1
|
Mamand DM, Ahmed BY, Aziz DM, Hama PO, Mohammed PA, Abdalkarim KA, Muhammad DS, Hussein AM, Hussen SA, Aziz SB, Hassan J. Advanced spectroscopic approach for exploring the structural, optical, and electronic properties in dye-functionalized chitosan biopolymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125485. [PMID: 39631199 DOI: 10.1016/j.saa.2024.125485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
This study employed advanced spectroscopic techniques to investigate the structural and optical properties of chitosan (CS) biopolymer films modified with natural dyes from Cosmos Sulphureus Cav. (CSC) flowers. FTIR results indicated that the inclusion of CSC dyes led to broader absorbance and decreased transmittance. Distinct absorption regions were identified, and the optical energy band gap (OEBG), transport gap, and exciton binding energy were calculated using Tauc's method. The OEBG was found to be 5.44 eV for CS while for CS-CSC dye samples, it dropped to 2.24 eV and The Urbach energy increased from 0.44 eV to 0.60 eV, indicating the presence of high tail states in the band gap region. The electron-phonon interaction was found to increase from 11.35 to 15.58. The oscillator energy values (4.13 eV-2.33 eV) at low energies obtained using Wemple-DiDomenico model are found to be close to OEBGs using Tauc's model. Additionally, from the Drude-Lorentz model the N/m* was found to increase from 1.69 × 1052 to 1.27 × 1054. The third order non-linear polarizability parameter, the linear optical susceptibility and the non-linear index of refractions were all found to increase upon increasing the CSC dye concentrations.
Collapse
Affiliation(s)
- Dyari M Mamand
- Department of Physics, College of Science, University of Raparin, Sulaymaniyah, Kurdistan, Iraq
| | - Bahez Y Ahmed
- Department of Chemistry, College of Education, University of Sulaimani, Sulaymaniyah, 46001, Kurdistan Region, Iraq
| | - Dara M Aziz
- Department of Chemistry, College of Science, University of Raparin, Ranya 46012, Kurdistan, Iraq
| | - Peshawa O Hama
- Sulaimani Polytechnic University, Electrical Power Engineering, 46001 Sulaimani, Kurdistan, Iraq
| | - Pshko A Mohammed
- Physics Department, College of Science, University of Charmo, Peshawa Street, Chamchamal, Sulaimanyah 46001, Kurdistan, Iraq
| | - Karzan A Abdalkarim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46002, Kurdistan, Iraq; Pharmacy Department, College of Medicine, Komar University of Science and Technology, Qularaise, Sulaymaniyah 46002, Kurdistan, Iraq
| | - Dana S Muhammad
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Kurdistan, Iraq
| | - Ahang M Hussein
- Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Sarkawt A Hussen
- Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Shujahadeen B Aziz
- Turning Trash to Treasure (TTT) Laboratory, Research and Development Center, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan, Iraq.
| | - Jamal Hassan
- Department of Physics, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Ahmad RB, Anwar AW, Ali A, Fatima T, Moin M, Nazir A, Batool A, Shabir U. Pressure-dependent band gap engineering with structural, electronic, mechanical, optical, and thermal properties of CsPbBr 3: first-principles calculations. J Mol Model 2024; 30:270. [PMID: 39014125 DOI: 10.1007/s00894-024-06040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
CONTEXT In the renewable industry, pressure-dependent CsPbBr3 perovskite has a lot of potential due to its exceptional properties. Present work revealed the mechanical stability of CsPbBr3 between 0 to 50 GPa. The bandgap of unstressed CsPbBr3 is 2.90 eV, indicating a direct bandgap. Band gap values decrease by increasing external pressure. CsPbBr3 structure showed a direct band gap from 0 to 35 GPa and in-direct from 40 to 50 GPa. The unit cell volume and lattice constants are substantially decreased. Mechanical parameters, i.e., Young's modulus, bulk modulus, anisotropy factor, shear modulus, and poison's ratio are obtained. Under ambient conditions, the mechanical properties of CsPbBr3 showed ductile behavior and with induced pressure, their ductility has significantly improved. By applying stresses ranging from 0 to 50 GPa, the considerable fluctuation in values of dielectric function (imaginary and real), absorption, reflectivity, loss function, refractive index (imaginary and real), and conductivity (imaginary and real), was also identified. When pressure rises, the optical parameters increase and drag in the direction of high energies. Response functions are used to predict the density of states and the phonon lattice dispersion to study the phonon properties. By using the quasi-harmonic Debye model, the thermal effect on the free energy, entropy, enthalpy, and heat capacity were predicted and compared. These results would be useful for theoretical research and indicate how external pressure significantly affects the physical characteristics of CsPbBr3 perovskites, which may open up new possibilities for use in optoelectronic, photonic, and solar cell applications. METHODS The structural, electrical, mechanical, optical, and thermal properties of cesium lead bromide (CsPbBr3) are investigated by applying external pressure from 0 to 50 GPa, using generalized gradient approximations (GGA) and Perdew-Burke-Ernzerhof (PBE) with CASTEP code built-in material studio by density functional theory (DFT).
Collapse
Affiliation(s)
- Rana Bilal Ahmad
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan.
| | - Abdul Waheed Anwar
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Anwar Ali
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Tehreem Fatima
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Moin
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Amna Nazir
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Asma Batool
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Umer Shabir
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
3
|
Tawfilas M, Bartolini Torres G, Lorenzi R, Saibene M, Mauri M, Simonutti R. Transparent and High-Refractive-Index Titanium Dioxide/Thermoplastic Polyurethane Nanocomposites. ACS OMEGA 2024; 9:29339-29349. [PMID: 39005776 PMCID: PMC11238196 DOI: 10.1021/acsomega.4c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024]
Abstract
Transparent nanocomposite films made of surface-modified titanium dioxide nanoparticles and thermoplastic polyurethane are prepared via film casting approach showing enhanced refractive indexes and mechanical properties. Two different sets of composites were prepared up to 37.5 wt % of inorganic nanoparticles with a diameter <15 nm, one set using particles capped only with oleic acid and a second one with a bimodal system layer made of oleic acid and mPEO-5000 as coating agents. All of the composites show significantly enhanced refractive index and mechanical properties than the neat polymeric matrix. The transparency of nanocomposite films shows the excellent dispersion of the inorganic nanoparticles in the polymeric matrix avoiding aggregation and precipitation phenomena. Our study provides a facile and feasible route to produce transparent nanocomposite films with tunable mechanical properties and high refractive indices for various applications.
Collapse
Affiliation(s)
- Massimo Tawfilas
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Gianluca Bartolini Torres
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Melissa Saibene
- Piattaforma
di Microscopia, University of Milano-Bicocca, 20126 Milano, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
4
|
Mazumder K, Voit B, Banerjee S. Recent Progress in Sulfur-Containing High Refractive Index Polymers for Optical Applications. ACS OMEGA 2024; 9:6253-6279. [PMID: 38371831 PMCID: PMC10870412 DOI: 10.1021/acsomega.3c08571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
The development in the field of high refractive index materials is a crucial factor for the advancement of optical devices with advanced features such as image sensors, optical data storage, antireflective coatings, light-emitting diodes, and nanoimprinting. Sulfur plays an important role in high refractive index applications owing to its high molar refraction compared to carbon. Sulfur exists in multiple oxidation states and can exhibit various stable functional groups. Over the last few decades, sulfur-containing polymers have attracted much attention owing to their wide array of applications governed by the functional group of sulfur present in the polymer repeat unit. The interplay of refractive index and various other polymer properties contributes to successfully implementing a specific polymer material in optical applications. The focus on developing optoelectronic devices induced an ever-increasing need to integrate different functional materials to achieve the devices' full potential. Several devices that see the potential use of sulfur in high refractive index materials are reviewed in the study. Like sulfur, selenium also exhibits high molar refraction and unique chemical properties, making it an essential field of study. This review covers the research and development in the field of sulfur and selenium in different forms of functionality, focusing on the chemistry of bonding and the optical properties of the polymers containing the heteroatoms mentioned above. The strategy and rationale behind incorporating heteroatoms in a polymer matrix to produce high-refractive-index materials are also described in the present review.
Collapse
Affiliation(s)
- Kajari Mazumder
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Xu X, Xie YM, Shi H, Wang Y, Zhu X, Li BX, Liu S, Chen B, Zhao Q. Light Management of Metal Halide Scintillators for High-Resolution X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303738. [PMID: 38009773 DOI: 10.1002/adma.202303738] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Indexed: 11/29/2023]
Abstract
The ever-growing need to inspect matter with hyperfine structures requires a revolution in current scintillation detectors, and the innovation of scintillators is revived with luminescent metal halides entering the scene. Notably, for any scintillator, two fundamental issues arise: Which kind of material is suitable and in what form should the material exist? The answer to the former question involves the sequence of certain atoms into specific crystal structures that facilitate the conversion of X-ray into light, whereas the answer to the latter involves assembling these crystallites into particular material forms that can guide light propagation toward its corresponding pixel detector. Despite their equal importance, efforts are overwhelmingly devoted to improving the X-ray-to-light conversion, while the material-form-associated light propagation, which determines the optical signal collected for X-ray imaging, is largely overlooked. This perspective critically correlates the reported spatial resolution with the light-propagation behavior in each form of metal halides, combing the designing rules for their future development.
Collapse
Affiliation(s)
- Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Huaiyao Shi
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yongquan Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Bing-Xiang Li
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Liu C, Zhu Z, Pan K, Fu Y, Zhang K, Yang B. Bulk CsPbCl xBr 3-x (1 ≤ x ≤ 3) perovskite nanocrystals/polystyrene nanocomposites with controlled Rayleigh scattering for light guide plate. LIGHT, SCIENCE & APPLICATIONS 2023; 12:261. [PMID: 37914701 PMCID: PMC10620209 DOI: 10.1038/s41377-023-01306-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Perovskite nanocrystals (PNCs)/polymer nanocomposites can combine the advantages of each other, but extremely few works can achieve the fabrication of PNCs/polymer nanocomposites by bulk polymerization. We originally adopt a two-type ligand strategy to fabricate bulk PNCs/polystyrene (PS) nanocomposites, including a new type of synthetic polymerizable ligand. The CsPbCl3 PNCs/PS nanocomposites show extremely high transparency even the doping content up to 5 wt%. The high transparency can be ascribed to the Rayleigh scattering as the PNCs distribute uniformly without obvious aggregation. Based on this behavior, we first exploit the potential of PNCs to serve as scatters inside light guided plate (LGP), whose surface illuminance and uniformity can be improved, and this new kind of LGP is compatible with the advanced liquid crystal display technology. Thanks to the facile composition adjustment of CsPbClxBr3-x (1 ≤ x ≤ 3) PNCs, the Rayleigh scattering behavior can also be adjusted so as to the performance of LGP. The best-performing 5.0-inch LGP based on CsPbCl2.5Br0.5 PNCs/PS nanocomposites shows 20.5 times higher illuminance and 1.8 times higher uniformity in display than the control. The LGP based on PNCs/PS nanocomposite exhibits an enormous potential in commercialization no matter based on itself or combined with the LGP-related technology.
Collapse
Affiliation(s)
- Chongming Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Kaibo Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yuan Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
7
|
Li Y, Zhang J, Shi Y, Zhang Y, Shi G, Zhang X, Cui Z, Fu P, Liu M, Qiao X, He Y, Wang Y, Zhao H, Zhang W, Pang X. Robust Strategy to Improve the Compatibility between Incorporated Upconversion Nanoparticles and the Bulk Transparent Polymer Matrix. ACS OMEGA 2023; 8:32159-32167. [PMID: 37692212 PMCID: PMC10483650 DOI: 10.1021/acsomega.3c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Traditional transparent polymer nanocomposites combined with functional fluorescent inorganic nanofillers are promising for many advanced optical applications. However, the aggregation of the incorporated functional nanoparticles results in light scattering and will decrease the transparency of nanocomposites, which will restrain the application of the transparent nanocomposites. Herein, a robust synthesis strategy was proposed to modify upconversion nanoparticles (UCNPs) with polymethyl methacrylate (PMMA) to form UCNP@PMMA core@shell nanocomposites though metal-free photoinduced surface-initiated atom transfer radical polymerization (photo-SI-ATRP), and thus, the dispersity of UCNP@PMMA and the interface compatibility between the surface of UCNPs and the bulk PMMA matrix was greatly improved. The obtained PMMA nanocomposites possess high transparency and show strong upconversion photoluminescence properties, which promises great opportunities for application in 3D display and related optoelectronic fields. This strategy could also be applied to fabricate other kinds of functional transparent polymer nanocomposites with inorganic nanoparticles uniformly dispersed.
Collapse
Affiliation(s)
- Yuying Li
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junle Zhang
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Faculty
of Engineering, Huanghe Science & Technology
University, Zhengzhou 450001, P. R. China
| | - Yaxuan Shi
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuancheng Zhang
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ge Shi
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaomeng Zhang
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhe Cui
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peng Fu
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Minying Liu
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoguang Qiao
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanjie He
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yudong Wang
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Haitao Zhao
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjie Zhang
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- Henan
Joint International Research Laboratory of Living Polymerizations
and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon
Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Lee M, Oh Y, Yu J, Jang SG, Yeo H, Park JJ, You NH. Long-wave infrared transparent sulfur polymers enabled by symmetric thiol cross-linker. Nat Commun 2023; 14:2866. [PMID: 37208341 DOI: 10.1038/s41467-023-38398-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Infrared (IR) transmissive polymeric materials for optical elements require a balance between their optical properties, including refractive index (n) and IR transparency, and thermal properties such as glass transition temperature (Tg). Achieving both a high refractive index (n) and IR transparency in polymer materials is a very difficult challenge. In particular, there are significant complexities and considerations to obtaining organic materials that transmit in the long-wave infrared (LWIR) region, because of high optical losses due to the IR absorption of the organic molecules. Our differentiated strategy to extend the frontiers of LWIR transparency is to reduce the IR absorption of the organic moieties. The proposed approach synthesized a sulfur copolymer via the inverse vulcanization of 1,3,5-benzenetrithiol (BTT), which has a relatively simple IR absorption because of its symmetric structure, and elemental sulfur, which is mostly IR inactive. This strategy resulted in approximately 1 mm thick windows with an ultrahigh refractive index (nav > 1.9) and high mid-wave infrared (MWIR) and LWIR transmission, without any significant decline in thermal properties. Furthermore, we demonstrated that our IR transmissive material was sufficiently competitive with widely used optical inorganic and polymeric materials.
Collapse
Affiliation(s)
- Miyeon Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yuna Oh
- Institute of Advanced Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
| | - Jaesang Yu
- Institute of Advanced Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
| | - Hyeonuk Yeo
- Department of Chemistry Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Jin Park
- Department of Polymer Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nam-Ho You
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea.
| |
Collapse
|
9
|
Zhang B, Xia R, Yan Y, Liu J, Guan Z. Highly Transparent and Zirconia-Enhanced Sol-Gel Hybrid Coating on Polycarbonate Substrates for Self-Cleaning Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3138. [PMID: 37109973 PMCID: PMC10143070 DOI: 10.3390/ma16083138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
To improve the efficacy of polymer-based substrate hybrid coatings, it is essential to simultaneously optimize mechanical strength and preserve the optical properties. In this study, a mixture of zirconium oxide (ZrO2) sol and methyltriethoxysilane modified silica (SiO2) sol-gel was dip-coated onto polycarbonate (PC) substrates to form zirconia-enhanced SiO2 hybrid coatings. Additionally, a solution containing 1H, 1H, 2H, and 2H-perfluorooctyl trichlorosilane (PFTS) was employed for surface modification. The results show that the ZrO2-SiO2 hybrid coating enhanced the mechanical strength and transmittance. The average transmittance of the coated PC reached up to 93.9% (400-800 nm), while the peak transmittance reached up to 95.1% at 700 nm. SEM images and AFM morphologies demonstrate that the ZrO2 and SiO2 nanoparticles were evenly distributed, and a flat coating was observed on the PC substrate. The PFTS-modified ZrO2-SiO2 hybrid coating also exhibited good hydrophobicity (WCA, 113°). As an antireflective coating on PC, with self-cleaning capability, the proposed coating has application prospects in optical lenses and automotive windows.
Collapse
|
10
|
Huo N, Tenhaeff WE. High Refractive Index Polymer Thin Films by Charge-Transfer Complexation. Macromolecules 2023; 56:2113-2122. [PMID: 36938507 PMCID: PMC10019454 DOI: 10.1021/acs.macromol.2c02532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/19/2023] [Indexed: 03/06/2023]
Abstract
High refractive index polymers are essential in next-generation flexible optical and optoelectronic devices. This paper describes a simple synthetic method to prepare polymeric optical coatings possessing high refractive indexes. Poly(4-vinylpyridine) (P4VP) thin films prepared using initiated chemical vapor deposition are exposed to highly polarizable halogen molecules to form stable charge-transfer complexes: P4VP-IX (X = I, Br, and Cl). Fourier transform infrared spectroscopy was used to confirm the formation of charge-transfer complexes. Characterized by spectroscopic ellipsometry, the maximum refractive index of 2.08 at 587.6 nm is obtained for P4VP-I2. For P4VP-IBr and P4VP-ICl, the maximum refractive indexes are 1.849 and 1.774, respectively. By controlling the concentration of charge-transfer complexes, either through the halogen incorporation step or polymer composition through copolymerization with ethylene glycol dimethacrylate, the refractive indexes of the polymer thin films can be precisely controlled. The feasibility of P4VP-IX materials as optical coatings is also explored. The refractive index and thickness uniformity of a P4VP-I2 film over a 10 mm diameter circular area were characterized, showing standard deviations of 0.0769 and 1.91%, respectively.
Collapse
|
11
|
Gu J, Wang X, Xu C, Feng X, Zhang S. Polythiourethane composite film with high transparency, high refractive index and low dispersion containing ZnS nanoparticle via thiol-ene click chemistry. Macromol Res 2023. [DOI: 10.1007/s13233-023-00144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Lee D, Cho H, Yoon I. Zirconia nanocomposites and their applications as transparent advanced optical materials with
high refractive index. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Deunchan Lee
- Department of Chemistry Chungnam National University Daejeon Republic of Korea
| | - Hanjun Cho
- Department of Chemistry Chungnam National University Daejeon Republic of Korea
| | - Ilsun Yoon
- Department of Chemistry Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
13
|
Cao B, Wu P, Zhang W, Liu S, Zhao J. The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy. Molecules 2022; 28:molecules28010304. [PMID: 36615497 PMCID: PMC9821913 DOI: 10.3390/molecules28010304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The high-hardness and transparent PMMA-based composites play a significant role in modern optical devices. However, a well-known paradox is that conventional PMMA-based composites with high loadings of nanoparticles usually possess high surface hardness at the cost of poor transparency and toughness due to the aggregation of nanoparticles. In this work, ideal optical materials (SiO2/PMMA composites) with high transparency and high surface hardness are successfully fabricated through the introduction of the flow modifier Si-DPF by conventional melt blending. Si-DPF with low surface energy and high transparency, which is located at the SiO2/PMMA interface, and nano-SiO2 particles are homogeneously dispersed in the PMMA matrix. As an example, the sample SiO2/PMMA/Si-DPF (30/65/5) shows outstanding transparency (>87.2% transmittance), high surface hardness (462.2 MPa), and notched impact strength (1.18 kJ/m2). Moreover, SiO2/PMMA/Si-DPF (30/65/5) also presents a low torque value of composite melt (21.7 N⋅m). This work paves a new possibility for the industrial preparation of polymer-based composites with excellent transparency, surface hardness, processability, and toughness.
Collapse
Affiliation(s)
- Bo Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenxiang Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shumei Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Lab Guangdong High Property & Functional Polymer Materials, and Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangzhou 510640, China
- Correspondence: (S.L.); (J.Z.)
| | - Jianqing Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Lab Guangdong High Property & Functional Polymer Materials, and Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangzhou 510640, China
- Correspondence: (S.L.); (J.Z.)
| |
Collapse
|
14
|
Zhang X, Shi Y, Wang X, Liu Y, Zhang Y. Flexible and Transparent Ceramic Nanocomposite for Laboratory X-ray Imaging of Micrometer Resolution. ACS NANO 2022; 16:21576-21582. [PMID: 36441950 DOI: 10.1021/acsnano.2c10531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transparent nanocomposites have attracted considerable attention in many areas including X-ray imaging, wearable electronics, and volumetric display. However, both the transparency and the flexibility were largely jeopardized by the loading content of functional nanoparticles (NPs), posing a major challenge to material engineering. Herein, an ultra-high-loading-ceramic nanocomposite film was fabricated by a blade-coating technique. The film exhibited a high transparency over ∼89% in the whole visible region even with a fluoride-ceramic content up to ∼83 wt %. Based on a real-time investigation on the formation process of the film, the refractive-index difference between the nanoparticles and matrix was identified as the dominating factor to transparency. The transmittance spectra based on Rayleigh scattering theory were simulated to screen both nanoparticle radius and loading content, leading to the discovery of a transparency zone for film making. As a proof-of-concept experiment, the transparent film was used as an X-ray scintillation screen, which exhibited a comparable light yield to that of LYSO owing to the mitigated self-absorption effect. The homemade imager demonstrated a spatial resolution of 122 lp/mm, representing a record resolution of 4.1 μm for laboratory X-ray photography. Our work not only provided an experimental procedure to make high-loading functional films but also demonstrated a theoretical model to guide the search for gradients of transparent composites.
Collapse
Affiliation(s)
- Xiangzhou Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yihan Shi
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Xiaojia Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yeqi Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| | - Yuhai Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, Shandong, People's Republic of China
| |
Collapse
|
15
|
Maekawa H, Amano H, Nishina I, Kudo H. Synthesis and Properties of High‐Refractive‐Index Iodine‐Containing Polyacrylates. ChemistrySelect 2022. [DOI: 10.1002/slct.202201543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroyuki Maekawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering Kansai university 3-3-35, Yamate-cho Suitashi, Osaka, 564–8680 Japan
| | - Hikaru Amano
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering Kansai university 3-3-35, Yamate-cho Suitashi, Osaka, 564–8680 Japan
| | - Ikuko Nishina
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering Kansai university 3-3-35, Yamate-cho Suitashi, Osaka, 564–8680 Japan
| | - Hiroto Kudo
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering Kansai university 3-3-35, Yamate-cho Suitashi, Osaka, 564–8680 Japan
| |
Collapse
|
16
|
Chandrappa H, Bhajantri RF, Ismayil, Ganesha KN. Development of
Zn
1−x
Ba
x
O
nanoparticles reinforced poly(vinyl alcohol) macromolecular nanocomposite films: Eco‐friendly integrated materials for optical systems. J Appl Polym Sci 2022. [DOI: 10.1002/app.52791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Halli Chandrappa
- Department of Studies in Physics Karnatak University, Pavatenagar Dharwad Karnataka India
- Department of Physics Smt. Rukmini Shedthi Memorial National Government First Grade College & Postgraduate Study Centre Barkur Karnataka India
| | | | - Ismayil
- Department of Physics Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka India
| | - Kaliyur Nanjundaiah Ganesha
- Department of Physics Smt. Rukmini Shedthi Memorial National Government First Grade College & Postgraduate Study Centre Barkur Karnataka India
- Department of Physics Maharani's Science College for Women Mysore Karnataka India
| |
Collapse
|
17
|
Takimoto K, Takeuchi K, Ton NNT, Taniike T. Exploring stabilizer formulations for light-induced yellowing of polystyrene by high-throughput experimentation and machine learning. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Preparation and Properties of Polyimide Composite Membrane with High Transmittance and Surface Hydrophobicity for Lightweight Optical System. MEMBRANES 2022; 12:membranes12060592. [PMID: 35736299 PMCID: PMC9230139 DOI: 10.3390/membranes12060592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Polyimide membranes have excellent physiochemical properties which make them valuable materials for optical area. However, common aromatic polyimide membrane trend to show low transmittance in visible region because of the charge-transfer complex (CTC) in molecular structures. Moreover, it’s trending to show high moisture uptakes because of the hydrophilic imide rings in molecular structure. In this work, a polyimide composite membrane with SiO2 antireflective membrane on both sides was prepared. High transmittance (93% within 500~800 nm) and surface hydrophobicity was realized simultaneously. The polyimide composite membrane showed great optical homogeneity. The SiO2 antireflective membranes on polyimide substrate were prepared through a simple and efficient sol-gel method. The surface roughness of polyimide membrane substrate on each side has been improved to 1.56 nm and 3.14 nm, respectively. Moreover, the excellent thermal stability and mechanical property of polyimide membrane has been preserved, which greatly improves the range of applications for the composite membrane. It is a good candidate for light weight optical system.
Collapse
|
19
|
Kubiak JM, Li B, Suazo M, Macfarlane RJ. Polymer Grafted Nanoparticle Composites with Enhanced Thermal and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21535-21543. [PMID: 35500102 DOI: 10.1021/acsami.2c03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The distribution of filler particles within a polymer matrix nanocomposite has a profound influence on the properties and processability of the material. While filler aggregation and percolation can significantly enhance particular functionalities such as thermal and electrical conductivity, the formation of larger filler clusters and networks can also impair mechanical properties like strength and toughness and can also increase the difficulty of processing. Here, a strategy is presented for the preparation of functional composites that enhance thermal conductivity over polymer alone, without negatively affecting mechanical performance or processability. Thermal cross-linking of self-suspended polymer grafted nanoparticles is used to prepare highly filled (>50 vol %) macroscopic nanocomposites with homogeneously dispersed, non-percolating alumina particles in an organic matrix. The initial composites use low glass transition temperature polymer grafts and thus are flexible and easily shaped by thermoforming methods. However, after thermal aging, the resulting materials display high stiffness (>10 GPa) and enhanced thermal conductivity (>100% increase) and also possess mechanical strength similar to commodity plastics. Moreover, the covalent bonding between matrix and filler allows for the significant elevation of thermal conductivity despite the extensive interfacial area in the nanocomposite. The thermal aging of polymer grafted nanoparticles is therefore a promising method for producing easily processable, mechanically sturdy, and macroscopic nanocomposites with improved thermal conductivity.
Collapse
Affiliation(s)
- Joshua M Kubiak
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Buxuan Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mathew Suazo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Top-Down Formulation of Goethite Nanosuspensions for the Production of Transparent, Inorganic Glass Coatings. COATINGS 2022. [DOI: 10.3390/coatings12030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents a simple but effective process route for the production of transparent coatings on glass substrates from inorganic pigment goethite. For this purpose, coating suspensions were prepared by wet milling with a stirred media mill. A water/ethanol mixture was used as the liquid medium to take advantage of the resulting low surface tension for the coating process. In this manner, stable suspensions with particles of down to 50 nm in size were obtained, which already showed a significant increase in transparency. With regard to grinding characteristics, particularly low stress energies proved to be energetically reasonable. The coating step was performed by wet film deposition, achieving coating thicknesses in a range of 0.5–2.5 µm via dip coating. Highly transparent coatings were obtained by applying small particles of 50 nm, which exhibited a significantly lower scattering loss of light (≈3%) in comparison to particles of around 300 nm (70–80%). Additionally, the film color could be adjusted through a variation of the drying temperature due to a conversion of goethite to hematite by dehydration. Since transparency was not affected, this provides an easy-to-implement process adaptation for controlling coating colors.
Collapse
|
21
|
Kwon EH, Kim M, Lee CY, Kim M, Park YD. Metal-Organic-Framework-Decorated Carbon Nanofibers with Enhanced Gas Sensitivity When Incorporated into an Organic Semiconductor-Based Gas Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10637-10647. [PMID: 35175723 DOI: 10.1021/acsami.1c24740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of their high porosity, metal-organic framework (MOF) materials have attracted much attention for use in gas-sensing applications. However, problems with the processability of MOFs for use in reliable gas-sensing electronics remain unsolved. Herein, combination of the strong gas-adsorbing properties of MOF nanomaterials and organic thin-film transistor-type chemical sensors is proposed and experimentally demonstrated. The hybrid blend system with inorganic MOF nanomaterials and organic semiconductors likely exhibits thermodynamic instability because of each phase's self-aggregation, which is difficult to settle without surface functionalization. We propose a novel method to produce an inorganic-organic hybrid sensor by introducing carbon nanofibers as a scaffold. We demonstrate that the carbon nanofibers perform dual functions: enabling the attachment of MOF nanoparticles at the fiber surface, which stabilizes the nanoparticle-embedded polymer layer, and maintaining reliable conductivity for improved gas-sensing performance. On the basis of our characterization of their nanomorphology and nanocrystal structure, the MOF nanoparticles and carbon nanofibers are shown to render a hybrid core-shell structure in the conjugated polymer matrix. This organic-inorganic hybrid system was incorporated into a field-effect transistor device to detect hazardous NO2 gas analytes, operating in real-time with high responsivity. The prototype chemical sensor holds enormous promise for other chemical sensors.
Collapse
Affiliation(s)
- Eun Hye Kwon
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Min Kim
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Yeong Don Park
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
22
|
3D Laser Nanoprinting of Optically Functionalized Structures with Effective-Refractive-Index Tailorable TiO 2 Nanoparticle-Doped Photoresin. NANOMATERIALS 2021; 12:nano12010055. [PMID: 35010005 PMCID: PMC8746567 DOI: 10.3390/nano12010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
The advanced direct laser printing of functional devices with tunable effective index is a key research topic in numerous emerging fields, especially in micro-/nano-optics, nanophotonics, and electronics. Photosensitized nanocomposites, consisting of high-index materials (e.g., titanium dioxide, TiO2) embedded in polymer matrix, are emerging as attractive platforms for advanced additive manufacturing. Unfortunately, in the currently applied techniques, the preparation of optically functionalized structures based on these photosensitized nanocomposites is still hampered by many issues like hydrolysis reaction, high-temperature calcinations, and, especially, the complexity of experimental procedures. In this study, we demonstrate a feasible strategy for fabricating micro-/nanostructures with a flexibly manipulated effective refractive index by incorporating TiO2 nanoparticles in the matrix of acrylate resin, i.e., TiO2-based photosensitized nanocomposites. It was found that the effective refractive index of nanocomposite can be easily tuned by altering the concentration of titanium dioxide nanoparticles in the monomer matrix. For TiO2 nanoparticle concentrations up to 30 wt%, the refractive index can be increased over 11.3% (i.e., altering from 1.50 of pure monomer to 1.67 at 532 nm). Based on such a photosensitized nanocomposite, the grating structures defined by femtosecond laser nanoprinting can offer vivid colors, ranging from crimson to magenta, as observed in the dark-field images. The minimum printing width and printing resolution are estimated at around 70 nm and 225 nm, indicating that the proposed strategy may pave the way for the production of versatile, scalable, and functionalized opto-devices with controllable refractive indices.
Collapse
|
23
|
Yasir M, Sai T, Sicher A, Scheffold F, Steiner U, Wilts BD, Dufresne ER. Enhancing the Refractive Index of Polymers with a Plant-Based Pigment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103061. [PMID: 34558188 DOI: 10.1002/smll.202103061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Polymers are essential components of many nanostructured materials. However, the refractive indices of common polymers fall in a relatively narrow range between 1.4 and 1.6. Here, it is demonstrated that loading commercially-available polymers with large concentrations of a plant-based pigment can effectively enhance their refractive index. For polystyrene (PS) loaded with 67 w/w% β-carotene (BC), a peak value of 2.2 near the absorption edge at 531 nm is achieved, while maintaining values above 1.75 across longer wavelengths of the visible spectrum. Despite high pigment loadings, this blend maintains the thermoforming ability of PS, and BC remains molecularly dispersed. Similar results are demonstrated for the plant-derived polymer ethyl cellulose (EC). Since the refractive index enhancement is intimately connected to the introduction of strong absorption, it is best suited to applications where light travels short distances through the material, such as reflectors and nanophotonic systems. Enhanced reflectance from films is experimentally demonstrated, as large as sevenfold for EC at selected wavelengths. Theoretical calculations highlight that this simple strategy can significantly increase light scattering by nanoparticles and enhance the performance of Bragg reflectors.
Collapse
Affiliation(s)
- Mohammad Yasir
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| | - Tianqi Sai
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| | - Alba Sicher
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| | - Frank Scheffold
- Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, 1700, Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, 1700, Fribourg, Switzerland
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
24
|
Liu X, Xiao M, Xue K, Li M, Liu D, Wang Y, Yang X, Hu Y, Kwok RTK, Qin A, Zhu C, Lam JWY, Tang BZ. Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Mingzhao Li
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongming Liu
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yong Wang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xinzhe Yang
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yubing Hu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Anjun Qin
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute, Guangzhou Development District, Huangpu Guangzhou 510530 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
25
|
Ritchie AW, Cox HJ, Gonabadi HI, Bull SJ, Badyal JPS. Tunable High Refractive Index Polymer Hybrid and Polymer-Inorganic Nanocomposite Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33477-33484. [PMID: 34254516 PMCID: PMC8397253 DOI: 10.1021/acsami.1c07372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Atomized spray plasma deposition (ASPD) provides a single-step, low-temperature, and dry approach for the preparation of high refractive index hybrid polymer or polymer-inorganic nanocomposite coatings. Refractive indices as high as 1.936 at 635 nm wavelength have been obtained for ASPD 4-bromostyrene/toluene-TiO2 nanocomposite layers containing low titania loadings. Thin films with any desired refractive index up to 1.936 can be easily deposited onto a variety of substrates by varying the precursor mixture composition. ASPD overcomes disadvantages commonly associated with alternative fabrication methods for depositing high refractive index coatings (elevated temperatures, wet processes, UV curing steps, and much greater inorganic loadings).
Collapse
Affiliation(s)
- Angus W. Ritchie
- Department
of Chemistry, Durham University, Durham DH1 3LE, England, U.K.
| | - Harrison J. Cox
- Department
of Chemistry, Durham University, Durham DH1 3LE, England, U.K.
| | - Hassan I. Gonabadi
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, England, U.K.
| | - Steve J. Bull
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, England, U.K.
| | - Jas Pal S. Badyal
- Department
of Chemistry, Durham University, Durham DH1 3LE, England, U.K.
| |
Collapse
|
26
|
Liu X, Xiao M, Xue K, Li M, Liu D, Wang Y, Yang X, Hu Y, Kwok RTK, Qin A, Zhu C, Lam JWY, Tang BZ. Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angew Chem Int Ed Engl 2021; 60:19222-19231. [DOI: 10.1002/anie.202104709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Mingzhao Li
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongming Liu
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yong Wang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xinzhe Yang
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yubing Hu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Anjun Qin
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute, Guangzhou Development District, Huangpu Guangzhou 510530 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
27
|
Lee SH, Kim DH, Goh M, Kim JG, You NH. Synthesis and characterization of UV-Curable pyrimidine-based Poly(Acrylate) and zirconium acrylate nanocomposite with high refractive index. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Synthesis of the hyper-branched polyamides and their effective utilization in adsorption and equilibrium isothermal study for cadmium ion uptake. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02554-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 414] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Bani-Salameh AA, Ahmad AA, Alsaad AM, Qattan IA, Aljarrah IA. Synthesis, Optical, Chemical and Thermal Characterizations of PMMA-PS/CeO 2 Nanoparticles Thin Film. Polymers (Basel) 2021; 13:1158. [PMID: 33916630 PMCID: PMC8038548 DOI: 10.3390/polym13071158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
We report the synthesis of hybrid thin films based on polymethyl methacrylate) (PMMA) and polystyrene (PS) doped with 1%, 3%, 5%, and 7% of cerium dioxide nanoparticles (CeO2 NPs). The As-prepared thin films of (PMMA-PS) incorporated with CeO2 NPs are deposited on a glass substrate. The transmittance T% (λ) and reflectance R% (λ) of PMMA-PS/CeO2 NPs thin films are measured at room temperature in the spectral range (250-700) nm. High transmittance of 87% is observed in the low-energy regions. However, transmittance decreases sharply to a vanishing value in the high-energy region. In addition, as the CeO2 NPs concentration is increased, a red shift of the absorption edge is clearly observed suggesting a considerable decrease in the band gap energy of PMMA-PS/CeO2 NPs thin film. The optical constants (n and k) and related key optical and optoelectronic parameters of PMMA-PS/Ce NPs thin films are reported and interpreted. Furthermore, Tauc and Urbach models are employed to elucidate optical behavior and calculate the band gaps of the as-synthesized nanocomposite thin films. The optical band gap energy of PMMA-PS thin film is found to be 4.03 eV. Optical band gap engineering is found to be possible upon introducing CeO2 NPs into PMMA-PS polymeric thin films as demonstrated clearly by the continuous decrease of optical band gap upon increasing CeO2 content. Fourier-transform infrared spectroscopy (FTIR) analysis is conducted to identify the major vibrational modes of the nanocomposite. The peak at 541.42 cm-1 is assigned to Ce-O and indicates the incorporation of CeO2 NPs into the copolymers matrices. There were drastic changes to the width and intensity of the vibrational bands of PMMA-PS upon addition of CeO2 NPs. To examine the chemical and thermal stability, thermogravimetric (TGA) thermograms are measured. We found that (PMMA-PVA)/CeO2 NPs nanocomposite thin films are thermally stable below 110 °C. Therefore, they could be key candidate materials for a wide range of scaled multifunctional smart optical and optoelectronic devices.
Collapse
Affiliation(s)
- Areen A. Bani-Salameh
- Department of Physical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.A.B.-S.); (A.A.A.); (I.A.A.)
| | - A. A. Ahmad
- Department of Physical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.A.B.-S.); (A.A.A.); (I.A.A.)
| | - A. M. Alsaad
- Department of Physical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.A.B.-S.); (A.A.A.); (I.A.A.)
| | - I. A. Qattan
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Ihsan A. Aljarrah
- Department of Physical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.A.B.-S.); (A.A.A.); (I.A.A.)
| |
Collapse
|
31
|
Kikuchi T, Miyazaki E, Yamada Y, Kamitani R, Miyao H, Kato T, Oishi Y. High Refractive Index Thermoplastic Nanocomposites Using Triazine-Based Surface Modifying Agent. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | - Yoshiyuki Oishi
- Department of Chemistry, Graduate School of Science and Engineering, Iwate University
| |
Collapse
|
32
|
Uchida K, Mita K, Yamamoto S, Tanaka K. Local Orientation of Polystyrene at the Interface with Poly(methyl methacrylate) in Block Copolymer. ACS Macro Lett 2020; 9:1576-1581. [PMID: 35617059 DOI: 10.1021/acsmacrolett.0c00638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The local conformation of polystyrene (PS) at the phase-separated lamellar interface with poly(methyl methacrylate) (PMMA) in their diblock copolymer (BCP) was examined by sum-frequency generation spectroscopy in conjunction with a full-atomistic molecular dynamics simulation. While PS phenyl groups of BCP were oriented in the interfacial region, they were random in the bulk. Such an interfacial orientation of phenyl groups was not clear for the corresponding blend of PS and PMMA. The PS backbone of BCP was in-plane oriented and folded near to the chemical junction point located in the interfacial region and the orientation became random at several nanometers distant. No evidence for the chain folding at the interface was found for the blend system.
Collapse
Affiliation(s)
- Kiminori Uchida
- Mitsui Chemicals Inc., Chiba 299-0265, Japan
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazuki Mita
- Mitsui Chemicals Inc., Chiba 299-0265, Japan
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Watanabe S, Oyaizu K. Methoxy-Substituted Phenylenesulfide Polymer with Excellent Dispersivity of TiO2 Nanoparticles for Optical Application. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seigo Watanabe
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
34
|
Silvano S, Carrozza CF, de Angelis AR, Tritto I, Boggioni L, Losio S. Synthesis of Sulfur-rich Polymers: Copolymerization of Cyclohexene Sulfide and Carbon Disulfide Using Chromium Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Selena Silvano
- CNR-SCITEC, Institute of Chemical Science and Technologies “G. Natta”, via A. Corti 12, 20133 Milano, Italy
- Department of Materials Science of University of Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Chiara Francesca Carrozza
- CNR-SCITEC, Institute of Chemical Science and Technologies “G. Natta”, via A. Corti 12, 20133 Milano, Italy
| | | | - Incoronata Tritto
- CNR-SCITEC, Institute of Chemical Science and Technologies “G. Natta”, via A. Corti 12, 20133 Milano, Italy
| | - Laura Boggioni
- CNR-SCITEC, Institute of Chemical Science and Technologies “G. Natta”, via A. Corti 12, 20133 Milano, Italy
| | - Simona Losio
- CNR-SCITEC, Institute of Chemical Science and Technologies “G. Natta”, via A. Corti 12, 20133 Milano, Italy
| |
Collapse
|
35
|
Werdehausen D, Santiago XG, Burger S, Staude I, Pertsch T, Rockstuhl C, Decker M. Modeling Optical Materials at the Single Scatterer Level: The Transition from Homogeneous to Heterogeneous Materials. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Werdehausen
- Corporate Research & Technology Carl Zeiss AG Carl Zeiss Promenade 10 07745 Jena Germany
- Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena Albert‐Einstein‐Str. 15 07745 Jena Germany
| | - Xavier Garcia Santiago
- JCMwave GmbH Bolivarallee 22 14050 Berlin Germany
- Zuse Institute Berlin Takustr. 7 14195 Berlin Germany
- Institut für Nanotechnology Karlsruher Institut für Technologie PO‐Box 3640 76021 Karlsruhe Germany
| | - Sven Burger
- JCMwave GmbH Bolivarallee 22 14050 Berlin Germany
- Zuse Institute Berlin Takustr. 7 14195 Berlin Germany
| | - Isabelle Staude
- Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena Albert‐Einstein‐Str. 15 07745 Jena Germany
- Institute for Solid State Physics Friedrich Schiller University Jena Max‐Wien‐Platz 1 07743 Jena Germany
| | - Thomas Pertsch
- Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena Albert‐Einstein‐Str. 15 07745 Jena Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering Albert‐Einstein‐Str. 7 07745 Jena Germany
- Max Planck School of Photonics Germany
| | - Carsten Rockstuhl
- Institut für Nanotechnology Karlsruher Institut für Technologie PO‐Box 3640 76021 Karlsruhe Germany
- Institut für Theoretische Festkörperphysik Karlsruher Institut für Technologie Wolfgang‐Gaede‐Str. 1 76131 Karlsruhe Germany
- Max Planck School of Photonics Germany
| | - Manuel Decker
- Corporate Research & Technology Carl Zeiss AG Carl Zeiss Promenade 10 07745 Jena Germany
| |
Collapse
|
36
|
Wadi VS, Jena KK, Halique K, Brigita Rožič, Cmok L, Tzitzios V, Alhassan SM. Scalable High Refractive Index polystyrene-sulfur nanocomposites via in situ inverse vulcanization. Sci Rep 2020; 10:14924. [PMID: 32913231 PMCID: PMC7483506 DOI: 10.1038/s41598-020-71227-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
In this work, we demostrate the preparation of low cost High Refractive Index polystyrene-sulfur nanocomposites in one step by combining inverse vulcanization and melt extrusion method. Poly(sulfur-1,3-diisopropenylbenzene) (PS-SD) copolymer nanoparticles (5 to 10 wt%) were generated in the polystyrene matrix via in situ inverse vulcanization reaction during extrusion process. Formation of SD copolymer was confirmed by FTIR and Raman spectroscopy. SEM and TEM further confirms the presence of homogeneously dispersed SD nanoparticles in the size range of 5 nm. Thermal and mechanical properties of these nanocomposites are comparable with the pristine polystyrene. The transparent nanocomposites exhibits High Refractive Index n = 1.673 at 402.9 nm and Abbe'y number ~ 30 at 10 wt% of sulfur loading. The nanocomposites can be easily processed into mold, films and thin films by melt processing as well as solution casting techniques. Moreover, this one step preparation method is scalable and can be extend to the other polymers.
Collapse
Affiliation(s)
- Vijay S Wadi
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
| | - Kishore K Jena
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Kevin Halique
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Brigita Rožič
- Institut "Jožef Stefan", P.O. Box 3000, 1001, Ljubljana, Slovenia
| | - Luka Cmok
- Institut "Jožef Stefan", P.O. Box 3000, 1001, Ljubljana, Slovenia
| | - Vasileios Tzitzios
- NCSR "Demokritos" Institute of Nanoscience and Nanotechnology, 15310, Athens, Greece
| | - Saeed M Alhassan
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
37
|
Aziz SB, Brza MA, Nofal MM, Abdulwahid RT, Hussen SA, Hussein AM, Karim WO. A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3675. [PMID: 32825367 PMCID: PMC7503865 DOI: 10.3390/ma13173675] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Polymer electrolytes and composites have prevailed in the high performance and mobile marketplace during recent years. Polymer-based solid electrolytes possess the benefits of low flammability, excellent flexibility, good thermal stability, as well as higher safety. Several researchers have paid attention to the optical properties of polymer electrolytes and their composites. In the present review paper, first, the characteristics, fundamentals, advantages and principles of various types of polymer electrolytes were discussed. Afterward, the characteristics and performance of various polymer hosts on the basis of specific essential and newly published works were described. New developments in various approaches to investigate the optical properties of polymer electrolytes were emphasized. The last part of the review devoted to the optical band gap study using two methods: Tauc's model and optical dielectric loss parameter. Based on recently published literature sufficient quantum mechanical backgrounds were provided to support the applicability of the optical dielectric loss parameter for the band gap study. In this review paper, it was demonstrated that both Tauc's model and optical dielectric loss should be studied to specify the type of electron transition and estimate the optical band gap accurately. Other parameters such as absorption coefficient, refractive index and optical dielectric constant were also explored.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - M. A. Brza
- Manufacturing and Material Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia;
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rebar T. Abdulwahid
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
- Department of Physics, College of Education, University of Sulaimani, Kurdistan Regional Government, Old Campus, Sulaimani 46001, Iraq
| | - Sarkawt A. Hussen
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
| | - Ahang M. Hussein
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
| | - Wrya O. Karim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| |
Collapse
|
38
|
Robust interface on ENR-50/TiO2 nanohybrid material based sol-gel technique: Insights into synthesis, characterization and applications in optical. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Combining Fluorinated Polymers with Ag Nanoparticles as a Route to Enhance Optical Properties of Composite Materials. Polymers (Basel) 2020; 12:polym12081640. [PMID: 32717998 PMCID: PMC7465834 DOI: 10.3390/polym12081640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Polymer-based nanocomposites have recently received considerable attention due to their unique properties, which makes them feasible for applications in optics, sensors, energy, life sciences, etc. The present work focuses on the synthesis of nanocomposites consisting of a polytetrafluorethylene-like matrix in which metallic nano-silver are embedded, by using multiple magnetron plasmas. By successively exposing the substrate to separate RF magnetrons using as combination of target materials polytetrafluorethylene (PTFE) and silver, individual control of each deposition process is insured, allowing obtaining of structures in which silver nanoparticles are entrapped in-between two PTFE layers with given thicknesses. The topographical and morphological characteristics investigated by means of Scanning Electron Microscopy and Atomic Force Microscopy techniques evidenced the very presence of Ag nanoparticles with typical dimension 7 nm. The chemical composition at various depositing steps was evaluated through X-ray Photoelectron Spectroscopy. We show that the presence of the top PTFE layer prevents silver oxidation, while its thickness allows the tailoring of optical properties, as evidenced by spectroellipsometry. The appearance of chemical bonds between silver atoms and PTFE atoms at interfaces is observed, pointing out that despite of pure physical deposition processes, a chemical interaction between the polymeric matrix and metal is promoted by plasma.
Collapse
|
40
|
Lequieu J, Quah T, Delaney KT, Fredrickson GH. Complete Photonic Band Gaps with Nonfrustrated ABC Bottlebrush Block Polymers. ACS Macro Lett 2020; 9:1074-1080. [PMID: 35648618 DOI: 10.1021/acsmacrolett.0c00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bottlebrush block polymers are a promising platform for self-assembled photonic materials, yet most work has been limited to one-dimensional photonic crystals based on the lamellar phase. Here we demonstrate with simulation that nonfrustrated ABC bottlebrush block polymers can be used to self-assemble three-dimensional photonic crystals with complete photonic band gaps. To show this, we have developed a computational approach that couples self-consistent field theory (SCFT) simulations to Maxwell's equations, thereby permitting a direct link between molecular design, self-assembly, and photonic band structures. Using this approach, we calculate the phase diagram of nonfrustrated ABC bottlebrush block polymers and identify regions where the alternating gyroid and alternating diamond phases are stable. By computing the photonic band structures of these phases, we demonstrate that complete band gaps can be found in regions of thermodynamic stability, thereby suggesting a route to realize these photonic materials experimentally. Furthermore, we demonstrate that gap size depends on volume fraction, segregation strength, and polymer architecture, and we identify a design strategy based on symmetry breaking that can achieve band gaps for lower values of refractive index contrast. Taken together, the approach presented here provides a powerful and flexible tool for predicting both the self-assembly and photonic band structures of polymeric materials.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
41
|
Kubota S, Hiraga K, Kanomata K, Ahmmad B, Mizuno J, Hirose F. Efficient Light Trapping Structures for Organic Photovoltaics Fabricated by Nanoimprint Lithography. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shigeru Kubota
- Graduate School of Science and Engineering, Yamagata University
| | - Kenta Hiraga
- Graduate School of Science and Engineering, Yamagata University
| | | | - Bashir Ahmmad
- Graduate School of Science and Engineering, Yamagata University
| | - Jun Mizuno
- Research Organization for Nano and Life Innovation, Waseda University
| | - Fumihiko Hirose
- Graduate School of Science and Engineering, Yamagata University
| |
Collapse
|
42
|
Haniffa MAM, Illias HA, Chee CY, Ibrahim S, Sandu V, Chuah CH. Nonisocyanate Poly(Hydroxyl Urethane)-Based Green Polymer Hybrid Coating Systems: Tailoring of Biomacromolecular Compound Architecture Using APTMS-ZnO/TEMPO-Oxidized Cellulose Nanoparticles. ACS OMEGA 2020; 5:10315-10326. [PMID: 32426588 PMCID: PMC7226854 DOI: 10.1021/acsomega.9b04388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/13/2020] [Indexed: 05/02/2023]
Abstract
Hybrid bionanocomposite coating systems (HBCSs) are green polymer materials consisting of an interface between a coating matrix and nanoparticles. The coating matrix was prepared by using a nonisocyanate poly(hydroxyl urethane) (NIPHU) prepolymer crosslinked via 1,3-diaminopropane and epoxidized Jatropha curcas oil. TEMPO-oxidized cellulose nanoparticles (TARC) were prepared from microcrystalline cellulose, and (3-aminopropyl)trimethoxysilane (APTMS)-coated ZnO nanoparticles (APTMS-ZnO) and their suspensions were synthesized separately. The suspensions at different weight ratios were incorporated into the coating matrix to prepare a series of HBCSs. FT-IR, 1H-NMR, 13C-NMR, XRD, SEM, and TEM were used to confirm the chemical structures, morphology, and elements of the coating matrix, nanomaterials, and HBCSs. The thermomechanical properties of the HBCSs were investigated by TGA-DTG and pencil hardness analyses. The UV and IR absorption spectra of the HBCSs were obtained using UV-vis spectroscopy and FTIR spectroscopy, respectively. The HBCSs exhibited good thermal stability at about 200 °C. The degradation temperature at 5% mass loss of all samples was over around 280 °C. The HBCSs exhibited excellent UV block and IR active properties with a stoichiometric ratio of the NIPHU prepolymer and EJCO of 1:1 (wt/wt) containing 5 wt % TARC and 15 wt % APTMS-ZnO nanoparticles. It was observed that the sample with 5 wt % TARC and 15 wt % APTMS-ZnO (HBCS-2) exhibited a uniform crosslinking and reinforcement network with a T onset of 282 °C. This sample has successfully achieved good coating hardness and excellent UV and IR absorption.
Collapse
Affiliation(s)
- Mhd. Abd.
Cader Mhd. Haniffa
- Advanced
Materials Center, Faculty of Engineering, University of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
- Department
of Electrical Engineering, Faculty of Engineering, University of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
- Department
of Chemistry, Faculty of Science, University
of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
| | - Hazlee Azil Illias
- Advanced
Materials Center, Faculty of Engineering, University of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
- Department
of Electrical Engineering, Faculty of Engineering, University of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
| | - Ching Yern Chee
- Advanced
Materials Center, Faculty of Engineering, University of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
- Department
of Chemical Engineering, Faculty of Engineering, University of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
| | - Shaliza Ibrahim
- Institute
of Ocean and Earth Sciences, Deputy Vice Chancellor (Research &
Innovation) Office, University of Malaya,
Malaysia, 50603 Kuala Lumpur, Malaysia
| | - Viorel Sandu
- Dept.
Magnetism and Superconductivity, National
Institute of Materials Physics, 105 bis Atomistilor Str., Magurele,
J.Ilfov, POBox MG-7, 077125 Romania
| | - Cheng Hock Chuah
- Department
of Chemistry, Faculty of Science, University
of Malaya, Malaysia, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Rafiqul Bari GAKM, Kim H. High‐refractive‐index and high‐barrier‐capable epoxy‐phenoxy‐based barrier film for organic electronics. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Haekyoung Kim
- School of Materials Science & EngineeringYeungnam University Gyeongsan Gyeongbuk Korea
| |
Collapse
|
44
|
High Refractive Index Inverse Vulcanized Polymers for Organic Photonic Crystals. CRYSTALS 2020. [DOI: 10.3390/cryst10030154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photonic technologies are nowadays dominated by highly performing inorganic structures that are commonly fabricated via lithography or epitaxial growths. Unfortunately, the fabrication of these systems is costly, time consuming, and does not allow for the growth of large photonic structures. All-polymer photonic crystals could overcome this limitation thanks to easy solubility and melt processing. On the other hand, macromolecules often do not offer a dielectric contrast large enough to approach the performances of their inorganic counterparts. In this work, we demonstrate a new approach to achieve high dielectric contrast distributed Bragg reflectors with a photonic band gap that is tunable in a very broad spectral region. A highly transparent medium was developed through a blend of a commercial polymer with a high refractive index inverse vulcanized polymer that is rich in sulfur, where the large polarizability of the S–S bond provides refractive index values that are unconceivable with common non-conjugated polymers. This approach paves the way to the recycling of sulfur byproducts for new high added-value nano-structures.
Collapse
|
45
|
Wilson KJ, Alabd R, Abolhasan M, Safavi-Naeini M, Franklin DR. Optimisation of monolithic nanocomposite and transparent ceramic scintillation detectors for positron emission tomography. Sci Rep 2020; 10:1409. [PMID: 31996726 PMCID: PMC6989685 DOI: 10.1038/s41598-020-58208-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022] Open
Abstract
High-resolution arrays of discrete monocrystalline scintillators used for gamma photon coincidence detection in PET are costly and complex to fabricate, and exhibit intrinsically non-uniform sensitivity with respect to emission angle. Nanocomposites and transparent ceramics are two alternative classes of scintillator materials which can be formed into large monolithic structures, and which, when coupled to optical photodetector arrays, may offer a pathway to low cost, high-sensitivity, high-resolution PET. However, due to their high optical attenuation and scattering relative to monocrystalline scintillators, these materials exhibit an inherent trade-off between detection sensitivity and the number of scintillation photons which reach the optical photodetectors. In this work, a method for optimising scintillator thickness to maximise the probability of locating the point of interaction of 511 keV photons in a monolithic scintillator within a specified error bound is proposed and evaluated for five nanocomposite materials (LaBr3:Ce-polystyrene, Gd2O3-polyvinyl toluene, LaF3:Ce-polystyrene, LaF3:Ce-oleic acid and YAG:Ce-polystyrene) and four ceramics (GAGG:Ce, GLuGAG:Ce, GYGAG:Ce and LuAG:Pr). LaF3:Ce-polystyrene and GLuGAG:Ce were the best-performing nanocomposite and ceramic materials, respectively, with maximum sensitivities of 48.8% and 67.8% for 5 mm localisation accuracy with scintillator thicknesses of 42.6 mm and 27.5 mm, respectively.
Collapse
Affiliation(s)
- Keenan J Wilson
- School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Roumani Alabd
- School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Mehran Abolhasan
- School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Mitra Safavi-Naeini
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW, Australia
| | - Daniel R Franklin
- School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
46
|
Insight on the structural aspect of ENR-50/TiO2 hybrid in KOH/C3H8O medium revealed by NMR spectroscopy. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
|
48
|
Olaechea LM, Montero de Espinosa L, Oveisi E, Balog S, Sutton P, Schrettl S, Weder C. Spatially Resolved Production of Platinum Nanoparticles in Metallosupramolecular Polymers. J Am Chem Soc 2019; 142:342-348. [DOI: 10.1021/jacs.9b10685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luis M. Olaechea
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy, EPFL, 1015 Lausanne, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Preston Sutton
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
49
|
Arman Kandirmaz E. Printing of UV-curable transparent conductive polymer composite. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1674665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Emine Arman Kandirmaz
- Department of Printing Technologies, Marmara University School of Applied Sciences, Goztepe, Turkey
| |
Collapse
|
50
|
Jiang L, Kong R, Yi Y, Yang S, Mei Y, Feng X, Yao Z, Zhang J. Direct introduction of elemental sulfur into polystyrene: A new method of preparing polymeric materials with both high refractive index and Abbe number. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|