1
|
Wu Q, van den Wildenberg SAH, Brzoskowski JCR, van den Oetelaar MCM, Verhoef CJA, Genet SAAM, Ottmann C, Markvoort AJ, Brunsveld L, Cossar PJ. Proximity-enhanced cysteine-histidine crosslinking for elucidating intrinsically disordered and other protein complexes. Chem Sci 2025; 16:3523-3535. [PMID: 39850253 PMCID: PMC11752056 DOI: 10.1039/d4sc07419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
Disordered proteins and domains are ubiquitous throughout the proteome of human cell types, yet the biomolecular sciences lack effective tool compounds and chemical strategies to study this class of proteins. In this context, we introduce a novel covalent tool compound approach that combines proximity-enhanced crosslinking with histidine trapping. Utilizing a maleimide-cyclohexenone crosslinker for efficient cysteine-histidine crosslinking, we elucidated the mechanism of this dual-reactive tool compound class. This tool compound concept was then applied to profile the full-length complex of 14-3-3 and hyperphosphorylated Tau (hpTau), relevant to Alzheimer's. This approach identified a cryptic binding interaction between 14-3-3 and hpTau via its phosphorylated Ser356, overlooked by the majority of 14-3-3/Tau literature. Utilizing a mutational study and an equilibrium model, this cryptic binding interaction is revealed to play a prominent biomolecular role at cellularly relevant concentrations. This finding necessitates a re-evaluation of the mechanism of the 14-3-3/Tau interaction. The histidine-trap crosslinker approach reported here not only advances our understanding of the 14-3-3/Tau interaction but also demonstrates the potential of dual-covalent tool compounds in studying complex interactions involving IDPs and IDDs.
Collapse
Affiliation(s)
- Qi Wu
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Sebastian A H van den Wildenberg
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Jeroen C R Brzoskowski
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Carlo J A Verhoef
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Sylvia A A M Genet
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Albert J Markvoort
- Synthetic Biology Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| |
Collapse
|
2
|
Lu H, Zhu Z, Fields L, Zhang H, Li L. Mass Spectrometry Structural Proteomics Enabled by Limited Proteolysis and Cross-Linking. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39300771 DOI: 10.1002/mas.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Wang H, Yong G, Brown SL, Lee HE, Zenaidee MA, Supuran CT, Donald WA. Supercharging protein ions in native mass spectrometry using theta capillary nanoelectrospray ionization mass spectrometry and cyclic alkylcarbonates. Anal Chim Acta 2018; 1003:1-9. [DOI: 10.1016/j.aca.2017.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
5
|
dos Santos RN, Ferrari AJR, de Jesus HCR, Gozzo FC, Morcos F, Martínez L. Enhancing protein fold determination by exploring the complementary information of chemical cross-linking and coevolutionary signals. Bioinformatics 2018; 34:2201-2208. [DOI: 10.1093/bioinformatics/bty074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/10/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ricardo N dos Santos
- Institute of Chemistry, University of Campinas, Campinas, Brazil
- Center for Computational Engineering and Sciences, University of Campinas, Campinas, Brazil
| | | | | | - Fábio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, USA
| | - Leandro Martínez
- Institute of Chemistry, University of Campinas, Campinas, Brazil
- Center for Computational Engineering and Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Varricchio L, Falchi M, Dall'Ora M, De Benedittis C, Ruggeri A, Uversky VN, Migliaccio AR. Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Front Cell Dev Biol 2017; 5:96. [PMID: 29218307 PMCID: PMC5703715 DOI: 10.3389/fcell.2017.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Calreticulin is a Ca2+-binding chaperone protein, which resides mainly in the endoplasmic reticulum but also found in other cellular compartments including the plasma membrane. In addition to Ca2+, calreticulin binds and regulates almost all proteins and most of the mRNAs deciding their intracellular fate. The potential functions of calreticulin are so numerous that identification of all of them is becoming a nightmare. Still the recent discovery that patients affected by the Philadelphia-negative myeloproliferative disorders essential thrombocytemia or primary myelofibrosis not harboring JAK2 mutations carry instead calreticulin mutations disrupting its C-terminal domain has highlighted the clinical need to gain a deeper understanding of the biological activity of this protein. However, by contrast with other proteins, such as enzymes or transcription factors, the biological functions of which are strictly defined by a stable spatial structure imprinted by their amino acid sequence, calreticulin contains intrinsically disordered regions, the structure of which represents a highly dynamic conformational ensemble characterized by constant changes between several metastable conformations in response to a variety of environmental cues. This article will illustrate the Theory of calreticulin as an intrinsically disordered protein and discuss the Hypothesis that the dynamic conformational changes to which calreticulin may be subjected by environmental cues, by promoting or restricting the exposure of its active sites, may affect its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore Sanità, Rome, Italy
| | - Massimiliano Dall'Ora
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Caterina De Benedittis
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| |
Collapse
|
7
|
Barysz HM, Malmström J. Development of Large-scale Cross-linking Mass Spectrometry. Mol Cell Proteomics 2017; 17:1055-1066. [PMID: 28389583 DOI: 10.1074/mcp.r116.061663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 03/26/2017] [Indexed: 11/06/2022] Open
Abstract
Cross-linking mass spectrometry (CLMS) provides distance constraints to study the structure of proteins, multiprotein complexes and protein-protein interactions which are critical for the understanding of protein function. CLMS is an attractive technology to bridge the gap between high-resolution structural biology techniques and proteomic-based interactome studies. However, as outlined in this review there are still several bottlenecks associated with CLMS which limit its application on a proteome-wide level. Specifically, there is an unmet need for comprehensive software that can reliably identify cross-linked peptides from large data sets. In this review we provide supporting information to reason that targeted proteomics of cross-links may provide the required sensitivity to reliably detect and quantify cross-linked peptides and that a reporter ion signature for cross-linked peptides may become a useful approach to increase confidence in the identification process of cross-linked peptides. In addition, the review summarizes the recent advances in CLMS workflows using the analysis of condensin complex in intact chromosomes as a model complex.
Collapse
Affiliation(s)
- Helena Maria Barysz
- From the ‡Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- From the ‡Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Bulutoglu B, Garcia KE, Wu F, Minteer SD, Banta S. Direct Evidence for Metabolon Formation and Substrate Channeling in Recombinant TCA Cycle Enzymes. ACS Chem Biol 2016; 11:2847-2853. [PMID: 27556423 DOI: 10.1021/acschembio.6b00523] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supramolecular assembly of enzymes into metabolon structures is thought to enable efficient transport of reactants between active sites via substrate channeling. Recombinant versions of porcine citrate synthase (CS), mitochondrial malate dehydrogenase (mMDH), and aconitase (Aco) were found to adopt a homogeneous native-like metabolon structure in vitro. Site-directed mutagenesis performed on highly conserved arginine residues located in the positively charged channel connecting mMDH and CS active sites led to the identification of CS(R65A) which retained high catalytic efficiency. Substrate channeling between the CS mutant and mMDH was severely impaired and the overall channeling probability decreased from 0.99 to 0.023. This work provides direct mechanistic evidence for the channeling of reaction intermediates, and disruption of this interaction would have important implications on the control of flux in central carbon metabolism.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kristen E. Garcia
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Fei Wu
- Department of Chemistry, The University of Utah, Salt Lake
City, Utah 84112, United States
- Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Shelley D. Minteer
- Department of Chemistry, The University of Utah, Salt Lake
City, Utah 84112, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Boelt SG, Norn C, Rasmussen MI, André I, Čiplys E, Slibinskas R, Houen G, Højrup P. Mapping the Ca(2+) induced structural change in calreticulin. J Proteomics 2016; 142:138-48. [PMID: 27195812 DOI: 10.1016/j.jprot.2016.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. BIOLOGICAL SIGNIFICANCE The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity.
Collapse
Affiliation(s)
- Sanne Grundvad Boelt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Christoffer Norn
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Evaldas Čiplys
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark.
| |
Collapse
|
10
|
Raval A, Piana S, Eastwood MP, Shaw DE. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations. Protein Sci 2015; 25:19-29. [PMID: 26266489 PMCID: PMC4815320 DOI: 10.1002/pro.2770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred.
Collapse
Affiliation(s)
- Alpan Raval
- D. E. Shaw Research, New York, New York, 10036
| | | | | | - David E Shaw
- D. E. Shaw Research, New York, New York, 10036.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| |
Collapse
|
11
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
12
|
Srinivasa S, Ding X, Kast J. Formaldehyde cross-linking and structural proteomics: Bridging the gap. Methods 2015; 89:91-8. [PMID: 25979347 DOI: 10.1016/j.ymeth.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field.
Collapse
Affiliation(s)
- Savita Srinivasa
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xuan Ding
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, United States
| | - Juergen Kast
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
13
|
Trnková L, Dršata J, Boušová I. Oxidation as an important factor of protein damage: Implications for Maillard reaction. J Biosci 2015; 40:419-39. [DOI: 10.1007/s12038-015-9523-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Lento C, Audette GF, Wilson DJ. Time-resolved electrospray mass spectrometry — a brief history. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes the evolution of time-resolved electrospray ionization mass spectrometry (TRESI-MS), a technology that was developed in large part at Western University. TRESI-MS was initially designed to characterize rapid chemical and biochemical reactions occurring on the millisecond time scale without need for a chromophore. Early TRESI-MS setups usually consisted of continuous-flow rapid mixers with a fixed tee for analysis of a single time point, and later adjustable reaction chamber devices allowing for automatic tracking of the reaction over time. Advances in instrumentation design over the years have resulted in improved time resolution, with microfluidic device implementation allowing for coupling to hydrogen−deuterium exchange (HDX) experiments. Areas of application that will be discussed include the investigation of protein folding intermediates, identification of enzyme−substrate intermediates in the pre-steady state, and the use of time-resolved HDX to study the dynamics of weakly structured protein regions. While some limitations still persist with the method, the continued development of TRESI-MS and related approaches paves the way to a promising future and the study of unexplored application areas.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
15
|
Bornschein RE, Ruotolo BT. Ion mobility-mass spectrometry of charge-reduced protein complexes reveals general trends in the collisional ejection of compact subunits. Analyst 2015; 140:7020-9. [DOI: 10.1039/c5an01242b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiprotein complexes have been shown to play critical roles across a wide range of cellular functions, but most probes of protein quaternary structure are limited in their ability to analyze complex mixtures and polydisperse structures using small amounts of total protein.
Collapse
|
16
|
Petrotchenko EV, Makepeace KA, Borchers CH. DXMSMS Match Program for Automated Analysis of LC‐MS/MS Data Obtained Using Isotopically Coded CID‐Cleavable Cross‐Linking Reagents. ACTA ACUST UNITED AC 2014; 48:8.18.1-8.18.19. [DOI: 10.1002/0471250953.bi0818s48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Evgeniy V. Petrotchenko
- University of Victoria – Genome British Columbia Proteomics Centre, University of Victoria Victoria Canada
| | - Karl A.T. Makepeace
- University of Victoria – Genome British Columbia Proteomics Centre, University of Victoria Victoria Canada
| | - Christoph H. Borchers
- University of Victoria – Genome British Columbia Proteomics Centre, University of Victoria Victoria Canada
- Department of Biochemistry & Microbiology, University of Victoria, University of Victoria Victoria Canada
| |
Collapse
|
17
|
Imprasittichail W, Roytrakul S, Krungkrai SR, Krungkrail J. A unique insertion of low complexity amino acid sequence underlies protein-protein interaction in human malaria parasite orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase. ASIAN PAC J TROP MED 2014; 7:184-92. [PMID: 24507637 DOI: 10.1016/s1995-7645(14)60018-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/15/2013] [Accepted: 01/15/2014] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the multienzyme complex formation of human malaria parasite Plasmodium falciparum (P. falciparum) orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC), the fifth and sixth enzyme of the de novo pyrimidine biosynthetic pathway. Previously, we have clearly established that the two enzymes in the malaria parasite exist physically as a heterotetrameric (OPRT)2(OMPDC)2 complex containing two subunits each of OPRT and OMPDC, and that the complex have catalytic kinetic advantages over the monofunctional enzyme. METHODS Both enzymes were cloned and expressed as recombinant proteins. The protein-protein interaction in the enzyme complex was identified using bifunctional chemical cross-linker, liquid chromatography-mass spectrometric analysis and homology modeling. RESULTS The unique insertions of low complexity region at the α 2 and α 5 helices of the parasite OMPDC, characterized by single amino acid repeat sequence which was not found in homologous proteins from other organisms, was located on the OPRT-OMPDC interface. The structural models for the protein-protein interaction of the heterotetrameric (OPRT)2(OMPDC)2 multienzyme complex were proposed. CONCLUSIONS Based on the proteomic data and structural modeling, it is surmised that the human malaria parasite low complexity region is responsible for the OPRT-OMPDC interaction. The structural complex of the parasite enzymes, thus, represents an efficient functional kinetic advantage, which in line with co-localization principles of evolutional origin, and allosteric control in protein-protein-interactions.
Collapse
Affiliation(s)
- Waranya Imprasittichail
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand
| | - Sudaratana R Krungkrai
- Unit of Biochemistry, Department of Medical Science, Faculty of Science, Rangsit University, Pathumthani 12000, Thailand
| | - Jerapan Krungkrail
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
He G, Zhang H, King JD, Blankenship RE. Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. Biochemistry 2014; 53:4924-30. [PMID: 25014729 PMCID: PMC4372062 DOI: 10.1021/bi5006464] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The reaction center (RC) complex
of the green sulfur bacterium Chlorobaculum tepidum is composed of the Fenna–Matthews–Olson
antenna protein (FMO) and the reaction center core (RCC) complex.
The RCC complex has four subunits: PscA, PscB, PscC, and PscD. We
studied the FMO/RCC complex by chemically cross-linking the purified
sample followed by biochemical and spectroscopic analysis. Blue-native
gels showed that there were two types of FMO/RCC complexes, which
are consistent with complexes with one copy of FMO per RCC and two
copies of FMO per RCC. Sodium dodecyl sulfate–polyacrylamide
gel electrophoresis analysis of the samples after cross-linking showed
that all five subunits of the RC can be linked by three different
cross-linkers: bissulfosuccinimidyl suberate, disuccinimidyl suberate,
and 3,3-dithiobis-sulfosuccinimidyl propionate. The interaction sites
of the cross-linked complex were also studied using liquid chromatography
coupled to tandem mass spectrometry. The results indicated that FMO,
PscB, PscD, and part of PscA are exposed on the cytoplasmic side of
the membrane. PscD helps stabilize FMO to the reaction center and
may facilitate transfer of the electron from the RC to ferredoxin.
The soluble domain of the heme-containing cytochrome subunit PscC
and part of the core subunit PscA are located on the periplasmic side
of the membrane. There is a close relationship between the periplasmic
portions of PscA and PscC, which is needed for the efficient transfer
of the electron between PscC and P840.
Collapse
Affiliation(s)
- Guannan He
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
19
|
Tinnefeld V, Sickmann A, Ahrends R. Catch me if you can: challenges and applications of cross-linking approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:99-116. [PMID: 24881459 DOI: 10.1255/ejms.1259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecular complexes are the groundwork of life and the basis for cell signaling, energy transfer, motion, stability and cellular metabolism. Understanding the underlying complex interactions on the molecular level is an essential step to obtain a comprehensive insight into cellular and systems biology. For the investigation of molecular interactions, various methods, including Förster resonance energy transfer, nuclear magnetic resonance spectroscopy, X-ray crystallography and yeast two-hybrid screening, can be utilized. Nevertheless, the most reliable approach for structural proteomics and the identification of novel protein-binding partners is chemical cross-linking. The rationale is that upon forming a covalent bond between a protein and its interaction partner (protein, lipid, RNA/DNA, carbohydrate) the native complex state is "frozen" and accessible for detailed mass spectrometric analysis. In this review we provide a synopsis on crosslinker design, chemistry, pitfalls, limitations and novel applications in the field, and feature an overview of current software applications.
Collapse
|
20
|
Pettelkau J, Thondorf I, Theisgen S, Lilie H, Schröder T, Arlt C, Ihling CH, Sinz A. Structural analysis of guanylyl cyclase-activating protein-2 (GCAP-2) homodimer by stable isotope-labeling, chemical cross-linking, and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1969-1979. [PMID: 24026978 DOI: 10.1007/s13361-013-0734-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca(2+). In-depth MS and MS/MS analysis of the cross-linked products was aided by (15)N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca(2+)-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca(2+)-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.
Collapse
Affiliation(s)
- Jens Pettelkau
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Roux KJ. Marked by association: techniques for proximity-dependent labeling of proteins in eukaryotic cells. Cell Mol Life Sci 2013; 70:3657-64. [PMID: 23420482 PMCID: PMC11113768 DOI: 10.1007/s00018-013-1287-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Various methods have been established for the purpose of identifying and characterizing protein-protein interactions (PPIs). This diverse toolbox provides researchers with options to overcome challenges specific to the nature of the proteins under investigation. Among these techniques is a category based on proximity-dependent labeling of proteins in living cells. These can be further partitioned into either hypothesis-based or unbiased screening methods, each with its own advantages and limitations. Approaches in which proteins of interest are fused to either modifying enzymes or receptor sequences allow for hypothesis-based testing of protein proximity. Protein crosslinking and BioID (proximity-dependent biotin identification) permit unbiased screening of protein proximity for a protein of interest. Here, we evaluate these approaches and their applications in living eukaryotic cells.
Collapse
Affiliation(s)
- Kyle J Roux
- Children's Health Research Center, Sanford Research/USD, North 60th St. East, Sioux Falls, SD, 57104, USA,
| |
Collapse
|
22
|
Dreiling A, König S. Side reactions in protein cross-linking experiments using azide linkers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1887-1890. [PMID: 23857935 DOI: 10.1002/rcm.6641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
|
23
|
Marcilla M, Albar JP. Quantitative proteomics: A strategic ally to map protein interaction networks. IUBMB Life 2013; 65:9-16. [PMID: 23281033 DOI: 10.1002/iub.1081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Many physiological processes are regulated by dynamic protein interaction networks whose characterization provides valuable information on cell biology. Several strategies can be used to analyze protein-protein interactions. Among them, affinity purification combined with mass spectrometry (AP-MS) is arguably the most widely employed technique, not only owing to its high throughput and sensitivity but also because it can answer critical questions such as where, when, and how protein-protein interactions occur. In AP-MS workflows, both the target protein and its interacting partners are isolated before being identified by MS. The main challenge of this approach is to distinguish bona fide binders from background contaminants. This review focuses on the different strategies designed to circumvent this limitation. In this regard, the combination of quantitative proteomics and affinity purification emerges as one of the most powerful, yet relatively simple, strategies to characterize protein-protein interactions.
Collapse
Affiliation(s)
- Miguel Marcilla
- Proteomics Unit, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| | | |
Collapse
|
24
|
Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PLoS One 2013; 8:e61430. [PMID: 23613850 PMCID: PMC3629208 DOI: 10.1371/journal.pone.0061430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners.
Collapse
|
25
|
Paramelle D, Miralles G, Subra G, Martinez J. Chemical cross-linkers for protein structure studies by mass spectrometry. Proteomics 2013; 13:438-56. [PMID: 23255214 DOI: 10.1002/pmic.201200305] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 12/24/2022]
Abstract
The cross-linking approach combined with MS for protein structure determination is one of the most striking examples of multidisciplinary success. Indeed, it has become clear that the bottleneck of the method was the detection and the identification of low-abundance cross-linked peptides in complex mixtures. Sample treatment or chromatography separation partially addresses these issues. However, the main problem comes from over-represented unmodified peptides, which do not yield any structural information. A real breakthrough was provided by high mass accuracy measurement, because of the outstanding technical developments in MS. This improvement greatly simplified the identification of cross-linked peptides, reducing the possible combinations matching with an observed m/z value. In addition, the huge amount of data collected has to be processed with dedicated software whose role is to propose distance constraints or ideally a structural model of the protein. In addition to instrumentation and algorithms efficiency, significant efforts have been made to design new cross-linkers matching all the requirements in terms of reactivity and selectivity but also displaying probes or reactive systems facilitating the isolation, the detection of cross-links, or the interpretation of MS data. These chemical features are reviewed and commented on in the light of the more recent strategies.
Collapse
Affiliation(s)
- David Paramelle
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore
| | | | | | | |
Collapse
|
26
|
Calabrese AN, Pukala TL. Chemical Cross-linking and Mass Spectrometry for the Structural Analysis of Protein Assemblies. Aust J Chem 2013. [DOI: 10.1071/ch13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular functions are performed and regulated at a molecular level by the coordinated action of intricate protein assemblies, and hence the study of protein folding, structure, and interactions is vital to the appreciation and understanding of complex biological problems. In the past decade, continued development of chemical cross-linking methodologies combined with mass spectrometry has seen this approach develop to enable detailed structural information to be elucidated for protein assemblies often intractable by traditional structural biology methods. In this review article, we describe recent advances in reagent design, cross-linking protocols, mass spectrometric analysis, and incorporation of cross-linking constraints into structural models, which are contributing to overcoming the intrinsic challenges of the cross-linking method. We also highlight pioneering applications of chemical cross-linking mass spectrometry approaches to the study of structure and function of protein assemblies.
Collapse
|
27
|
Karadzic I, Maupin-Furlow J, Humbard M, Prunetti L, Singh P, Goodlett DR. Chemical cross-linking, mass spectrometry, and in silico modeling of proteasomal 20S core particles of the haloarchaeon Haloferax volcanii. Proteomics 2012; 12:1806-14. [PMID: 22623373 DOI: 10.1002/pmic.201100260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A fast and accurate method is reported to generate distance constraints between juxtaposited amino acids and to validate molecular models of halophilic protein complexes. Proteasomal 20S core particles (CPs) from the haloarchaeon Haloferax volcanii were used to investigate the quaternary structure of halophilic proteins based on their symmetrical, yet distinct subunit composition. Proteasomal CPs are cylindrical barrel-like structures of four-stacked homoheptameric rings of α- and β-type subunits organized in α(7)β(7) β(7)α(7) stoichiometry. The CPs of H. volcanii are formed from a single type of β subunit associated with α1 and/or α2 subunits. Tandem affinity chromatography and new genetic constructs were used to separately isolate α1(7)β(7)β(7)α1(7) and α2(7)β(7)β(7)α2(7) CPs from H. volcanii. Chemically cross-linked peptides of the H. volcanii CPs were analyzed by high-performance mass spectrometry and an open modification search strategy to first generate and then to interpret the resulting tandem mass spectrometric data. Distance constraints obtained by chemical cross-linking mass spectrometry, together with the available structural data of nonhalophilic CPs, facilitated the selection of accurate models of H. volcanii proteasomal CPs composed of α1-, α2-, and β-homoheptameric rings from several different possible structures from Protein Data Bank.
Collapse
Affiliation(s)
- Ivanka Karadzic
- Department of Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
28
|
Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1239-56. [PMID: 23246828 DOI: 10.1016/j.bbapap.2012.11.013] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
Mass spectrometry-based methods have become increasingly important in structural biology - in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|
29
|
Hyung SJ, Ruotolo BT. Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 2012; 12:1547-64. [PMID: 22611037 DOI: 10.1002/pmic.201100520] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MS analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other MS approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative MS approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly advancing area.
Collapse
Affiliation(s)
- Suk-Joon Hyung
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
30
|
Li W, O'Neill HA, Wysocki VH. SQID-XLink: implementation of an intensity-incorporated algorithm for cross-linked peptide identification. ACTA ACUST UNITED AC 2012; 28:2548-50. [PMID: 22796956 DOI: 10.1093/bioinformatics/bts442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SUMMARY Peptide identification algorithm is a major bottleneck for mass spectrometry based chemical cross-linking experiments. Our lab recently developed an intensity-incorporated peptide identification algorithm, and here we implemented this scheme for cross-linked peptide discovery. Our program, SQID-XLink, searches all regular, dead-end, intra and inter cross-linked peptides simultaneously, and its effectiveness is validated by testing a published dataset. This new algorithm provides an alternative approach for high confidence cross-linking identification. AVAILABILITY SQID-XLink program is freely available for download from http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online. CONTACT vwysocki@email.arizona.edu.
Collapse
Affiliation(s)
- Wenzhou Li
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
31
|
Pettelkau J, Schröder T, Ihling CH, Olausson BES, Kölbel K, Lange C, Sinz A. Structural Insights into Retinal Guanylylcyclase–GCAP-2 Interaction Determined by Cross-Linking and Mass Spectrometry. Biochemistry 2012; 51:4932-49. [DOI: 10.1021/bi300064v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jens Pettelkau
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Thomas Schröder
- Department of Technical Biochemistry, Institute of Biochemistry and
Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Christian H. Ihling
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Björn E. S. Olausson
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Knut Kölbel
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Christian Lange
- Department of Technical Biochemistry, Institute of Biochemistry and
Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| |
Collapse
|
32
|
He Y, Lauber MA, Reilly JP. Unique fragmentation of singly charged DEST cross-linked peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1046-1052. [PMID: 22460622 DOI: 10.1007/s13361-012-0372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
It has previously been shown that when cross-linking reagent diethyl suberthioimidate (DEST) reacts with primary amines of proteins to yield amidinated residues, the primary amines retain their high basicity, and cross-linked species can be enriched by strong cation exchange. It is now demonstrated that collisional activation of singly-charged DEST cross-linked peptide ions leads to preferential cleavage at the cross-linked sites. The resulting product ions facilitate the detection and identification of cross-linked peptides.
Collapse
Affiliation(s)
- Yi He
- Indiana University, Bloomington, IN, USA
| | | | | |
Collapse
|
33
|
Buncherd H, Nessen MA, Nouse N, Stelder SK, Roseboom W, Dekker HL, Arents JC, Smeenk LE, Wanner MJ, van Maarseveen JH, Yang X, Lewis PJ, de Koning LJ, de Koster CG, de Jong L. Selective enrichment and identification of cross-linked peptides to study 3-D structures of protein complexes by mass spectrometry. J Proteomics 2012; 75:2205-15. [DOI: 10.1016/j.jprot.2012.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
|
34
|
Fritzsche R, Ihling CH, Götze M, Sinz A. Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:653-8. [PMID: 22328219 DOI: 10.1002/rcm.6150] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RATIONALE Chemical cross-linking in combination with a mass spectrometric analysis of the created cross-linked products is an area of growing interest for deriving low-resolution structural information of proteins and protein complexes. One of the greatest challenges is the complexity of the created cross-linking mixtures, which can be met by a charge-based enrichment of cross-linked peptides after proteolytic digestion using strong cation-exchange (SCX) chromatography. METHODS SCX chromatography was used for the enrichment of cross-linked peptides with the N-hydroxysuccinimide ester bis(sulfosuccinimidyl)succinate (BS(3)) prior to a mass spectrometric analysis by nano-HPLC/nano-ESI-LTQ-Orbitrap-MS/MS. Bovine serum albumin (BSA) and glutathione S-transferase (GST) were employed as model proteins. RESULTS Conditions for SCX enrichment were optimized for obtaining as many interpeptide cross-linked peptides as possible in order to maximize the amount of structural information from a single experiment. With an SCX-based enrichment step of cross-linked products within BSA using the cross-linker BS(3), 154 interpeptidal cross-linking products were identified during nano-HPLC/nano-ESI-MS/MS analyses, whereas analyses without a prior SCX enrichment allowed the identification of merely 20 cross-linked products. The application of the SCX enrichment strategy for the analysis of cross-linked products of GST with BS(3) allowed the identification of 26 interpeptidal cross-linked products compared with 16 without SCX enrichment. CONCLUSIONS For both proteins investigated herein, BSA and GST, the introduction of an SCX-based enrichment step prior to nano-HPLC/nano-ESI-MS/MS of cross-linked products led to a considerable gain in structural information.
Collapse
Affiliation(s)
- Romy Fritzsche
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany
| | | | | | | |
Collapse
|
35
|
Petrotchenko EV, Serpa JJ, Hardie DB, Berjanskii M, Suriyamongkol BP, Wishart DS, Borchers CH. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins. Mol Cell Proteomics 2012; 11:M111.013524. [PMID: 22438564 DOI: 10.1074/mcp.m111.013524] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including a Lys(185)-Lys(220) cross-link, which is unique to the PrPβ and thus may be indicative of the conformational change involved in the formation of prion protein oligomers.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, British Columbia V8Z 7X8, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Sohn CH, Agnew HD, Lee JE, Sweredoski MJ, Graham RL, Smith GT, Hess S, Czerwieniec G, Loo JA, Heath JR, Deshaies RJ, Beauchamp JL. Designer reagents for mass spectrometry-based proteomics: clickable cross-linkers for elucidation of protein structures and interactions. Anal Chem 2012; 84:2662-9. [PMID: 22339618 PMCID: PMC3310289 DOI: 10.1021/ac202637n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present novel homobifunctional amine-reactive clickable cross-linkers (CXLs) for investigation of three-dimensional protein structures and protein-protein interactions (PPIs). CXLs afford consolidated advantages not previously available in a simple cross-linker, including (1) their small size and cationic nature at physiological pH, resulting in good water solubility and cell-permeability, (2) an alkyne group for bio-orthogonal conjugation to affinity tags via the click reaction for enrichment of cross-linked peptides, (3) a nucleophilic displacement reaction involving the 1,2,3-triazole ring formed in the click reaction, yielding a lock-mass reporter ion for only clicked peptides, and (4) higher charge states of cross-linked peptides in the gas-phase for augmented electron transfer dissociation (ETD) yields. Ubiquitin, a lysine-abundant protein, is used as a model system to demonstrate structural studies using CXLs. To validate the sensitivity of our approach, biotin-azide labeling and subsequent enrichment of cross-linked peptides are performed for cross-linked ubiquitin digests mixed with yeast cell lysates. Cross-linked peptides are detected and identified by collision induced dissociation (CID) and ETD with linear quadrupole ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) and LTQ-Orbitrap mass spectrometers. The application of CXLs to more complex systems (e.g., in vivo cross-linking) is illustrated by Western blot detection of Cul1 complexes including known binders, Cand1 and Skp2, in HEK 293 cells, confirming good water solubility and cell-permeability.
Collapse
Affiliation(s)
- Chang Ho Sohn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Heather D. Agnew
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - J. Eugene Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Michael J. Sweredoski
- The Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Robert L.J. Graham
- The Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Geoffrey T. Smith
- The Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Sonja Hess
- The Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Gregg Czerwieniec
- Molecular Instrumentation Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095
| | - James R. Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - J. L. Beauchamp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
37
|
Clifford-Nunn B, Showalter HDH, Andrews PC. Quaternary diamines as mass spectrometry cleavable crosslinkers for protein interactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:201-12. [PMID: 22131227 PMCID: PMC3573217 DOI: 10.1007/s13361-011-0288-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 05/11/2023]
Abstract
Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein-protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS(3) because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS(3) results in productive backbone fragmentation.
Collapse
Affiliation(s)
- Billy Clifford-Nunn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, USA
| | - H. D. Hollis Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan Vahlteich Medicinal Chemistry Core, Ann Arbor, MI, USA
| | - Philip C. Andrews
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Room 1198, 300 North Ingalls Building, 300 North Ingalls St., Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Liu F, Wu C, Sweedler JV, Goshe MB. An enhanced protein crosslink identification strategy using CID-cleavable chemical crosslinkers and LC/MS(n) analysis. Proteomics 2012; 12:401-5. [PMID: 22213719 DOI: 10.1002/pmic.201100352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/03/2011] [Accepted: 11/22/2011] [Indexed: 11/09/2022]
Abstract
We describe a novel two-step LC/MS(n) strategy to effectively and confidently identify numerous crosslinked peptides from complex mixtures. This method incorporates the use of our gas-phase cleavable crosslinking reagent, disuccinimidyl-succinamyl-aspartyl-proline (SuDP), and a new data-processing algorithm CXLinkS (Cleavable Crosslink Selection), which enables unequivocal crosslink peptide selection and identification on the basis of mass measurement accuracy, high resolving power, and the unique fragmentation pattern of each crosslinked peptide. We demonstrate our approach with well-characterized monomeric and multimeric protein systems with and without database searching restrictions where inter-peptide crosslink identification is increased 8-fold over our previously published data-dependent LC/MS³ method and discuss its applicability to other CID-cleavable crosslinkers and more complex protein systems.
Collapse
Affiliation(s)
- Fan Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | | | | |
Collapse
|
39
|
Ramaraj T, Angel T, Dratz EA, Jesaitis AJ, Mumey B. Antigen-antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:520-32. [PMID: 22246133 DOI: 10.1016/j.bbapap.2011.12.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/17/2022]
Abstract
The structures of protein antigen-antibody (Ag-Ab) interfaces contain information about how Ab recognize Ag as well as how Ag are folded to present surfaces for Ag recognition. As such, the Ab surface holds information about Ag folding that resides with the Ab-Ag interface residues and how they interact. In order to gain insight into the nature of such interactions, a data set comprised of 53 non-redundant 3D structures of Ag-Ab complexes was analyzed. We assessed the physical and biochemical features of the Ag-Ab interfaces and the degree to which favored interactions exist between amino acid residues on the corresponding interface surfaces. Amino acid compositional analysis of the interfaces confirmed the dominance of TYR in the Ab paratope-containing surface (PCS), with almost two fold greater abundance than any other residue. Additionally TYR had a much higher than expected presence in the PCS compared to the surface of the whole antibody (defined as the occurrence propensity), along with aromatics PHE, TRP, and to a lesser degree HIS and ILE. In the Ag epitope-containing surface (ECS), there were slightly increased occurrence propensities of TRP and TYR relative to the whole Ag surface, implying an increased significance over the compositionally most abundant LYS>ASN>GLU>ASP>ARG. This examination encompasses a large, diverse set of unique Ag-Ab crystal structures that help explain the biological range and specificity of Ag-Ab interactions. This analysis may also provide a measure of the significance of individual amino acid residues in phage display analysis of Ag binding.
Collapse
|
40
|
Yang L, Zheng C, Weisbrod CR, Tang X, Munske GR, Hoopmann MR, Eng JK, Bruce JE. In vivo application of photocleavable protein interaction reporter technology. J Proteome Res 2012; 11:1027-41. [PMID: 22168182 DOI: 10.1021/pr200775j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vivo protein structures and protein-protein interactions are critical to the function of proteins in biological systems. As a complementary approach to traditional protein interaction identification methods, cross-linking strategies are beginning to provide additional data on protein and protein complex topological features. Previously, photocleavable protein interaction reporter (pcPIR) technology was demonstrated by cross-linking pure proteins and protein complexes and the use of ultraviolet light to cleave or release cross-linked peptides to enable identification. In the present report, the pcPIR strategy is applied to Escherichia coli cells, and in vivo protein interactions and topologies are measured. More than 1600 labeled peptides from E. coli were identified, indicating that many protein sites react with pcPIR in vivo. From those labeled sites, 53 in vivo intercross-linked peptide pairs were identified and manually validated. Approximately half of the interactions have been reported using other techniques, although detailed structures exist for very few. Three proteins or protein complexes with detailed crystallography structures are compared to the cross-linking results obtained from in vivo application of pcPIR technology.
Collapse
Affiliation(s)
- Li Yang
- Department of Chemistry, Washington State University, Pullman, Washington, 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kühn U, Sinz A. StavroX--a software for analyzing crosslinked products in protein interaction studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:76-87. [PMID: 22038510 DOI: 10.1007/s13361-011-0261-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/03/2023]
Abstract
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets. The StavroX software was evaluated for three diverse biological systems: (1) the complex between calmodulin and a peptide derived from Munc13, (2) an N-terminal ß-laminin fragment, and (3) the complex between guanylyl cyclase activating protein-2 and a peptide derived from retinal guanylyl cyclase. We show that the StavroX software is advantageous for analyzing crosslinked products due to its easy-to-use graphical user interface and the highly automated analysis of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data resulting in short times for analysis. StavroX is expected to give a further push to the chemical crosslinking approach as a routine technique for protein interaction studies.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stengel F, Aebersold R, Robinson CV. Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics 2011; 11:R111.014027. [PMID: 22180098 PMCID: PMC3316738 DOI: 10.1074/mcp.r111.014027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein assemblies are critical for cellular function and understanding their physical organization is the key aim of structural biology. However, applying conventional structural biology approaches is challenging for transient, dynamic, or polydisperse assemblies. There is therefore a growing demand for hybrid technologies that are able to complement classical structural biology methods and thereby broaden our arsenal for the study of these important complexes. Exciting new developments in the field of mass spectrometry and proteomics have added a new dimension to the study of protein-protein interactions and protein complex architecture. In this review, we focus on how complementary mass spectrometry-based techniques can greatly facilitate structural understanding of protein assemblies.
Collapse
Affiliation(s)
- Florian Stengel
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA United Kingdom
| | | | | |
Collapse
|
43
|
Yan F, Che FY, Nieves E, Weiss LM, Angeletti RH, Fiser A. Photo-assisted peptide enrichment in protein complex cross-linking analysis of a model homodimeric protein using mass spectrometry. Proteomics 2011; 11:4109-15. [PMID: 21834138 PMCID: PMC3465073 DOI: 10.1002/pmic.201100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/16/2011] [Accepted: 07/29/2011] [Indexed: 11/11/2022]
Abstract
MS analysis of cross-linked peptides can be used to probe protein contact sites in macromolecular complexes. We have developed a photo-cleavable cross-linker that enhances peptide enrichment, improving the signal-to-noise ratio of the cross-linked peptides in mass spectrometry analysis. This cross-linker utilizes nitro-benzyl alcohol group that can be cleaved by UV irradiation and is stable during the multiple washing steps used for peptide enrichment. The enrichment method utilizes a cross-linker that aids in eliminating contamination resulting from protein-based retrieval systems, and thus, facilitates the identification of cross-linked peptides. Homodimeric pilM protein from Pseudomonas aeruginosa 2192 (pilM) was investigated to test the specificity and experimental conditions. As predicted, the known pair of lysine side chains within 14 Å was cross-linked. An unexpected cross-link involving the protein's amino terminus was also detected. This is consistent with the predicted mobility of the amino terminus that may bring the amino groups within 19 Å of one another in solution. These technical improvements allow this method to be used for investigating protein-protein interactions in complex biological samples.
Collapse
Affiliation(s)
- Funing Yan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Lambert W, Söderberg CAG, Rutsdottir G, Boelens WC, Emanuelsson C. Thiol-exchange in DTSSP crosslinked peptides is proportional to cysteine content and precisely controlled in crosslink detection by two-step LC-MALDI MSMS. Protein Sci 2011; 20:1682-91. [PMID: 21780214 DOI: 10.1002/pro.699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/06/2022]
Abstract
The lysine-specific crosslinker 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP) is commonly used in the structural characterization of proteins by chemical crosslinking and mass spectrometry and we here describe an efficient two-step LC-MALDI-TOF/TOF procedure to detect crosslinked peptides. First MS data are acquired, and the properties of isotope-labeled DTSSP are used in data analysis to identify candidate crosslinks. MSMS data are then acquired for a restricted number of precursor ions per spot for final crosslink identification. We show that the thiol-catalyzed exchange between crosslinked peptides, which is due to the disulfide bond in DTSSP and known to possibly obscure data, can be precisely quantified using isotope-labeled DTSSP. Crosslinked peptides are recognized as 8 Da doublet peaks and a new isotopic peak with twice the intensity appears in the middle of the doublet as a consequence of the thiol-exchange. False-positive crosslinks, formed exclusively by thiol-exchange, yield a 1:2:1 isotope pattern, whereas true crosslinks, formed by two lysine residues within crosslinkable distance in the native protein structure, yield a 1:0:1 isotope pattern. Peaks with a 1:X:1 isotope pattern, where 0 < X < 2, can be trusted as true crosslinks, with a defined proportion of the signal [2X/(2 + X)] being noise from the thiol-exchange. The thiol-exchange was correlated with the protein cysteine content and was minimized by shortening the trypsin incubation time, and for two molecular chaperone proteins with known structure all crosslinks fitted well to the structure data. The thiol-exchange can thus be controlled and isotope-labeled DTSSP safely used to detect true crosslinks between lysine residues in proteins.
Collapse
Affiliation(s)
- Wietske Lambert
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Santos LFA, Iglesias AH, Gozzo FC. Fragmentation features of intermolecular cross-linked peptides using N-hydroxy- succinimide esters by MALDI- and ESI-MS/MS for use in structural proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:742-750. [PMID: 21766393 DOI: 10.1002/jms.1951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The use of mass spectrometry coupled with chemical cross-linking of proteins has become one of the most useful tools for proteins structure and interactions studies. One of the challenges in these studies is the identification of the cross-linked peptides. The interpretation of the MS/MS data generated in cross-linking experiments using N-hydroxy succinimide esters is not trivial once a new amide bond is formed allowing new fragmentation pathways, unlike linear peptides. Intermolecular cross-linked peptides occur when two different peptides are connected by the cross-linker and they yield information on the spatial proximity of different domains (within a protein) or proteins (within a complex). In this article, we report a detailed fragmentation study of intermolecular cross-linked peptides, generated from a set of synthetic peptides, using both ESI and MALDI to generate the precursor ions. The fragmentation features observed here can be helpful in the interpretation and identification of cross-linked peptides present in cross-linking experiments and be further implemented in search engine's algorithms.
Collapse
Affiliation(s)
- Luiz F A Santos
- Institute of Chemistry, University of Campinas, CP 6154 Campinas, SP 13083-970, Brazil
| | | | | |
Collapse
|
46
|
Mitra P, Pal D. Combining Bayes classification and point group symmetry under Boolean framework for enhanced protein quaternary structure inference. Structure 2011; 19:304-12. [PMID: 21397182 DOI: 10.1016/j.str.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
Abstract
Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces ≥90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.
Collapse
Affiliation(s)
- Pralay Mitra
- Bioinformatics Centre, Supercomputer Education Research Centre, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
47
|
Taylor RM, Dratz EA, Jesaitis AJ. Invariant local conformation in p22phox p.Y72H polymorphisms suggested by mass spectral analysis of crosslinked human neutrophil flavocytochrome b. Biochimie 2011; 93:1502-9. [PMID: 21640156 DOI: 10.1016/j.biochi.2011.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/06/2011] [Indexed: 01/06/2023]
Abstract
The NADPH oxidase of phagocytic leukocytes generates superoxide that plays a critical role in innate immunity and inflammatory responses. The integral membrane protein flavocytochrome b (Cyt b, a.k.a. cytochrome b(558/559)) is the catalytic core of the complex and serves as a prototype for homologs important in regulating signaling networks in a wide variety of animal and plant cells. Our analysis identifies a naturally-occurring Tyr72/His72 polymorphism (p.Y72H) in the p22(phox) subunit of Cyt b at the protein level that has been recognized at the nucleotide level (c.214T > C, formerly C242T) and implicated in cardiovascular disease. In the present study, Cyt b was isolated from human neutrophils and reacted with chemical crosslinkers for subsequent structure analysis by MALDI mass spectrometry. Following mild chemical modification of Cyt b with two pairs of isotopically-differentiated lysine crosslinkers: BS(2)G-d(0)/d(4) and BS(3)-d(0)/d(4), the reaction mixtures were digested with trypsin and purified on C(18)ZipTips to generate samples for mass analysis. MALDI analysis of tryptic digests from each of the above reactions revealed a series of masses that could be assigned to p22(phox) residues 68-85, assuming an intra-molecular crosslink between Lys71 and Lys78. In addition to the 30 ppm mass accuracy obtained with internal mass calibration, increased confidence in the assignment of the crosslinks was provided by the presence of the diagnostic mass patterns resulting from the isotopically-differentiated crosslinking reagent pairs and the Tyr72/His72 p22(phox) polymorphisms in the crosslinked peptides. This work identifies a novel, low-resolution distance constraint in p22(phox) and suggests that the medically-relevant p.Y72H polymorphism has an invariant structural motif in this region. Because position 72 in p22(phox) lies outside regions identified as interactive with other oxidase components, the structural invariance also provides additional support for maturational differences as the source of the wide variation in observed reactive oxygen species production by cells expressing p.Y72H.
Collapse
Affiliation(s)
- Ross M Taylor
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, MT 59717-3520, USA
| | | | | |
Collapse
|
48
|
Du X, Chowdhury SM, Manes NP, Wu S, Mayer MU, Adkins JN, Anderson GA, Smith RD. Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J Proteome Res 2011; 10:923-31. [PMID: 21175198 DOI: 10.1021/pr100848a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labeling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify interpeptide, intrapeptide, and deadend cross-links as well as underivatized peptides. The software streamlines data preprocessing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry.
Collapse
Affiliation(s)
- Xiuxia Du
- Department of Bioinformatics & Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28023, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Müller MQ, Zeiser JJ, Dreiocker F, Pich A, Schäfer M, Sinz A. A universal matrix-assisted laser desorption/ionization cleavable cross-linker for protein structure analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:155-161. [PMID: 21157862 DOI: 10.1002/rcm.4812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The concept of protein cross-linking in combination with mass spectrometry holds great promise to derive structural information on protein conformation and protein-protein interactions. We recently presented a dissociative amine-reactive cross-linker (NHS-BuUrBu-NHS) that is shown herein to be universally applicable to protein structure analysis under matrix-assisted laser desorption/ionization tandem mass spectrometric (MALDI-MS/MS) conditions, based on the examples of the peptides substance P, luteinizing hormone releasing hormone (LHRH), and the 32-kDa ligand-binding domain of peroxisome proliferator-activated receptor alpha (PPARα). The characteristic fragment ion patterns and constant neutral losses of the cross-linker greatly simplify the identification of different cross-linked species from complex mixtures and drastically reduce the potential of identifying false-positive cross-links. Therefore, this cross-linker holds an enormous potential for deriving structural information of proteins and protein complexes in a highly automated fashion.
Collapse
Affiliation(s)
- Mathias Q Müller
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
50
|
Santos LFA, Iglesias AH, Pilau EJ, Gomes AF, Gozzo FC. Traveling-wave ion mobility mass spectrometry analysis of isomeric modified peptides arising from chemical cross-linking. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:2062-2069. [PMID: 20864354 DOI: 10.1016/j.jasms.2010.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 05/29/2023]
Abstract
Traveling-wave ion mobility (TWIM) coupled to mass spectrometry (MS) has emerged as a powerful tool for structural and conformational analysis of proteins and peptides, allowing the analysis of isomeric peptides (or proteins) with the same sequence but modified at different residues. This work demonstrates the use of the novel TWIM-MS technique to separate isomeric peptide ions derived from chemical cross-linking experiments, which enables the acquisition of distinct product ion spectra for each isomer, clearly indicating modification on different sites. Experiments were performed with four synthetic peptides, for which variable degrees of mobility separation were achieved. In cases of partially overlapping mobility arrival time distributions (ATDs), extracting the ATDs of fragment ions belonging to each individual isomer allowed their separation into two distinct ATDs. Accumulation over regions from the specific ATDs generates the product ion spectrum of each isomer, or a spectrum highly enriched in their fragments. The population of both modified peptide isomers was correlated with the intrinsic reactivities of different Lys residues from reactions conducted at different pH conditions.
Collapse
Affiliation(s)
- Luiz F A Santos
- Institute of Chemistry, University of Campinas and Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|