1
|
Saarinen S, Khan R, Patrian M, Fuenzalida‐Werner JP, Costa RD, Zimcik P, Novakova V, Ruoko T, Tkachenko NV, Anaya‐Plaza E, Kostiainen MA. Elucidating the Supramolecular Interaction of Positively Supercharged Fluorescent Protein with Anionic Phthalocyanines. Adv Biol (Weinh) 2025; 9:e2400308. [PMID: 39410834 PMCID: PMC12078875 DOI: 10.1002/adbi.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Indexed: 05/16/2025]
Abstract
Developing bioinspired materials to convert sunlight into electricity efficiently is paramount for sustainable energy production. Fluorescent proteins are promising candidates as photoactive materials due to their high fluorescence quantum yield and absorption extinction coefficients in aqueous media. However, developing artificial bioinspired photosynthetic systems requires a detailed understanding of molecular interactions and energy transfer mechanisms in the required operating conditions. Here, the supramolecular self-assembly and photophysical properties of fluorescent proteins complexed with organic dyes are investigated in aqueous media. Supercharged mGreenLantern protein, mutated to have a charge of +22, is complexed together with anionic zinc phthalocyanines having 4 or 16 carboxylate groups. The structural characterization reveals a strong electrostatic interaction between the moieties, accompanied by partial conformational distortion of the protein structure, yet without compromising the mGreenLantern chromophore integrity as suggested by the lack of emission features related to the neutral form of the chromophore. The self-assembled biohybrid shows a total quenching of protein fluorescence, in favor of an energy transfer process from the protein to the phthalocyanine, as demonstrated by fluorescence lifetime and ultrafast transient absorption measurements. These results provide insight into the rich photophysics of fluorescent protein-dye complexes, anticipating their applicability as water-based photoactive materials.
Collapse
Affiliation(s)
- Sharon Saarinen
- Department of Bioproducts and BiosystemsAalto UniversityAalto00076Finland
| | - Ramsha Khan
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 8Tampere33720Finland
| | - Marta Patrian
- Technical University of MunichCampus Straubing for Biotechnology and SustainabilityChair of Biogenic Functional MaterialsSchulgasse, 2294315StraubingGermany
| | - Juan Pablo Fuenzalida‐Werner
- Technical University of MunichCampus Straubing for Biotechnology and SustainabilityChair of Biogenic Functional MaterialsSchulgasse, 2294315StraubingGermany
| | - Rubén D. Costa
- Technical University of MunichCampus Straubing for Biotechnology and SustainabilityChair of Biogenic Functional MaterialsSchulgasse, 2294315StraubingGermany
| | - Petr Zimcik
- Faculty of Pharmacy in Hradec KraloveCharles UniversityAk. Heyrovskeho 1203Hradec Kralove50003Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec KraloveCharles UniversityAk. Heyrovskeho 1203Hradec Kralove50003Czech Republic
| | - Tero‐Petri Ruoko
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 8Tampere33720Finland
| | - Nikolai V. Tkachenko
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 8Tampere33720Finland
| | | | | |
Collapse
|
2
|
Domínguez AB, Ziental D, Dlugaszewska J, Sobotta L, Torres T, Rodríguez-Morgade MS. Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes. Eur J Med Chem 2025; 285:117214. [PMID: 39788060 DOI: 10.1016/j.ejmech.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches. Under low light regimes, the two hydrophilic PS1a and PS2a, as well as the amphiphilic PS3a show much stronger response against Gram-positive MRSA than that observed for the typical phthalocyanines designed for PDI, namely zinc(II) and palladium(II) complexes, as well as free-base Pcs. Besides, PS1a, PS2a and PS3a show remarkably high activity against the Gram-negative E. coli, although weak fungicidal character against fluconazole-resistant C. albicans. Contrasting, the structurally different, amphiphilic PS4a shows only slight activity for Gram-positive bacteria, despite its ability to cross cell membrane and reach internal organelles. Still, PS4a shows a positive synergistic effect against MRSA when combined with doxycycline, exhibiting an increased activity from about 1.5 to about 4.9 log reduction under the light dose of 30 J/cm2 and the 0.125 mg/L subinhibitory dose of doxycycline.
Collapse
Affiliation(s)
- Ana Belén Domínguez
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; IMDEA-Nanociencia, c/Faraday 9, Cantoblanco, 28049, Madrid, Spain.
| | - M Salomé Rodríguez-Morgade
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Kroitor AP, Martynov AG, Gorbunova YG, Tsivadze AY, Sorokin AB. Non-aggregated ruthenium naphthalocyanine enabling homogeneous carbene insertion into N-H bonds at low catalyst loading. Dalton Trans 2025; 54:4018-4024. [PMID: 39937538 DOI: 10.1039/d4dt03263b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The novel ruthenium octa-n-butoxy-naphthalocyanine complex was shown to retain an essentially monomeric state in dilute solutions. It was successfully applied as a homogeneous catalyst for carbene insertion into N-H bonds of amines with various substitution patterns, providing high yields of glycine derivatives.
Collapse
Affiliation(s)
- Andrey P Kroitor
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon IRCELYON, UMR 5256, CNRS - Université Lyon 1, 2 av. A. Einstein, 69626 Villeurbanne, France.
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, 31-4 Leninsky prospect, 119071, Moscow, Russia.
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, 31-4 Leninsky prospect, 119071, Moscow, Russia.
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, 31-4 Leninsky prospect, 119071, Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences, 31 Lenisky prospect, 119991 Moscow, Russia.
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, 31-4 Leninsky prospect, 119071, Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences, 31 Lenisky prospect, 119991 Moscow, Russia.
| | - Alexander B Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon IRCELYON, UMR 5256, CNRS - Université Lyon 1, 2 av. A. Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
4
|
Patino-Alonso J, Cabrera-González J, Merino J, Nieto-Ortiz G, Lasala F, Katati J, da Cruz CHB, Monnappa AK, Mateos-Gil P, Canales Á, López-Montero I, Illescas BM, Delgado R, Martín N. C 60-based Multivalent Glycoporphyrins Inhibit SARS-CoV-2 Specific Interaction with the DC-SIGN Transmembrane Receptor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307045. [PMID: 38100142 DOI: 10.1002/smll.202307045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 05/12/2024]
Abstract
Since WHO has declared the COVID-19 outbreak a global pandemic, nearly seven million deaths have been reported. This efficient spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is facilitated by the ability of the spike glycoprotein to bind multiple cell membrane receptors. Although ACE2 is identified as the main receptor for SARS-CoV-2, other receptors could play a role in viral entry. Among others, C-type lectins such as DC-SIGN are identified as efficient trans-receptor for SARS-CoV-2 infection, so the use of glycomimetics to inhibit the infection through the DC-SIGN blockade is an encouraging approach. In this regard, multivalent nanostructures based on glycosylated [60]fullerenes linked to a central porphyrin scaffold have been designed and tested against DC-SIGN-mediated SARS-CoV-2 infection. First results show an outstanding inhibition of the trans-infection up to 90%. In addition, a deeper understanding of nanostructure-receptor binding is achieved through microscopy techniques, high-resolution NMR experiments, Quartz Crystal Microbalance experiments, and molecular dynamic simulations.
Collapse
Affiliation(s)
- Jennifer Patino-Alonso
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
| | - Justo Cabrera-González
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Madrid, E-28040, Spain
| | - Javier Merino
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
| | - Gema Nieto-Ortiz
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
| | - Fátima Lasala
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Jouma Katati
- Departamento de Química Física, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
| | - Carlos H Bezerra da Cruz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
| | - Ajay K Monnappa
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Pablo Mateos-Gil
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Departamento de Química Física, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
- Instituto Pluridisciplinar, Paseo Juan XXIII, 1, Madrid, 28040, Spain
| | - Ángeles Canales
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Departamento de Química Física, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
- Instituto Pluridisciplinar, Paseo Juan XXIII, 1, Madrid, 28040, Spain
| | - Beatriz M Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
| | - Rafael Delgado
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, E-28040, Spain
- Instituto de Salud Carlos III, CIBERINFEC, Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid, E-28040, Spain
- Campus de Cantoblanco, IMDEA-Nanoscience, C/ Faraday 9, Madrid, 28049, Spain
| |
Collapse
|
5
|
McKearney D, MacDonald K, Kim MS, Williams VE, Leznoff DB. Tuning the visible colour of octahedral manganese(III) phthalocyanines via axial ligand exchange. Dalton Trans 2024; 53:938-948. [PMID: 38108471 DOI: 10.1039/d3dt03518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A series of [PcMnL2]SbF6 complexes (Pc = phthalocyanine) was synthesized and structurally characterized by stripping the chloride from PcMnCl with AgSbF6 in o-dichlorobenzene and adding a range of donor ligands (L = THF, pyridine, p-dimethylaminopyridine (DMAP), Ph3PO, N-methylimidazole (MeIm), MeCN) to the resulting solution. Addition of or exposure to water where L = heterocyclic amines yielded μ-oxo complexes of the form [PcMnL]2O, which were structurally characterized for L = DMAP and MeIm. The [PcMnL2]SbF6 complexes have an increased solubility in organic solvents, where the axial ligands inhibit the characteristic ring π-π aggregation of PcM complexes. A variety of colours were observed (blue/green to red/purple), with Q-band absorptions (excluding the μ-oxo species) spanning from 715-761 nm and LMCT-bands from 497-574 nm. The combination of the ligand-induced absorption shifts coupled with their relative intensities in the visible region is responsible for the observed colour range and illustrates that facile ligand exchange is a useful tool in producing materials with a variety of colours from PcMnCl.
Collapse
Affiliation(s)
- Declan McKearney
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Kyle MacDonald
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Min Suk Kim
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Vance E Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
6
|
Gamelas SRD, Tomé JPC, Tomé AC, Lourenço LMO. Advances in photocatalytic degradation of organic pollutants in wastewaters: harnessing the power of phthalocyanines and phthalocyanine-containing materials. RSC Adv 2023; 13:33957-33993. [PMID: 38019980 PMCID: PMC10658578 DOI: 10.1039/d3ra06598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Access to clean water is increasingly challenging worldwide due to human activities and climate change. Wastewater treatment and utilization offer a promising solution by reducing the reliance on pure underground water. However, it is crucial to develop efficient and sustainable methods for wastewater purification. Among the emerging wastewater treatment strategies, photocatalysis has gained significant attention for decomposing organic pollutants in water, especially when combined with sunlight and a recoverable photocatalyst. Heterogeneous photocatalysts have distinct advantages, as they can be recovered and reused without significant loss of activity over multiple cycles. Phthalocyanine dyes, with their exceptional photophysical properties, are particularly valuable for homogeneous and heterogeneous photocatalysis. By immobilizing these photosensitizers in various supports, hybrid materials extend their light absorption into the visible spectrum, complementing most supports' limited UV light absorption. The novelty and research importance of this review stems from its discussion of the multifaceted approach to treating contaminated wastewater with phthalocyanines and materials containing phthalocyanines. It highlights key aspects of each study, including photocatalytic efficiency, recyclability characteristics, investigation of the generation of oxygen species responsible for degradation, identification of the major degradation byproducts for each pollutant, and others. Moreover, the review includes tables that illustrate and compare the various phthalocyanines and supporting materials employed in each study for pollutant degradation. Additionally, almost all photocatalysts mentioned in this review could degrade at least 5% of the pollutant, and more than 50 photocatalysts showed photocatalytic rates above 50%. When immobilized in some support, the synergistic effect of the phthalocyanine was visible in the photocatalytic rate of the studied pollutant. However, when performing these types of works, it is necessary to understand the degradation products of each pollutant and their relative toxicities. Along with this, recyclability and stability studies are also necessary. Despite the good results presented in this review, some of the works lack those studies. Moreover, none of the works mentions any study in wastewater.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - João P C Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisboa Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
7
|
Baygu Y, Kabay N, Kabay B, Yıldız B, Ömeroğlu İ, Durmuş M, Rıza Karagür E, Akça H, Ergin Ç, Gök Y. Synthesis, characterization and investigation of photochemical and in vitro antiproliferative properties of novel Zn(II) phthalocyanine. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Rao Y, Xu L, Zhou M, Yin B, Osuka A, Song J. Expanded Azaporphyrins Consisting of Multiple BODIPY Units: Global Aromaticity and High Affinities Towards Alkali Metal Ions. Angew Chem Int Ed Engl 2022; 61:e202206899. [DOI: 10.1002/anie.202206899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| |
Collapse
|
9
|
Bichan N, Ovchenkova E, Mozgova V, Kudryakova N, Lomova T. Donor-acceptor dyads based on octakis – Substituted cobalt(II) phthalocyanine and different fullero[60]/[70]pyrrolidines. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Rao Y, Xu L, Zhou M, Yin B, Osuka A, Song J. Expanded Azaporphyrins Consisting of Multiple BODIPY Units: Global Aromaticity and High Affinities Towards Alkali Metal Ions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yutao Rao
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Ling Xu
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Mingbo Zhou
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Bangshao Yin
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Atsuhiro Osuka
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Jianxin Song
- Hunan Normal University Chemistry Yue Lu Qu Lushan Road 36 410081 Changsha CHINA
| |
Collapse
|
11
|
Ogura Y, Nakano M, Maeda H, Segi M, Furuyama T. Cationic Axial Ligand Effects on Sulfur-Substituted Subphthalocyanines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092766. [PMID: 35566117 PMCID: PMC9105831 DOI: 10.3390/molecules27092766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Herein, we report the synthesis of sulfur-substituted boron(III) subphthalocyanines (SubPcs) with cationic axial ligands. Subphthalocyanines were synthesized by a condensation reaction using the corresponding phthalonitriles and boron trichloride as a template. An aminoalkyl group was introduced on the central boron atom; this process was followed by N-methylation to introduce a cationic axial ligand. The peripheral sulfur groups shifted the Q band of SubPcs to a longer wavelength. The cationic axial ligands increased the polarity and enhanced the hydrophilicity of SubPcs. The effect of axial ligands on absorption and fluorescence properties is generally small. However, a further red shift was observed by introducing cationic axial ligands into the sulfur-substituted SubPcs. This change is similar to that in sulfur-substituted silicon(IV) phthalocyanines. The unique effect of the cationic axial ligand was extensively investigated by theoretical calculations and electrochemistry. In particular, the precise oxidation potential was determined using ionization potential measurements. Thus, the results of the present study provide a novel strategy for developing functional dyes and pigments based on SubPcs.
Collapse
Affiliation(s)
- Yusaku Ogura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Masahiro Nakano
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Correspondence:
| |
Collapse
|
12
|
Botnar AA, Znoiko SA, Domareva NP, Kazaryan KY, Tikhomirova TV, Gornukhina OV, Koshel SG, Vashurin AS. Synthesis and Luminescent Properties of Magnesium Complexes with Phenoxy-Substituted Phthalocyanine Ligands. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Katsurayama Y, Ikabata Y, Maeda H, Segi M, Nakai H, Furuyama T. Direct Near Infrared Light-Activatable Phthalocyanine Catalysts. Chemistry 2021; 28:e202103223. [PMID: 34734432 DOI: 10.1002/chem.202103223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The high penetration of near-infrared (NIR) light makes it effective for use in selective reactions under light-shielded conditions, such as in sealed reactors and deep tissues. Herein, we report the development of phthalocyanine catalysts directly activated by NIR light to transform small organic molecules. The desired photocatalytic properties were achieved in the phthalocyanines by introducing the appropriate peripheral substituents and central metal. These phthalocyanine photocatalysts promote cross-dehydrogenative-coupling (CDC) under irradiation with 810 nm NIR light. The choice of solvent is important, and a mixture of a reaction-accelerating (pyridine) and -decelerating (methanol) solvents was particularly effective. Moreover, we demonstrate photoreactions under visible-light-shielded conditions through the transmission of NIR light. A combined experimental and computational mechanistic analysis revealed that this NIR reaction does not involve a photoredox-type mechanism with electron transfer, but instead a singlet-oxygen-mediated mechanism with energy transfer.
Collapse
Affiliation(s)
- Yoshino Katsurayama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Information and Media Center, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Chemistry and Biochemistry School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura, Kyoto, 615-8520, Japan
| | - Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
15
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
16
|
Osadchuk I, Aav R, Borovkov V, Clot E. Chirogenesis in Zinc Porphyrins: Theoretical Evaluation of Electronic Transitions, Controlling Structural Factors and Axial Ligation. Chemphyschem 2021; 22:1817-1833. [PMID: 34213815 PMCID: PMC8457158 DOI: 10.1002/cphc.202100345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/24/2021] [Indexed: 12/15/2022]
Abstract
In the present work, sixteen different zinc porphyrins (possessing different meso substituents) with and without a chiral guest were modelled using DFT and TD-DFT approaches in order to understand the influence of various controlling factors on electronic circular dichroism (ECD) spectra. Two major aspects are influenced by these factors: excitation energy of the electronic transitions and their intensity. In the case of excitation energy, the influence increases in the following order: orientation of the peripheral substituents
Collapse
Affiliation(s)
- Irina Osadchuk
- Department of Chemistry and BiotechnologySchool of ScienceTallinn University of Technology AddressAkadeemia tee 1512618TallinnEstonia
- ICGMUniv MontpellierCNRS, ENSCMMontpellierFrance
| | - Riina Aav
- Department of Chemistry and BiotechnologySchool of ScienceTallinn University of Technology AddressAkadeemia tee 1512618TallinnEstonia
| | - Victor Borovkov
- Department of Chemistry and BiotechnologySchool of ScienceTallinn University of Technology AddressAkadeemia tee 1512618TallinnEstonia
| | - Eric Clot
- ICGMUniv MontpellierCNRS, ENSCMMontpellierFrance
| |
Collapse
|
17
|
Zeng Y, Li Y, Tan X, Gong J, Wang Z, An Y, Wang Z, Li H. B,N-Doped PdRu Aerogels as High-Performance Peroxidase Mimics for Sensitive Detection of Glucose. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36816-36823. [PMID: 34319065 DOI: 10.1021/acsami.1c07987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among plentiful porous nanomaterials, noble metal aerogels taken as nanozymes attract broad attention in sensing applications with their distinct enzyme mimic functions. In the catalytic field, the heteroatom doping strategy is a kind of way with great promise in improving the enzyme mimic activity of noble metal aerogels. In this experiment, we find a type of creative materials that were prepared by the fast and simple method. Due to the unique porous structure and synergetic effect from doped atoms, PdRu aerogels co-doped with boron and nitrogen (B, N-PdRu aerogels) were prepared using NH3BH3 as a reductant, which present improved peroxidase mimicking activity. With the existence of H2O2, the oxidation of 3,3',5,5'-tetramethylbenzidine was catalyzed by B, N-PdRu aerogels fairly efficiently, whose solution would be a blue appearance at optimum absorption wavelength 652 nm. Thus, by the tandem reaction bound to the enzyme glucose oxidase, the B, N-PdRu aerogels can be used for the sensitive determination of glucose. The new method has a good linear detection effect for glucose in the range of 10 μM to 2 mM. The minimum limit of detection can reach as low as 6 μM. This work will contribute to research on the rational design of metal aerogels based on the heteroatomic doping strategy and enhance the corresponding performance for a variety of applications.
Collapse
Affiliation(s)
- Yuting Zeng
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yan Li
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Xiaofeng Tan
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Jindi Gong
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Ziyu Wang
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yuhao An
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Zhenqiang Wang
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - He Li
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| |
Collapse
|
18
|
Synthesis and properties of tetrasubstituted phthalocyanines containing cyclohexylphenoxy-groups on the periphery. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Medina DP, Fernández-Ariza J, Urbani M, Sauvage F, Torres T, Rodríguez-Morgade MS. Tuning the Acceptor Unit of Push-Pull Porphyrazines for Dye-Sensitized Solar Cells. Molecules 2021; 26:molecules26082129. [PMID: 33917225 PMCID: PMC8068076 DOI: 10.3390/molecules26082129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
A family of four push–pull porphyrazines of A3B type, where each unit A contains two peripheral propyl chains and the unit B is endowed with a carboxylic acid, were prepared. The carboxylic acid was attached to the β-position of the pyrrolic unit, either directly (Pz 10), or through cyanovinyl (Pz 11) and phenyl (Pz 7) groups. The fourth Pz (14) consisted in a pyrazinoporphyrazine wherein the dinitrogenated heterocycle provided intrinsic donor–acceptor character to the macrocycle and contained a carboxyphenyl substituent. The direct attachment of the carboxylic acid functions and their linkers to the porphyrazine core produces stronger perturbation on the electronic properties of the macrocycle, with respect to their connection through fused benzene or pyrazine rings in TT112 and 14, respectively. The HOMO and LUMO energies of the Pzs, which were estimated with DFT calculations, show little variation within the series, except upon introduction of the cyanovinyl spacer, which produces a decrease in both frontier orbital energetic levels. This effective interaction of cyanovinyl substitution with the macrocycle is also evidenced in UV/Vis spectroscopy, where a large splitting of the Q-band indicates strong desymmetrization of the Pz. The performance of the four Pzs as photosensitizers in DSSCs were also investigated.
Collapse
Affiliation(s)
- Diana-Paola Medina
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (D.-P.M.); (J.F.-A.)
| | - Javier Fernández-Ariza
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (D.-P.M.); (J.F.-A.)
| | - Maxence Urbani
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, c/ Faraday, 9, Cantoblanco, 28049 Madrid, Spain;
| | - Frédéric Sauvage
- Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR7314, Hub de L’énergie, 15 rue Baudelocque, 80039 Amiens, France;
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (D.-P.M.); (J.F.-A.)
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, c/ Faraday, 9, Cantoblanco, 28049 Madrid, Spain;
- Correspondence: (T.T.); (M.S.R.-M.)
| | - M. Salomé Rodríguez-Morgade
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (D.-P.M.); (J.F.-A.)
- Correspondence: (T.T.); (M.S.R.-M.)
| |
Collapse
|
20
|
Openda YI, Nyokong T. Enhanced photo-ablation effect of positively charged phthalocyanines-detonation nanodiamonds nanoplatforms for the suppression of Staphylococcus aureus and Escherichia coli planktonic cells and biofilms. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Murata K, Koike Y, Ishii K. Novel method for preparing stable near-infrared absorbers: a new phthalocyanine family based on rhenium(i) complexes. Chem Commun (Camb) 2020; 56:13760-13763. [PMID: 33030184 DOI: 10.1039/d0cc04625f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rational design of near-infrared (NIR) absorbing molecules is crucial for developing photofunctional materials. Here, we synthesized dinuclear and mononuclear Re(i) tricarbonyl phthalocyanine complexes that exhibit a sharp intense Q band in the NIR region. The unsymmetric coordination of electron-deficient metal unit(s) concomitantly produced a remarkable red shift of the Q band and improved the tolerance of the phthalocyanine ring to oxidation. This study presents a simple and effective strategy for the construction of NIR absorbers with high stability.
Collapse
Affiliation(s)
- Kei Murata
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | |
Collapse
|
22
|
Openda YI, Matshitse R, Nyokong T. A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine-detonation nanodiamond-Ag nanoconjugates. Photochem Photobiol Sci 2020; 19:1442-1454. [PMID: 33000851 DOI: 10.1039/d0pp00075b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed viaπ-π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan-silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained. The photodynamic antimicrobial chemotherapy (PACT) activity of both phthalocyanines and nanoconjugates was tested against planktonic cells and biofilms of S. aureus. 2@DNDs-CSAg and 3@DNDs-CSAg caused effective killing with a log reduction of 9.74. In addition, PACT studies on single-species S. aureus biofilms were carried out with log reduction values of 5.12 and 5.27 at 200 μg mL-1 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa.
| | | | | |
Collapse
|
23
|
Lopes JMS, Reis JRT, Machado AEH, Leite THO, Batista AA, Acunha TV, Iglesias BA, Araujo PT, Barbosa Neto NM. Influence of the meso-substituents on the spectral features of free-base porphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118389. [PMID: 32417643 DOI: 10.1016/j.saa.2020.118389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The role of meso-substituents on the spectral features of free-base porphyrins is explored. Meso-tetra(4-pyridyl)porphyrin is compared with meso-tetra(2-thienyl)porphyrin and meso-tetra(pentafluorophenyl)porphyrin. Our results indicate that some of the asymmetric Q-bands in the free-base porphyrin tend to become symmetric relative to the adopted meso-substituent. The results show that the outlying perturbations lead the free-base quasi-degenerated Qx1, Qx2, Qy1, and Qy2 bands to be closer in energy. Combined, absorption, fluorescence and Raman spectroscopies endorse our conclusions showing that both the frequencies and the Huang-Rhys factors associated with every vibronic progression are noticeably affected by the investigated meso-substituents. Our results confirm that the B-band is also multi-featured in agreement with what is found for the Q-bands.
Collapse
Affiliation(s)
- J M S Lopes
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| | - J R T Reis
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil
| | - A E H Machado
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil; Federal University of Catalão, Av. Lamartine Pinto de Avelar, 1120, CEP 75704-020, Catalão, GO, Brazil
| | - T H O Leite
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - T V Acunha
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - B A Iglesias
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - P T Araujo
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil; Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States.
| | - N M Barbosa Neto
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
24
|
Çapkın A, Pişkin M, Durmuş M, Bulut M. Spectroscopic, photophysical and photochemical properties of newly metallo-phthalocyanines containing coumarin derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 29:101607. [DOI: 10.1016/j.pdpdt.2019.101607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/18/2022]
|
26
|
Fingerprint characterization of M-EDTA complexes and iron compounds using terahertz time-domain spectroscopy. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Medina DP, Papadopoulos I, Lavarda G, Gotfredsen H, Rami PR, Tykwinski RR, Rodríguez-Morgade MS, Guldi DM, Torres T. Light-harvesting porphyrazines to enable intramolecular singlet fission. NANOSCALE 2019; 11:22286-22292. [PMID: 31730142 DOI: 10.1039/c9nr08161e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A porphyrazine featuring complementary absorption to a pentacene dimer was chosen to fill the absorption gap of the latter in the range of 450 to 600 nm to realize panchromatic absorption through the visible region out to ca. 700 nm. Of even greater relevance is the quantitative intramolecular Förster resonance energy transfer (i-FRET) to funnel energy to the pentacene moieties, where efficient intramolecular singlet fission (i-SF) converts the singlet excited state into the corresponding triplet excited states. Remarkably, the triplet quantum yield either via direct excitation or via indirect i-FRET is up to 200% ± 20% in polar solvents.
Collapse
Affiliation(s)
- Diana-Paola Medina
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ömeroğlu İ, Şenocak A, Yetkin H, Güney HY, Demirbaş E, Durmuş M. BODIPY substituted zinc(II) phthalocyanine and its bulk heterojunction application in solar cells. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619501360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel asymmetrical zinc(II) phthalocyanine-BODIPY conjugate (ZnPc-BODIPY) bearing three iodine groups directly substituted to the macrocycle and one BODIPY connected to the macrocycle with an amide bond was synthesized by the reaction of carboxylic-acid-substituted asymmetrical zinc(II) phthalocyanine (ZnPc) with the BODIPY-derivative-bearing amino group (BODIPY-NH2). This conjugate was fully characterized by spectroscopic methods (FT-IR, UV-vis, 1H NMR, 11B NMR, 19F NMR and mass) and elemental analysis. The fluorescence behavior of ZnPc-BODIPY was studied to determine the energy transfer process. Voltammetry measurements (CV and SWV) were performed to specify the HOMO–LUMO energy levels and band gaps of ZnPc-BODIPY and starting compounds (ZnPc and BODIPY-NH2) for comparison. In addition, the band gaps of these compounds were also determined by UV-vis absorption onset (λonset) and theoretical calculations. Bulk heterojunction solar cells containing ZnPc-BODIPY were fabricated in the structure of ITO/PEDOT:PSS/ZnPc-BODIPY:PCBM/Al. The photovoltaic parameters of the solar cell were obtained and the ZnPc-BODIPY conjugate was found to bring spectral contribution to IPCE at a peak of 510 nm.
Collapse
Affiliation(s)
- İpek Ömeroğlu
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
| | - Ahmet Şenocak
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
| | - Hazel Yetkin
- Kocaeli University, Department of Physics, Izmit, 41380, Kocaeli, Turkey
| | - H. Yüksel Güney
- Kocaeli University, Department of Physics, Izmit, 41380, Kocaeli, Turkey
| | - Erhan Demirbaş
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
| |
Collapse
|
29
|
Ferreira JT, Pina J, Ribeiro CAF, Fernandes R, Tomé JPC, Rodríguez-Morgade MS, Torres T. Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry 2019; 26:1789-1799. [PMID: 31605633 DOI: 10.1002/chem.201903546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/10/2019] [Indexed: 12/24/2022]
Abstract
The synthesis of ruthenium(II) phthalocyanines (RuPcs) endowed with one carbohydrate unit-that is, glucose, galactose and mannose-and a dimethylsulfoxide (DMSO) ligand at the two axial coordination sites, respectively, is described. Two series of compounds, one unsubstituted at the periphery, and the other one bearing eight PEG chains at the isoindole meta-positions, have been prepared. The presence of the axial DMSO unit significantly increases the phthalocyanine singlet oxygen quantum yields, related to other comparable RuPcs. The compounds have been evaluated for PDT treatment in bladder cancer cells. In vitro studies have revealed high phototoxicity for RuPcs unsubstituted at their periphery. The phototoxicity of PEG-substituted RuPcs has been considerably improved by repeated light irradiation. The choice of the axial carbohydrate introduced little differences in the cellular uptake for both series of photosensitizers, but the phototoxic effects were considerably higher for compounds bearing mannose units.
Collapse
Affiliation(s)
- Joana T Ferreira
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - João Pina
- CQC, Department of Chemistry, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Carlos A F Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.iCBR Consortium, University of Coimbra, 3004-548, Coimbra, Portugal
| | - João P C Tomé
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.,CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Salomé Rodríguez-Morgade
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.,Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, C/ Faraday, 9, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
30
|
Furuyama T, Maeda K, Maeda H, Segi M. Chemoselective Synthesis of Aryloxy-Substituted Phthalocyanines. J Org Chem 2019; 84:14306-14312. [PMID: 31599149 DOI: 10.1021/acs.joc.9b02126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The synthesis of the first examples of 8-fold α-aryloxy-substituted phthalocyanines is described. 3,6-Diiodophthalonitrile was used as a precursor for a series of 3,6-aryloxy-substituted phthalonitriles, and a lead-mediated macrocyclization was employed to afford the corresponding free-base phthalocyanine complexes. The optical, electrochemical, and aggregation properties of these complexes can be tuned by varying the substituents on the aryloxy groups or by changing the pH value.
Collapse
Affiliation(s)
- Taniyuki Furuyama
- Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan.,Japan Science and Technology Agency (JST)-PRESTO , 4-1-8 Honcho , Kawaguchi, Saitama 332-0012 , Japan
| | - Kazuya Maeda
- Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| |
Collapse
|
31
|
Yüzer A, Ayaz F, Ince M. Immunomodulatory activities of zinc(II)phthalocyanine on the mammalian macrophages through p38 pathway: Potential ex vivo immunomodulatory PDT reagents. Bioorg Chem 2019; 92:103249. [DOI: 10.1016/j.bioorg.2019.103249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
|
32
|
Sen P, Managa M, Nyokong T. New type of metal-free and Zinc(II), In(III), Ga(III) phthalocyanines carrying biologically active substituents: Synthesis and photophysicochemical properties and photodynamic therapy activity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Chen R, Yang C, Zhang Q, Zhang B, Deng K. Visible-light-driven selective oxidation of glucose in water with H-ZSM-5 zeolite supported biomimetic photocatalyst. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Önal E, Fidan I, Luneau D, Hirel C. Through the challenging synthesis of tetraphenylporphyrin derivatives bearing nitroxide moieties. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tetraphenylporphyrin derivatives a synthetic heterocycles with convenient preparation and a richness of properties which make them attractive in broad fields such as energy, life and materials sciences. Thus, in the quest for new radical architectures, tetraphenylporphyrins are prime candidates. To this end, we designed free-base tetraphenylporphyrins bearing nitronyl and imino nitroxide moieties covalently bonded to the para-position of the meso-phenyl substituent. Their detailed synthesis and characterization are reported here.
Collapse
Affiliation(s)
- Emel Önal
- Gebze Technical University, Chemistry Department, 41400 Gebze Kocaeli, Turkey
- Doğuş University, Industrial Engineering Department, Acibadem, 34722 Istanbul, Turkey
| | - Ismail Fidan
- Gebze Technical University, Chemistry Department, 41400 Gebze Kocaeli, Turkey
| | - Dominique Luneau
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Catherine Hirel
- Gebze Technical University, Chemistry Department, 41400 Gebze Kocaeli, Turkey
- Sabancı University SUNUM Nanotechnology Research Centre, TR-34956 Istanbul, Turkey
| |
Collapse
|
35
|
Tikhomirova T, Nalimova K, Kerner A, Vashurin A, Znoyko S. Er(III) and Lu(III) complexes of 2(3),9(10),16(17),23(24)-tetrakis- and 2,3,9,10,16,17,23,24-octakis-[4-(1-methyl-1-phenylethyl)phenoxy]phthalocyaninato. Synthesis and spectroscopic properties. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
4-[4-(1-Methyl-1-penylethyl)phenoxy]- and 4,5-di-[4-(1-methyl-1-phenylethyl)phenoxy]phthalonitriles are obtained by nucleophilic substitution. Mono- and double-decker lutetium and erbium complexes of 2(3),9(10),16(17),23(24)-tetrakis- and 2,3,9,10,16,17,23,24-octakis-[4-(1-methyl-1-phenylethyl)phenoxy]phthalocyanines are synthesized based on the phthalonitriles. Synthesized complexes are studied spectrophotometrically.
Collapse
Affiliation(s)
- Tatyana Tikhomirova
- Department of Technology of Fine Organic Synthesis, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Kseniya Nalimova
- Department of Technology of Fine Organic Synthesis, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Anastasiya Kerner
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Artur Vashurin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
- Research Institute of Macroheterocycles of Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Serafima Znoyko
- Research Institute of Macroheterocycles of Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| |
Collapse
|
36
|
Martynov AG, Safonova EA, Tsivadze AY, Gorbunova YG. Functional molecular switches involving tetrapyrrolic macrocycles. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Martynov AG, Mack J, May AK, Nyokong T, Gorbunova YG, Tsivadze AY. Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV-Vis-NIR Spectra of Phthalocyanines. ACS OMEGA 2019; 4:7265-7284. [PMID: 31459828 PMCID: PMC6648833 DOI: 10.1021/acsomega.8b03500] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 05/14/2023]
Abstract
A methodological survey of density functional theory (DFT) methods for the prediction of UV-visible (vis)-near-infrared (NIR) spectra of phthalocyanines is reported. Four methods, namely, full time-dependent (TD)-DFT and its Tamm-Dancoff approximation (TDA), together with their simplified modifications (sTD-DFT and sTDA, respectively), were tested by using the examples of unsubstituted and alkoxy-substituted metal-free ligands and zinc complexes. The theoretical results were compared with experimental data derived from UV-visible absorption and magnetic circular dichroism spectroscopy. Seven popular exchange-correlation functionals (BP86, B3LYP, TPSSh, M06, CAM-B3LYP, LC-BLYP, and ωB97X) were tested within these four approaches starting at a relatively modest level using 6-31G(d) basis sets and gas-phase BP86/def2-SVP optimized geometries. A gradual augmentation of the computational levels was used to identify the influence of starting geometry, solvation effects, and basis sets on the results of TD-DFT and sTD-DFT calculations. It was found that although these factors do influence the predicted energies of the vertical excitations, they do not affect the trends predicted in the spectral properties across series of structurally related substituted free bases and metallophthalocyanines. The best accuracy for the gas-phase vertical excitations was observed in the lower-energy Q-band region for calculations that made use of range-separated hybrids for both full and simplified TD-DFT approaches. The CAM-B3LYP functional provided particularly accurate results in the context of the sTD-DFT approach. The description of the higher-energy B-band region is considerably less accurate, and this demonstrates the need for further advances in the accuracy of theoretical calculations. Together with a general increase in accuracy, the application of simplified TD-DFT methods affords a 2-3 orders of magnitude speedup of the calculations in comparison to the full TD-DFT approach. It is anticipated that this approach will be widely used on desktop computers during the interpretation of UV-vis-NIR spectra of phthalocyanines and related macrocycles in the years ahead.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- E-mail: (A.G.M.)
| | - John Mack
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- E-mail: (J.M.)
| | - Aviwe K. May
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Yulia G. Gorbunova
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia
| | - Aslan Yu Tsivadze
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia
| |
Collapse
|
38
|
Kuznetsova AS, Pechnikova NL, Zhabanov YA, Khochenkov AE, Koifman OI, Aleksandriiskii VV, Islyaikin MK. Microwave-assisted synthesis and sublimation enthalpies of hemiporphyrazines. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It was established that microwave irradiation solvent-free processing of 2,6- diaminopyridine or 1,3-phenylenediamine with phthalonitrile or 4-tert-butylphthalonitrile led to corresponding hemiporphyrazines with sufficiently high yields and a huge reduction in the time required for synthesis, from 8–12 h to 20 min. The data of IR and UV-vis spectroscopies and elemental analysis of the final products were found to be similar to those described in literature. The obtained hemiporphyrazines were characterized by 1H and [Formula: see text]C NMR data. We applied the Knudsen effusion method with mass spectrometric control of vapor composition. The mass spectrometric investigations established that the macrocyclic compounds give a stable stream of particles and their enthalpies of sublimation were estimated by the second law of thermodynamics.
Collapse
Affiliation(s)
- Aleksandra S. Kuznetsova
- Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocycles, IRLoN, Sheremetevskiy Avenue, 7, Ivanovo 153000, Russia
| | - Nadezhda L. Pechnikova
- Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocycles, IRLoN, Sheremetevskiy Avenue, 7, Ivanovo 153000, Russia
| | - Yuriy A. Zhabanov
- Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocycles, IRLoN, Sheremetevskiy Avenue, 7, Ivanovo 153000, Russia
| | - Aleksey E. Khochenkov
- Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocycles, IRLoN, Sheremetevskiy Avenue, 7, Ivanovo 153000, Russia
| | - Oscar I. Koifman
- Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocycles, IRLoN, Sheremetevskiy Avenue, 7, Ivanovo 153000, Russia
| | - Victor V. Aleksandriiskii
- Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocycles, IRLoN, Sheremetevskiy Avenue, 7, Ivanovo 153000, Russia
| | - Mikhail K. Islyaikin
- Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocycles, IRLoN, Sheremetevskiy Avenue, 7, Ivanovo 153000, Russia
| |
Collapse
|
39
|
Lopes JMS, Sharma K, Sampaio RN, Batista AA, Ito AS, Machado AEH, Araújo PT, Barbosa Neto NM. Novel insights on the vibronic transitions in free base meso-tetrapyridyl porphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:274-279. [PMID: 30414576 DOI: 10.1016/j.saa.2018.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
We present novel results on the free base 5,10,15,20-meso-tetra(pyridyl)-21H,23H-porphyrin (H2TPyP). This molecule presents complex electronic and vibrational properties and despite the vast literature reporting the transitions observed in its absorption and fluorescence spectra, a more accurate interpretation has been kept elusive. In particular, we show that the molecule's Q-band develops into many electronic and vibronic transitions, whose the well-known "four orbital model" finds it difficult to reconcile. Using distinct spectroscopy techniques, we conclude that both Qx- and Qy-bands comprise, in fact, two quasi-degenerated electronic states together with their respective vibronic progressions each. The analysis of the Huang-Rhys factors and complementary time- and polarization-resolved measurements reinforce the need for the proposed Q-band multi features remodeling.
Collapse
Affiliation(s)
- J M S Lopes
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| | - K Sharma
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States; Center of Materials for Information Technology (MINT Center) University of Alabama, Tuscaloosa, AL, United States
| | - R N Sampaio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall, Chapel Hill, NC, United States
| | - A A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A S Ito
- College of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - A E H Machado
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil; Special Academic Unit of Physics, Graduate Program in Exact and Technological Sciences, Federal University of Catalão, Catalão, Goiás, Brazil
| | - P T Araújo
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil; Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States; Center of Materials for Information Technology (MINT Center) University of Alabama, Tuscaloosa, AL, United States.
| | - N M Barbosa Neto
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
40
|
Sakamaki Y, Ozdemir J, Heidrick Z, Watson O, Shahsavari HR, Fereidoonnezhad M, Khosropour AR, Beyzavi MH. Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2018.1542597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Zachary Heidrick
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Olivia Watson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hamid R. Shahsavari
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad R. Khosropour
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - M. Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
41
|
Furuyama T, Miyaji Y, Maeda K, Maeda H, Segi M. Extremely Photostable Electron-Deficient Phthalocyanines that Generate High Levels of Singlet Oxygen. Chemistry 2019; 25:1678-1682. [PMID: 30457173 DOI: 10.1002/chem.201805082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/17/2018] [Indexed: 11/06/2022]
Abstract
A robust lead-mediated synthetic procedure for the generation of phthalocyanines substituted with electron-withdrawing groups has been developed. The free-base phthalocyanine and various metal complexes were prepared without discernible degradation of the peripheral electron-withdrawing substituents. Upon irradiation with red light, some of the thus-obtained metal complexes generated high levels of singlet oxygen. In particular, a palladium complex exhibited attractive photostability upon exposure to singlet oxygen as a bleaching agent. The photostability of such complexes that may manifest concomitantly to the generation of high levels of singlet oxygen was attributed to the presence of the electron-withdrawing groups, which results in energetically low-lying highest occupied molecular orbitals.
Collapse
Affiliation(s)
- Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-, 1192, Japan
| | - Yusuke Miyaji
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-, 1192, Japan
| | - Kazuya Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-, 1192, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-, 1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-, 1192, Japan
| |
Collapse
|
42
|
Sen P, Zeki Yildiz S. Substituted manganese phthalocyanines as bleach catalysts: synthesis, characterization and the investigation of de-aggregation behavior with LiCl in solutions. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-018-3637-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Cabrera-González J, Soriano J, Conway-Kenny R, Wang J, Lu Y, Zhao J, Nogués C, Draper SM. Multinuclear Ru(ii) and Ir(iii) decorated tetraphenylporphyrins as efficient PDT agents. Biomater Sci 2019; 7:3287-3296. [DOI: 10.1039/c9bm00192a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two novel multi-metallic porphyrin complexes were synthesised and evaluated as effective PDT agents against human breast epithelial cells (SKBR-3).
Collapse
Affiliation(s)
| | - Jorge Soriano
- Departament de Biologia Cellular
- Fisiologia i Immunologia
- Universitat Autònoma de Barcelona
- E-08193-Bellaterra, Barcelona
- Spain
| | | | - Junsi Wang
- School of Chemistry
- Trinity College Dublin
- College Green
- Dublin 2
- Ireland
| | - Yue Lu
- School of Chemistry
- Trinity College Dublin
- College Green
- Dublin 2
- Ireland
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116012
- P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular
- Fisiologia i Immunologia
- Universitat Autònoma de Barcelona
- E-08193-Bellaterra, Barcelona
- Spain
| | - Sylvia M. Draper
- School of Chemistry
- Trinity College Dublin
- College Green
- Dublin 2
- Ireland
| |
Collapse
|
44
|
Tunç G, Güzel E, Şişman İ, Ahsen V, Cárdenas-Jirón G, Gürek AG. Effect of new asymmetrical Zn(ii) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. NEW J CHEM 2019. [DOI: 10.1039/c9nj02585e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical and experimental examinations of novel asymmetric Zn(ii) phthalocyanine derivatives substituted with peripherally one carboxyl and six alkylsulfanyl groups have been successfully investigated from the point of view of DSSC performance.
Collapse
Affiliation(s)
- Gülenay Tunç
- Department of Chemistry
- Gebze Technical University
- 41400 Gebze
- Turkey
| | - Emre Güzel
- Department of Chemistry
- Sakarya University
- 54050 Serdivan
- Turkey
| | - İlkay Şişman
- Department of Chemistry
- Sakarya University
- 54050 Serdivan
- Turkey
| | - Vefa Ahsen
- Department of Chemistry
- Gebze Technical University
- 41400 Gebze
- Turkey
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry
- Faculty of Chemistry and Biology
- University of Santiago de Chile (USACH)
- Santiago
- Chile
| | - Ayşe Gül Gürek
- Department of Chemistry
- Gebze Technical University
- 41400 Gebze
- Turkey
| |
Collapse
|
45
|
Furuyama T, Ishii T, Ieda N, Maeda H, Segi M, Uchiyama M, Nakagawa H. Cationic axial ligands on sulfur substituted silicon(iv) phthalocyanines: improved hydrophilicity and exceptionally red-shifted absorption into the NIR region. Chem Commun (Camb) 2019; 55:7311-7314. [DOI: 10.1039/c9cc03022k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the exceptionally red-shifted absorption of sulfur-substituted silicon(iv) phthalocyanines upon introduction of cationic axial ligands.
Collapse
Affiliation(s)
- Taniyuki Furuyama
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
- Japan Science and Technology Agency (JST)-PRESTO
| | - Takashi Ishii
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
- Cluster of Pioneering Research (CPR)
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| |
Collapse
|
46
|
Molecular assembly of PC70BM with a designed monoporphyrin: Spectroscopic investigation in solution and theoretical calculations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Ayaz F, Yuzer A, Ince M. Immunostimulatory effect of Zinc Phthalocyanine derivatives on macrophages based on the pro-inflammatory TNFα and IL1β cytokine production levels. Toxicol In Vitro 2018; 53:172-177. [DOI: 10.1016/j.tiv.2018.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 11/27/2022]
|
48
|
Seetharaman S, Follana-Berná J, Martín-Gomis L, Charalambidis G, Trapali A, Karr PA, Coutsolelos AG, Fernández-Lázaro F, Sastre-Santos Á, D'Souza F. Sequential, Ultrafast Energy Transfer and Electron Transfer in a Fused Zinc Phthalocyanine-free-base Porphyrin-C 60 Supramolecular Triad. Chemphyschem 2018; 20:163-172. [PMID: 30353624 DOI: 10.1002/cphc.201800847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/11/2022]
Abstract
A supramolecular triad composed of a fused zinc phthalocyanine-free-base porphyrin dyad (ZnPc-H2 P) coordinated to phenylimidazole functionalized C60 via metal-ligand axial coordination was assembled, as a photosynthetic antenna-reaction centre mimic. The process of self-assembly resulting into the formation of C60 Im:ZnPc-H2 P supramolecular triad was probed by proton NMR, UV-Visible and fluorescence experiments at ambient temperature. The geometry and electronic structures were deduced from DFT calculations performed at the B3LYP/6-31G(dp) level. Electrochemical studies revealed ZnPc to be a better electron donor compared to H2 P, and C60 to be the terminal electron acceptor. Fluorescence studies of the ZnPc-H2 P dyad revealed excitation energy transfer from 1 H2 P* to ZnPc within the fused dyad and was confirmed by femtosecond transient absorption studies. Similar to that reported earlier for the fused ZnPc-ZnP dyad, the energy transfer rate constant, kENT was in the order of 1012 s-1 in the ZnPc-H2 P dyad indicating an efficient process as a consequence of direct fusion of the two π-systems. In the presence of C60 Im bound to ZnPc, photoinduced electron transfer leading to H2 P-ZnPc.+ :ImC60 .- charge separated state was observed either by selective excitation of ZnPc or H2 P. The latter excitation involved an energy transfer followed by electron transfer mechanism. Nanosecond transient absorption studies revealed that the lifetime of charge separated state persists for about 120 ns indicating charge stabilization in the triad.
Collapse
Affiliation(s)
- Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Jorge Follana-Berná
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Luis Martín-Gomis
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Georgios Charalambidis
- Departement of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Adelais Trapali
- Departement of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska, 68787, USA
| | - Athanassios G Coutsolelos
- Departement of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
49
|
Ferreira JT, Pina J, Ribeiro CAF, Fernandes R, Tomé JPC, Rodríguez-Morgade MS, Torres T. Synthesis, Characterization and In Vitro Evaluation of Carbohydrate-Containing Ruthenium Phthalocyanines as Third Generation Photosensitizers for Photodynamic Therapy. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Joana T. Ferreira
- Departamento de Química Orgánica; Universidad Autónoma de Madrid (UAM); Cantoblanco 28049 Madrid Spain
- Department of Chemistry and QOPNA; University of Aveiro; 3810-193 Aveiro Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; University of Coimbra; 3000-548 Coimbra Portugal
| | - João Pina
- CQC, Department of Chemistry; University of Coimbra; Coimbra Portugal
| | - Carlos A. F. Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; University of Coimbra; 3000-548 Coimbra Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; University of Coimbra; 3000-548 Coimbra Portugal
- CNC.IBILI Consortium; University of Coimbra; 3004-548 Coimbra Portugal
| | - João P. C. Tomé
- Department of Chemistry and QOPNA; University of Aveiro; 3810-193 Aveiro Portugal
- CQE, Departamento de Engenharia Química Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - M. Salomé Rodríguez-Morgade
- Departamento de Química Orgánica; Universidad Autónoma de Madrid (UAM); Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem); Universidad Autónoma de Madrid (UAM); 28049 Madrid Spain
| | - Tomás Torres
- Departamento de Química Orgánica; Universidad Autónoma de Madrid (UAM); Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem); Universidad Autónoma de Madrid (UAM); 28049 Madrid Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia; C/ Faraday, 9 Cantoblanco 28049 Madrid Spain
| |
Collapse
|
50
|
Cheah HY, Gallon E, Dumoulin F, Hoe SZ, Japundžić-Žigon N, Glumac S, Lee HB, Anand P, Chung LY, Vicent MJ, Kiew LV. Near-Infrared Activatable Phthalocyanine–Poly-L-Glutamic Acid Conjugate: Enhanced in Vivo Safety and Antitumor Efficacy toward an Effective Photodynamic Cancer Therapy. Mol Pharm 2018; 15:2594-2605. [DOI: 10.1021/acs.molpharmaceut.8b00132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elena Gallon
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, P.O Box 141, 41400 Gebze, Kocaeli, Turkey
| | | | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | - Sofija Glumac
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | | | - Prem Anand
- Gasing Veterinary Hospital, Gasing Indah, 46000 Petaling Jaya, Selangor, Malaysia
| | | | - Maria Jesus Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain
| | | |
Collapse
|