1
|
Takeuchi K, Ireland PM, Webber GB, Wanless EJ, Hayashi M, Sakabe R, Fujii S. Electrostatic Adsorption Behaviors of Polymer Plates to a Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37392450 DOI: 10.1021/acs.langmuir.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Electrostatic transfer and adsorption of electrically conductive polymer-coated poly(ethylene terephthalate) plates from a particle bed to a water droplet were studied, with the influence of plate thickness and shape observed. After synthesis and confirmation of the particles' properties using stereo and scanning electron microscopies, elemental microanalysis, and water contact angle measurement, the electric field strength and droplet-bed separation distance required for transfer were measured. An electrometer and high-speed video footage were used to measure the charge transferred by each particle, and its orientation and adsorption behavior during transfer and at the droplet interface. The use of plates of consistent square cross section allowed the impact of contact-area-dependent particle cohesion and gravity on the electrostatic transfer of particles to be decoupled for the first time. The electrostatic force required to extract a plate was directly proportional to the plate mass (thickness), a trend very different from that previously observed for spherical particles of varied diameter (mass). This reflected the different relationship between mass, surface area, and cohesive forces for spherical and plate-shaped particles of different sizes. Thicker plates transferred more charge to the droplet, probably due to their remaining at the bed at higher field strengths. The impact of plate cross-sectional geometry was also assessed. Differences in the ease of transfer of square, hexagonal, and circular plates seemed to depend only on their mass, while other aspects of their comparative behavior are attributed to the more concentrated charge distribution present on particles with sharper vertices.
Collapse
Affiliation(s)
- Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Peter M Ireland
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Masaki Hayashi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Ryuga Sakabe
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
2
|
Norvilaite O, Lindsay C, Taylor P, Armes SP. Silica-Coated Micrometer-Sized Latex Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5169-5178. [PMID: 37001132 PMCID: PMC10100546 DOI: 10.1021/acs.langmuir.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
A series of silica-coated micrometer-sized poly(methyl methacrylate) latex particles are prepared using a Stöber silica deposition protocol that employs tetraethyl orthosilicate (TEOS) as a soluble silica precursor. Given the relatively low specific surface area of the latex particles, silica deposition is best conducted at relatively high solids to ensure a sufficiently high surface area. Such conditions aid process intensification. Importantly, physical adsorption of chitosan onto the latex particles prior to silica deposition minimizes secondary nucleation and promotes the formation of silica shells: in the absence of chitosan, well-defined silica overlayers cannot be obtained. Thermogravimetry studies indicate that silica formation is complete within a few hours at 20 °C regardless of the presence or absence of chitosan. Kinetic data obtained using this technique suggest that the adsorbed chitosan chains promote surface deposition of silica onto the latex particles but do not catalyze its formation. Systematic variation of the TEOS/latex mass ratio enables the mean silica shell thickness to be tuned from 45 to 144 nm. Scanning electron microscopy (SEM) studies of silica-coated latex particles after calcination at 400 °C confirm the presence of hollow silica particles, which indicates the formation of relatively smooth (albeit brittle) silica shells under optimized conditions. Aqueous electrophoresis and X-ray photoelectron spectroscopy studies are also consistent with latex particles coated in a uniform silica overlayer. The silica deposition formulation reported herein is expected to be a useful generic strategy for the efficient coating of micrometer-sized particles at relatively high solids.
Collapse
Affiliation(s)
- O. Norvilaite
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - C. Lindsay
- Syngenta, Jealott’s Hill International
Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - P. Taylor
- Syngenta, Jealott’s Hill International
Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - S. P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
3
|
Tsumura Y, Fameau AL, Matsui K, Hirai T, Nakamura Y, Fujii S. Photo- and Thermoresponsive Liquid Marbles Based on Fatty Acid as Phase Change Material Coated by Polypyrrole: From Design to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:878-889. [PMID: 36602465 DOI: 10.1021/acs.langmuir.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Responsive liquid marbles (LMs), which can change their shape, stability, and motion by the application of stimuli, attract a growing interest due to their wide range of applications. Our approach to design photo- and thermoresponsive LMs is based on the use of micrometer-sized fatty acid (FA) particles as phase change material covered with polypyrrole (PPy) overlayers with photothermal property. The core-shell particles were synthesized by aqueous chemical oxidative seeded dispersion polymerization. First, we investigated the effect of the alkyl chain length of FA on the resulting FA/PPy core-shell particles by characterizing their size and its distribution, shape, morphology, chemical composition, and photothermal behavior. Then LMs were fabricated by rolling water droplets on the dried FA/PPy particle powder bed and their light and temperature dual stimuli-responsive nature was studied as a function of the FA alkyl chain length. For all FAs studied, LMs disrupted in a domino manner by light irradiation as the first trigger: the temperature of the FA/PPy particles on the LM surface increased by light irradiation, followed by phase change of FA core of the particles from solid to liquid, resulting in disruption of the LM and release of the encapsulated water. The disruption time was closely correlated to the melting point of FA linked to the alkyl chain length and light irradiation power, and it could be controlled and tuned easily between quasi instantaneous and approximately 10 s. Finally, we showed potential applications of the LMs as a carrier for controlled delivery and release of substances and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Kanade Matsui
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
4
|
Tsumura Y, Oyama K, Fameau AL, Seike M, Ohtaka A, Hirai T, Nakamura Y, Fujii S. Photo/Thermo Dual Stimulus-Responsive Liquid Marbles Stabilized with Polypyrrole-Coated Stearic Acid Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41618-41628. [PMID: 36043393 DOI: 10.1021/acsami.2c12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we report on the fabrication of photo/thermo dual stimulus-responsive liquid marbles (LMs) that can be disrupted by light irradiation and/or heating. To stabilize the LMs, we synthesized micrometer-sized stearic acid (SA) particles coated with overlayers of polypyrrole (PPy) by aqueous chemical oxidative seeded dispersion polymerization. The SA/PPy core-shell particles could adsorb at the air-water interface to stabilize LMs by rolling water droplets on the particle powder bed. The presence of SA, known as a phase-change material, which undergoes a transition from solid to liquid by heating, and PPy, which can transduce light to heat, gives rise to the photo and thermo dual stimulus-responsive characters of the LMs. The disruption of the LMs could be induced in a cascade manner: light irradiation on the LM induced a temperature increase, followed by melting of the SA component on the LM surface, leading to its disruption and release of the inner water. The disruption time is linked to the PPy loading and light irradiation power, and it can be tuned from quasi-instantaneous to a few tens of seconds. The melting of SA due to a light-induced phase change from the solid to liquid state is a new mechanism to trigger the disruption of LMs. We finally demonstrated two applications of the LMs as a light-responsive microreactor and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207─UMET─Unité Matériaux et Transformations, F-59000 Lille, France
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Atsushi Ohtaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
5
|
Polypyrrole-coated Pickering-type droplet as light-responsive carrier of oily material. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Oyama K, Seike M, Mitamura K, Watase S, Suzuki T, Omura T, Minami H, Hirai T, Nakamura Y, Fujii S. Monodispersed Nitrogen-Containing Carbon Capsules Fabricated from Conjugated Polymer-Coated Particles via Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4599-4610. [PMID: 33827217 DOI: 10.1021/acs.langmuir.1c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) light irradiation induced the transformation of polypyrrole (PPy) to nitrogen-containing carbon (NCC) material due to its light-to-heat photothermal property. The temperature of the PPy increased over 700 °C within a few seconds by the NIR laser irradiation, and elemental microanalysis confirmed the decreases of hydrogen and chloride contents and increases of carbon and nitrogen contents. Monodispersed polystyrene (PS)-core/PPy shell particles (PS/PPy particles) synthesized by aqueous chemical oxidative seeded polymerization were utilized as a precursor toward monodispersed NCC capsules. When the NIR laser was irradiated to the PS/PPy particles, the temperature rose to approximately 300 °C and smoke was generated, indicating that the PS component forming the core was thermally decomposed and vaporized. Scanning electron microscopy studies revealed the successful formation of spherical and highly monodispersed capsules, and Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy studies confirmed the capsules consisted of NCC materials. Furthermore, sunlight was also demonstrated to work as a light source to fabricate NCC capsules. The size and thickness of the capsules can be controlled between 1 and 80 μm and 146 and 231 nm, respectively, by tuning the size of the original PS/PPy particles and PPy shell thickness.
Collapse
Affiliation(s)
- Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Koji Mitamura
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Seiji Watase
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Toyoko Suzuki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Taro Omura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Hideto Minami
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
7
|
Chan DH, Millet A, Fisher CR, Price MC, Burchell MJ, Armes SP. Synthesis and Characterization of Polypyrrole-Coated Anthracene Microparticles: A New Synthetic Mimic for Polyaromatic Hydrocarbon-Based Cosmic Dust. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3175-3185. [PMID: 33405514 PMCID: PMC7880557 DOI: 10.1021/acsami.0c19758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) are found throughout the universe. The ubiquity of these organic molecules means that they are of considerable interest in the context of cosmic dust, which typically travels at hypervelocities (>1 km s-1) within our solar system. However, studying such fast-moving micrometer-sized particles in laboratory-based experiments requires suitable synthetic mimics. Herein, we use ball-milling to produce microparticles of anthracene, which is the simplest member of the PAH family. Size control can be achieved by varying the milling time in the presence of a suitable anionic commercial polymeric dispersant (Morwet D-425). These anthracene microparticles are then coated with a thin overlayer of polypyrrole (PPy), which is an air-stable organic conducting polymer. The uncoated and PPy-coated anthracene microparticles are characterized in terms of their particle size, surface morphology, and chemical structure using optical microscopy, scanning electron microscopy, laser diffraction, aqueous electrophoresis, FT-IR spectroscopy, Raman microscopy, and X-ray photoelectron spectroscopy (XPS). Moreover, such microparticles can be accelerated up to hypervelocities using a light gas gun. Finally, studies of impact craters indicate carbon debris, so they are expected to serve as the first synthetic mimic for PAH-based cosmic dust.
Collapse
Affiliation(s)
- Derek H. Chan
- Department of Chemistry, University of
Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3
7HF, U.K.
| | - Arthur Millet
- Department of Chemistry, University of
Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3
7HF, U.K.
| | - Callum R. Fisher
- Centre for Astrophysics and Planetary Science, School
of Physical Sciences, University of Kent, Ingram Building,
Canterbury, Kent CT2 7NH, U.K.
| | - Mark C. Price
- Centre for Astrophysics and Planetary Science, School
of Physical Sciences, University of Kent, Ingram Building,
Canterbury, Kent CT2 7NH, U.K.
| | - Mark J. Burchell
- Centre for Astrophysics and Planetary Science, School
of Physical Sciences, University of Kent, Ingram Building,
Canterbury, Kent CT2 7NH, U.K.
| | - Steven P. Armes
- Department of Chemistry, University of
Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3
7HF, U.K.
| |
Collapse
|
8
|
Hoshina H, Chen J, Amada H, Seko N. Chain Entanglement of 2-Ethylhexyl Hydrogen-2-Ethylhexylphosphonate into Methacrylate-Grafted Nonwoven Fabrics for Applications in Separation and Recovery of Dy (III) and Nd (III) from Aqueous Solution. Polymers (Basel) 2020; 12:E2656. [PMID: 33187185 PMCID: PMC7697889 DOI: 10.3390/polym12112656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023] Open
Abstract
A nonwoven fabric adsorbent loaded with 2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) was developed for the separation and recovery of dysprosium (Dy) and neodymium (Nd) from an aqueous solution. The adsorbent was prepared by the radiation-induced graft polymerization of a methacrylate monomer with a long alkyl chain onto a nonwoven fabric and the subsequent loading of EHEP by hydrophobic interaction and chain entanglement between the alkyl chains. The adsorbent was evaluated by batch and column tests with a Dy (III) and Nd (III) aqueous solution. In the batch tests, the adsorbent showed high Dy (III) adsorptivity close to 25.0 mg/g but low Nd (III) adsorptivity below 1.0 mg/g, indicating that the adsorbent had high selective adsorption. In particular, the octadecyl methacrylate (OMA)-adsorbent showed adsorption stability in repeated tests. In the column tests, the OMA-adsorbent was also stable and showed high Dy (III) adsorptivity and high selectivity in repeated adsorption-elution circle tests. This result suggested that the OMA-adsorbent may be a promising adsorbent for the separation and recovery of Dy (III) and Nd (III) ions.
Collapse
Affiliation(s)
- Hiroyuki Hoshina
- Department of Advanced Functional Materials Research, Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan; (H.A.); (N.S.)
| | - Jinhua Chen
- Department of Advanced Functional Materials Research, Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan; (H.A.); (N.S.)
| | | | | |
Collapse
|
9
|
Asaumi Y, Rey M, Oyama K, Vogel N, Hirai T, Nakamura Y, Fujii S. Effect of Stabilizing Particle Size on the Structure and Properties of Liquid Marbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13274-13284. [PMID: 33115238 DOI: 10.1021/acs.langmuir.0c02265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A liquid marble (LM) describes a liquid droplet that is wrapped by nonwetting micro- or nanoparticles and therefore obtains characteristics of a solid powder particle. Here, we investigate the effect of the stabilizing particle size on the resulting structure and properties of the LM. We synthesize a series of polystyrene particles with ultrathin coatings of heptadecafluorooctanesulfonic acid-doped polypyrrole with diameters ranging between 1 and 1000 μm by an aqueous chemical oxidative seeded polymerization of pyrrole. The methodology produced a set of hydrophobic particles with similar surface characteristics to allow the formation of LMs and to probe size effects in the LM formation and stabilization efficiency. We found that particles with a size above 20 μm adsorb as a particle monolayer to the surface of the LM, while smaller particles are adsorbed as ill-defined, multilayered aggregates. These results indicate that the balance between particle-particle interaction and gravity is an important parameter to control the surface structure of the LMs. The assembly behavior and size of the particles also correlated with the mechanical integrity of the LM against fall impact. The mechanical resistance was affected by the gap distance between the inner liquid of the LM and supporting substrate, the capillary forces acting between the particles at the LM surface, and the potential energy that depended on the particle size. Last, we demonstrate that the broadband light-absorbing properties of the polypyrrole shell also allow manipulating the evaporation rate of the inner liquid.
Collapse
Affiliation(s)
- Yuta Asaumi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
10
|
Asaumi Y, Rey M, Vogel N, Nakamura Y, Fujii S. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2695-2706. [PMID: 32078776 DOI: 10.1021/acs.langmuir.0c00061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid marbles are water droplets coated with solid particles that prevent coalescence and allow storage, transport, and handling of liquids in the form of a powder. Here, we report on the formation of liquid marbles that are stabilized entirely by a single monolayer of solid particles and thus minimize the amount of required solid material. As stabilizing particles, we synthesize relatively monodisperse, 80 μm-sized polystyrene (PS) particles coated with heptadecafluorooctanesulfonic acid-doped polypyrrole (PPy-C8F) shell (PS/PPy-C8F particles) by aqueous chemical oxidative seeded polymerization of pyrrole using FeCl3 as an oxidant and heptadecafluorooctanesulfonic acid as a hydrophobic dopant. We characterize the physicochemical properties of the particles as a function of the PPy-C8F loading. Laser diffraction particle size analyses of dilute aqueous suspensions indicate that the polymer particles disperse stably in water medium before and after coating with the PPy-C8F shell. X-ray photoelectron spectroscopy studies indicate the formation of a PPy-C8F shell around the PS seed particles, which was further supported by deflated morphologies observed by scanning electron microscopy after extraction of the PS component from the PS/PPy-C8F particles. We investigate the performance of the dried PS/PPy-C8F particles to stabilize liquid marbles. Stereo- and laser microscope observations, as well as gravimetric studies, confirm that the PS/PPy-C8F particles adsorb to the water droplet surface in the form of a particle monolayer with the characteristic hexagonal close-packed structure expected for spherical (colloidal) particles. Mechanical integrity of the liquid marble increases with an increase of PPy-C8F loading of the PS/PPy-C8F particles. The water contact angle of the PS/PPy-C8F particles at air-water interface increases from 82 ± 12° to 102 ± 17° with an increase of PPy-C8F loading. This increase in water contact angle directly correlates with the shape of the LM, with higher contact angles giving more spherical LMs. Furthermore, the broadband light absorption properties of the PPy coating was used to control evaporation rate of the enclosed water phase on demand by irradiation with a near-infrared laser. The evaporation rate could be finely controlled by the thickness of the PPy-C8F shell of the particles stabilizing the liquid marbles.
Collapse
Affiliation(s)
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | | | | |
Collapse
|
11
|
Electrostatic formation of polymer particle stabilised liquid marbles and metastable droplets – Effect of latex shell conductivity. J Colloid Interface Sci 2018; 529:486-495. [DOI: 10.1016/j.jcis.2018.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
|
12
|
Ge D, Yang X, Chen Z, Yang L, Wu G, Xia Y, Yang S. Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. NANOSCALE 2017; 9:17357-17363. [PMID: 29095459 DOI: 10.1039/c7nr06380f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Angle-independent structural colors obtained from colloidal nanoparticles (NPs) are of interest for potential applications in displays, color printing, 3D printing, and direct writing. However, it remains challenging to prepare uniform structural colors that can be directly written from colloidal inks that not only have no coffee-ring effect, but also have ultrasmooth film thickness, which will be important for layer-by-layer stacking. Herein, we synthesize polypyrrole (PPy) black coated silica NPs that have a low coverage (∼10.7 wt%) of bumpy PPy nanogranules (10-30 nm in diameter). When the PPy@silica NPs are drop-cast on a substrate, the surface roughness of the PPy@silica NPs effectively suppresses the coffee-ring effect and center aggregation during the drying of the colloidal ink, leading to ultrasmooth surfaces with sub-micron thickness and uniform structural colors with wide viewing angles. The color can be fine-tuned by the size of silica NPs, and the presence of PPy black significantly enhances the color contrast by suppressing incoherent and multiple light scattering. Moreover, we show that the bumpy colloidal ink is very versatile: the ink can be formulated from both low and high surface tension liquids as solvents and applied to a hydrophilic or hydrophobic substrate. We demonstrate direct writing of uniformly colored lines and three different color drops stacked on top of each other.
Collapse
Affiliation(s)
- Dengteng Ge
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kawashima H, Mayama H, Nakamura Y, Fujii S. Hydrophobic polypyrroles synthesized by aqueous chemical oxidative polymerization and their use as light-responsive liquid marble stabilizers. Polym Chem 2017. [DOI: 10.1039/c7py00158d] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrophobic polypyrroles doped with perfluoroalkyl dopants can function as a liquid marble stabilizer with photothermal properties.
Collapse
Affiliation(s)
- H. Kawashima
- Division of Applied Chemistry
- Graduate School of Engineering
- Osaka Institute of Technology
- Osaka 535-8585
- Japan
| | - H. Mayama
- Department of Chemistry
- Asahikawa Medical University
- Asahikawa 078-8510
- Japan
| | - Y. Nakamura
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka Institute of Technology
- Osaka 535-8585
- Japan
| | - S. Fujii
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka Institute of Technology
- Osaka 535-8585
- Japan
| |
Collapse
|
14
|
Hu F, Guo L, Qiu T, Li X. Synthesis of polypyrrole–polystyrene composite microspheres via pseudo-multicomponent heterophase polymerization and the potential application on Cr(vi) removal. RSC Adv 2016. [DOI: 10.1039/c6ra06498a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polypyrrole–polystyrene (PPy–PS) composite hollow microspheres with a dry-plum-like morphology were prepared via pseudo-multicomponent heterophase polymerization in an aqueous dispersion system.
Collapse
Affiliation(s)
- Fengdan Hu
- State Key Laboratory of Organic–Inorganic Composite
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Longhai Guo
- State Key Laboratory of Organic–Inorganic Composite
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Teng Qiu
- State Key Laboratory of Organic–Inorganic Composite
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Xiaoyu Li
- State Key Laboratory of Organic–Inorganic Composite
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| |
Collapse
|
15
|
Fielding LA, Hillier JK, Burchell MJ, Armes SP. Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chem Commun (Camb) 2015; 51:16886-99. [DOI: 10.1039/c5cc07405c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of conducting polymer-based particles as synthetic mimics for understanding the behaviour of micro-meteorites (a.k.a. cosmic dust) is reviewed and the implications for various space science applications is discussed.
Collapse
Affiliation(s)
| | - Jon K. Hillier
- Department of Space Science
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | - Mark J. Burchell
- Department of Space Science
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | | |
Collapse
|
16
|
Zhang J, Qi G, Wang X, Li B, Song Z, Ru Y, Zhang X, Qiao J. Novel conductive core–shell particles of elastomeric nanoparticles coated with polypyrrole. RSC Adv 2015. [DOI: 10.1039/c5ra18955a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
For the first time, an ultrafine conductive particle with core–shell structure, acrylonitrile-butadiene elastomeric nanoparticle (NBR-ENP) coated with polypyrrole (PPy), was prepared by in situ oxidative polymerization.
Collapse
Affiliation(s)
- Jiangru Zhang
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| | - Guicun Qi
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| | - Xiang Wang
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| | - Binghai Li
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| | - Zhihai Song
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| | - Yue Ru
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| | - Xiaohong Zhang
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| | - Jinliang Qiao
- SINOPEC Beijing Research Institute of Chemical Industry
- Beijing 10013
- China
| |
Collapse
|
17
|
Ogurtsov NA, Noskov YV, Fatyeyeva KY, Ilyin VG, Dudarenko GV, Pud AA. Deep Impact of the Template on Molecular Weight, Structure, and Oxidation State of the Formed Polyaniline. J Phys Chem B 2013; 117:5306-14. [DOI: 10.1021/jp311898v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nikolay A. Ogurtsov
- Institute of Bioorganic
Chemistry and Petrochemistry, NAS of Ukraine, 50 Kharkivske shose, Kyiv, 02160, Ukraine
| | - Yuriy V. Noskov
- Institute of Bioorganic
Chemistry and Petrochemistry, NAS of Ukraine, 50 Kharkivske shose, Kyiv, 02160, Ukraine
| | - Kateryna Yu. Fatyeyeva
- Institute of Bioorganic
Chemistry and Petrochemistry, NAS of Ukraine, 50 Kharkivske shose, Kyiv, 02160, Ukraine
- Laboratoire Polymères, Biopolymères et Surfaces, UMR 6270 & FR 3038 CNRS, Université de Rouen, Bd. Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France
| | - Vladimir G. Ilyin
- Institute of Physical
Chemistry, NAS of Ukraine,
31 pr. Nauki, Kyiv, 03028, Ukraine
| | - Galina V. Dudarenko
- Institute of Macromolecular
Chemistry, NAS of Ukraine,
48 Kharkivske shose, Kyiv, 02160, Ukraine
| | - Alexander A. Pud
- Institute of Bioorganic
Chemistry and Petrochemistry, NAS of Ukraine, 50 Kharkivske shose, Kyiv, 02160, Ukraine
| |
Collapse
|
18
|
Li Y, Wu Y, Xu Q, Gao Y, Cao G, Meng Z, Yang C. Facile and controllable synthesis of polystyrene/palladium nanoparticle@polypyrrole nanocomposite particles. Polym Chem 2013. [DOI: 10.1039/c3py00281k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Li Y, Huang Z, Wu Y, Yang C, Gao Y, Wang Z. Facile and controllable synthesis of PS/AuNPs@PANi composite particles via Swelling–Diffusion–Interfacial-Polymerization Method. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Reed KM, Borovicka J, Horozov TS, Paunov VN, Thompson KL, Walsh A, Armes SP. Adsorption of sterically stabilized latex particles at liquid surfaces: effects of steric stabilizer surface coverage, particle size, and chain length on particle wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7291-7298. [PMID: 22502638 DOI: 10.1021/la300735u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A series of five near-monodisperse sterically stabilized polystyrene (PS) latexes were synthesized using three well-defined poly(glycerol monomethacrylate) (PGMA) macromonomers with mean degrees of polymerization (DP) of 30, 50, or 70. The surface coverage and grafting density of the PGMA chains on the particle surface were determined using XPS and (1)H NMR spectroscopy, respectively. The wettability of individual latex particles adsorbed at the air-water and n-dodecane-water interfaces was studied using both the gel trapping technique and the film calliper method. The particle equilibrium contact angle at both interfaces is relatively insensitive to the mean DP of the PGMA stabilizer chains. For a fixed stabilizer DP of 30, particle contact angles were only weakly dependent on the particle size. The results are consistent with a model of compact hydrated layers of PGMA stabilizer chains at the particle surface over a wide range of grafting densities. Our approach could be utilized for studying the adsorption behavior of a broader range of sterically stabilized inorganic and polymeric particles of practical importance.
Collapse
Affiliation(s)
- K M Reed
- Surfactant & Colloid Group, Department of Chemistry, University of Hull, Hull, Humberside HU6 7RX, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Pansare V, Hejazi S, Faenza W, Prud'homme RK. Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2012; 24:812-827. [PMID: 22919122 PMCID: PMC3423226 DOI: 10.1021/cm2028367] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The importance of long wavelength and near infra-red (NIR) imaging has dramatically increased due to the desire to perform whole animal and deep tissue imaging. The adoption of NIR imaging is also growing rapidly due to the availability of targeted biological agents for diagnosis and basic medical research that can be imaged in vivo. The wavelength range of 650-1450 nm falls in the region of the spectrum with the lowest absorption in tissue and therefore enables the deepest tissue penetration. This is the wavelength range we focus on with this review. To operate effectively the imaging agents must both be excited and must emit in this long-wavelength window. We review the agents used both for imaging by absorption, scattering, and excitation (such as fluorescence). Imaging agents comprise both aqueous soluble and insoluble species, both organic and inorganic, and unimolecular and supramolecular constructs. The interest in multi-modal imaging, which involves delivery of actives, targeting, and imaging, requires nanocarriers or supramolecular assemblies. Nanoparticles for diagnostics also have advantages in increasing circulation time and increased imaging brightness relative to single molecule imaging agents. This has led to rapid advances in nanocarriers for long-wavelength, NIR imaging.
Collapse
Affiliation(s)
- Vikram Pansare
- Princeton University, Dept. of Chemical and Biological Engineering, Princeton, NJ 08544
| | | | | | | |
Collapse
|
22
|
Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T, Akamatsu K, Tsuruoka T, Nawafune H. Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6230-6239. [PMID: 20146495 DOI: 10.1021/la9039545] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polypyrrole-palladium (PPy-Pd) nanocomposite was deposited in situ from aqueous solution onto micrometer-sized polystyrene (PS) latex particles. The PS seed particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. PPy-Pd nanocomposite loading onto the PS seed latex particles was systematically controlled over a wide range (10-60 wt %) by changing the weight ratio of the PS latex and PPy-Pd nanocomposite. Pd loading was also controlled between 6 and 33 wt %. The conductivity of pressed pellets increased with the PPy-Pd nanocomposite loading and four-point probe measurements indicated conductivities ranging from 3.0 x 10(-1) to 7.9 x 10(-6) S cm(-1). Hollow capsule and broken egg-shell morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed that the production of elemental Pd and X-ray photoelectron spectroscopy indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. The nanocomposite particles functioned as an efficient catalyst for Suzuki-type coupling reactions in aqueous media for the formation of carbon-carbon bonds.
Collapse
Affiliation(s)
- Syuji Fujii
- Department of Applied Chemistry, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Redondo M, García M, Sánchez de la Blanca E, Pablos M, Carrillo I, González-Tejera M, Enciso E. Polypyrrole nanocoatings of poly(styrene-co-methacrylic acid) particles. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Cingil HE, Balmer JA, Armes SP, Bain PS. Conducting polymer-coated thermally expandable microspheres. Polym Chem 2010. [DOI: 10.1039/c0py00108b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|