Collapse
|
37
|
Vecchione R, Pitingolo G, Falanga AP, Guarnieri D, Netti PA. Confined Gelatin Dehydration as a Viable Route To Go Beyond Micromilling Resolution and Miniaturize Biological Assays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12075-12081. [PMID: 27140285 DOI: 10.1021/acsami.6b04128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nowadays, microfluidic channels of a few tens of micrometers are required and widely used in many fields, especially for surface-processing applications and miniaturization of biological assays. Herein, we selected micromilling as a low-cost technology and proposed an approach capable of overcoming its limitations; in fact, microstructures below 20-30 μm in depth are difficult to obtain, and the manufacturing error is rather high, as it is inversely proportional to the depth. Indeed, the proposed method uses a confined dehydration process of a patterned gelatin substrate fabricated via replica molding onto a micromilled poly(methyl methacrylate) substrate to produce a gelatin master with demonstrated final micrometric features down to 3 μm for the channel depth and, in specific configurations, down to 5 μm for the channel width. Finally, we demonstrated the ability to flux liquids in miniaturized microfluidic devices and fabricated and tested-as an example-micrometric microstructures arrays connected via microchannels for biological assays.
Collapse
Affiliation(s)
- Raffaele Vecchione
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Gabriele Pitingolo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Andrea P Falanga
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Daniela Guarnieri
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II , Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| |
Collapse
|
38
|
|
39
|
Stedtfeld RD, Liu YC, Stedtfeld TM, Kostic T, Kronlein M, Srivannavit O, Khalife WT, Tiedje JM, Gulari E, Hughes M, Etchebarne B, Hashsham SA. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed Microdevices 2015; 17:89. [PMID: 26260693 PMCID: PMC4531140 DOI: 10.1007/s10544-015-9994-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A microfluidic card is described for simultaneous and rapid genetic detection of multiple microbial pathogens. The hydrophobic surface of native acrylic and a novel microfluidic mechanism termed "airlock" were used to dispense sample into a series of 64 reaction wells without the use of valves, external pumping peripherals, multiple layers, or vacuum assistance. This airlock mechanism was tested with dilutions of whole human blood, saliva, and urine, along with mock samples of varying viscosities and surface tensions. Samples spiked with genomic DNA (gDNA) or crude lysates from clinical bacterial isolates were tested with loop mediated isothermal amplification assays (LAMP) designed to target virulence and antibiotic resistance genes. Reactions were monitored in real time using the Gene-Z, which is a portable smartphone-driven system. Samples loaded correctly into the microfluidic card in 99.3% of instances. Amplification results confirmed no carryover of pre-dispensed primer between wells during sample loading, and no observable diffusion between adjacent wells during the 60 to 90 min isothermal reaction. Sensitivity was comparable between LAMP reactions tested within the microfluidic card and in conventional vials. Tests demonstrate that the airlock card works with various sample types, manufacturing techniques, and can potentially be used in many point-of-care diagnostics applications.
Collapse
Affiliation(s)
- Robert D. Stedtfeld
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Yen-Cheng Liu
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Tiffany M. Stedtfeld
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Tanja Kostic
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
- />Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Maggie Kronlein
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Onnop Srivannavit
- />Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Walid T. Khalife
- />Department of Microbiology, Sparrow Laboratories, Sparrow Health System, Lansing, MI 48912 USA
| | - James M. Tiedje
- />The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824 USA
- />Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
| | - Erdogan Gulari
- />Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mary Hughes
- />Department of Osteopathic Medical Specialties, Section of Emergency Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Brett Etchebarne
- />Department of Osteopathic Medical Specialties, Section of Emergency Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Syed A. Hashsham
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
- />The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
40
|
Wang H, Wang Y, Tee BCK, Kim K, Lopez J, Cai W, Bao Z. Shape-Controlled, Self-Wrapped Carbon Nanotube 3D Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500103. [PMID: 27980972 PMCID: PMC5115380 DOI: 10.1002/advs.201500103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/03/2015] [Indexed: 05/20/2023]
Abstract
The mechanical flexibility and structural softness of ultrathin devices based on organic thin films and low-dimensional nanomaterials have enabled a wide range of applications including flexible display, artificial skin, and health monitoring devices. However, both living systems and inanimate systems that are encountered in daily lives are all 3D. It is therefore desirable to either create freestanding electronics in a 3D form or to incorporate electronics onto 3D objects. Here, a technique is reported to utilize shape-memory polymers together with carbon nanotube flexible electronics to achieve this goal. Temperature-assisted shape control of these freestanding electronics in a programmable manner is demonstrated, with theoretical analysis for understanding the shape evolution. The shape control process can be executed with prepatterned heaters, desirable for 3D shape formation in an enclosed environment. The incorporation of carbon nanotube transistors, gas sensors, temperature sensors, and memory devices that are capable of self-wrapping onto any irregular shaped-objects without degradations in device performance is demonstrated.
Collapse
Affiliation(s)
- Huiliang Wang
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| | - Yanming Wang
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA
| | - Benjamin C-K Tee
- Department of Electrical Engineering Stanford University 350 Serra Mall Stanford CA 94305 USA
| | - Kwanpyo Kim
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 USA
| | - Jeffrey Lopez
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 USA
| | - Wei Cai
- Department of Materials Science and Engineering Stanford University 496 Lomita Mall Stanford CA 94305 USA; Department of Mechanical Engineering Stanford University 440 Escondido Mall Stanford CA 94305 USA
| | - Zhenan Bao
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 USA
| |
Collapse
|
41
|
Zhang W, Gu Y, Hao Y, Sun Q, Konior K, Wang H, Zilberberg J, Lee WY. Well plate-based perfusion culture device for tissue and tumor microenvironment replication. LAB ON A CHIP 2015; 15:2854-2863. [PMID: 26021852 PMCID: PMC4470735 DOI: 10.1039/c5lc00341e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There are significant challenges in developing in vitro human tissue and tumor models that can be used to support new drug development and evaluate personalized therapeutics. The challenges include: (1) working with primary cells which are often difficult to maintain ex vivo, (2) mimicking native microenvironments from which primary cells are harvested, and (3) the lack of culture devices that can support these microenvironments to evaluate drug responses in a high-throughput manner. Here we report a versatile well plate-based perfusion culture device that was designed, fabricated and used to: (1) ascertain the role of perfusion in facilitating the expansion of human multiple myeloma cells and evaluate drug response of the cells, (2) preserve the physiological phenotype of primary murine osteocytes by reconstructing the 3D cellular network of osteocytes, and (3) circulate primary murine T cells through a layer of primary murine intestine epithelial cells to recapitulate the interaction of the immune cells with the epithelial cells. Through these diverse case studies, we demonstrate the device's design features to support: (1) the convenient and spatiotemporal placement of cells and biomaterials into the culture wells of the device; (2) the replication of tissues and tumor microenvironments using perfusion, stromal cells, and/or biomaterials; (3) the circulation of non-adherent cells through the culture chambers; and (4) conventional tissue and cell characterization by plate reading, histology, and flow cytometry. Future challenges are identified and discussed from the perspective of manufacturing the device and making its operation for routine and wide use.
Collapse
Affiliation(s)
- W Zhang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Y Gu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Y Hao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Q Sun
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - K Konior
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - H Wang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - J Zilberberg
- Research Department, Hackensack University Medical Center, 40 Prospect Ave, Hackensack, NJ, 07601, USA
- John Theurer Cancer Center, Hackensack University Medical Center
| | - W Y Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
42
|
Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. LAB ON A CHIP 2015; 15:2364-78. [PMID: 25906246 PMCID: PMC4439323 DOI: 10.1039/c5lc00234f] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This tutorial review offers protocols, tips, insight, and considerations for practitioners interested in using micromilling to create microfluidic devices. The objective is to provide a potential user with information to guide them on whether micromilling would fill a specific need within their overall fabrication strategy. Comparisons are made between micromilling and other common fabrication methods for plastics in terms of technical capabilities and cost. The main discussion focuses on "how-to" aspects of micromilling, to enable a user to select proper equipment and tools, and obtain usable microfluidic parts with minimal start-up time and effort. The supplementary information provides more extensive discussion on CNC mill setup, alignment, and programming. We aim to reach an audience with minimal prior experience in milling, but with strong interests in fabrication of microfluidic devices.
Collapse
Affiliation(s)
- David J Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
43
|
Sawane YB, Datar S, Ogale SB, Banpurkar AG. Hysteretic DC electrowetting by field-induced nano-structurations on polystyrene films. SOFT MATTER 2015; 11:2655-2664. [PMID: 25690856 DOI: 10.1039/c5sm00007f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electrowetting (EW) offers executive wetting control of conductive liquids on several polymer surfaces. We report a peculiar electrowetting response for aqueous drops on a polystyrene (PS) dielectric surface in the presence of silicone oil. After the first direct current (DC) voltage cycle, the droplet failed to regain Young's angle, yielding contact angle hysteresis, which is close to a value found in ambient air. We conjecture that the hysteretic EW response appears from in situ surface modification using electric field induced water-ion contact with PS surface inducing nano-structuration by electro-hydrodynamic (EHD) instability. Atomic force microscopy confirms the formation of nano-structuration on the electrowetted surface. The effects of molecular weight, applied electric field, water conductivity and pH on nano-structuration are studied. Finally, the EW based nano-structuration on PS surface is used for the enhanced loading of aqueous dyes on hydrophobic surfaces.
Collapse
Affiliation(s)
- Yogesh B Sawane
- Centre for Advanced Studies in Condensed Matter and Solid State Physics, Department of Physics, S P Pune University, Pune 411007, India.
| | | | | | | |
Collapse
|
44
|
Pentecost AM, Martin RS. Fabrication and Characterization of All-Polystyrene Microfluidic Devices with Integrated Electrodes and Tubing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:2968-2976. [PMID: 28191042 PMCID: PMC5300304 DOI: 10.1039/c5ay00197h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method of fabricating all-polystyrene devices with integrated electrodes and fluidic tubing is described. As opposed to expensive polystyrene (PS) fabrication techniques that use hot embossing and bonding with a heated lab press, this approach involves solvent-based etching of channels and lamination-based bonding of a PS cover, all of which do not need to occur in a clean room. PS has been studied as an alternative microchip substrate to PDMS, as it is more hydrophilic, biologically compatible in terms of cell adhesion, and less prone to absorption of hydrophobic molecules. The etching/lamination-based method described here results in a variety of all-PS devices, with or without electrodes and tubing. To characterize the devices, micrographs of etched channels (straight and intersected channels) were taken using confocal and scanning electron microscopy. Microchip-based electrophoresis with repetitive injections of fluorescein was conducted using a three-sided PS (etched pinched, twin-tee channel) and one-sided PDMS device. Microchip-based flow injection analysis, with dopamine and NO as analytes, was used to characterize the performance of all-PS devices with embedded tubing and electrodes. Limits of detection for dopamine and NO were 130 nM and 1.8 μM, respectively. Cell immobilization studies were also conducted to assess all-PS devices for cellular analysis. This paper demonstrates that these easy to fabricate devices can be attractive alternative to other PS fabrication methods for a wide variety of analytical and cell culture applications.
Collapse
Affiliation(s)
- Amber M. Pentecost
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
45
|
Johnson AS, Mehl BT, Martin RS. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:884-893. [PMID: 25663849 PMCID: PMC4318258 DOI: 10.1039/c4ay02569e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells.
Collapse
Affiliation(s)
- Alicia S Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Benjamin T Mehl
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
46
|
Goodrich PJ, Sharifi F, Hashemi N. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers. RSC Adv 2015. [DOI: 10.1039/c5ra15154f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microfluidic technology has provided innovative solutions to numerous problems, but the cost of fabricating microfluidic channels is impeding its expansion. We created multilayer microchannels significantly quicker and cheaper than current methods.
Collapse
Affiliation(s)
| | - Farrokh Sharifi
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
| | - Nastaran Hashemi
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
- Ames National Laboratory
| |
Collapse
|
47
|
Wu W, Trinh KTL, Lee NY. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold. Analyst 2015; 140:1416-20. [DOI: 10.1039/c4an01675k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seamless 3D helical silicone tube microreactors were fabricated for performing flow-through PCR employing a single hot plate and a portable micropump.
Collapse
Affiliation(s)
- Wenming Wu
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| | | | - Nae Yoon Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
- Gachon Medical Research Institute
| |
Collapse
|
48
|
A Rapid and Low-Cost Nonlithographic Method to Fabricate Biomedical Microdevices for Blood Flow Analysis. MICROMACHINES 2014. [DOI: 10.3390/mi6010121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Focaroli S, Mazzitelli S, Falconi M, Luca G, Nastruzzi C. Preparation and validation of low cost microfluidic chips using a shrinking approach. LAB ON A CHIP 2014; 14:4007-16. [PMID: 25144915 DOI: 10.1039/c4lc00679h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present paper describes the production of microfluidic chips using an approach based on shrinkable biocompatible polymers (i.e. agarose) for the production of size controlled microfluidic channels. In addition, all steps of chip production were carried out using an inexpensive approach that uses low cost chemicals and equipment. The produced chips were then validated by producing monodisperse polymeric microparticles for drug delivery and hydrogel microfibers for cell embedding.
Collapse
Affiliation(s)
- S Focaroli
- DIBINEM-Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
50
|
Lin S, Lee EK, Nguyen N, Khine M. Thermally-induced miniaturization for micro- and nanofabrication: progress and updates. LAB ON A CHIP 2014; 14:3475-88. [PMID: 25075652 PMCID: PMC9061274 DOI: 10.1039/c4lc00528g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The field of micro- and nanofabrication has developed extensively in the past several decades with rising interest in alternative fabrication techniques. Growth of these areas has been driven by needs that remain unaddressed by traditional lithographical methods: inexpensive, upscalable, biocompatible, and easily integrated into complete lab-on-a-chip (LOC) systems. Shape memory polymers (SMPs) have been explored as an alternative substrate. This review first focuses on structure fabrication at the micron and nanoscale using specifically heat-shrinkable SMPs and highlights the innovative improvements to this technology in the past several years. The second part of the review illustrates demonstrated applications of these micro- and nanostructures fabricated from heat-shrinkable SMP films. The review concludes with a discussion about future prospects of heat-shrinkable SMP structures for integration into LOC systems.
Collapse
Affiliation(s)
- Sophia Lin
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA 92627, USA
| | | | | | | |
Collapse
|