1
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Eickhoff L, Keßler M, Stubbs C, Derksen J, Viefhues M, Anselmetti D, Gibson MI, Hoge B, Koop T. Ice nucleation in aqueous solutions of short- and long-chain poly(vinyl alcohol) studied with a droplet microfluidics setup. J Chem Phys 2023; 158:2882248. [PMID: 37093996 DOI: 10.1063/5.0136192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/22/2023] [Indexed: 04/26/2023] Open
Abstract
Poly(vinyl alcohol) (PVA) has ice binding and ice nucleating properties. Here, we explore the dependence of the molecular size of PVA on its ice nucleation activity. For this purpose, we studied ice nucleation in aqueous solutions of PVA samples with molar masses ranging from 370 to 145 000 g mol-1, with a particular focus on oligomer samples with low molar mass. The experiments employed a novel microfluidic setup that is a follow-up on the previous WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) design by Reicher et al. The modified setup introduced and characterized here, termed nanoliter Bielefeld Ice Nucleation ARraY (nanoBINARY), uses droplet microfluidics with droplets (96 ± 4) µm in diameter and a fluorinated continuous oil phase and surfactant. A comparison of homogeneous and heterogeneous ice nucleation data obtained with nanoBINARY to those obtained with WISDOM shows very good agreement, underpinning its ability to study low-temperature ice nucleators as well as homogeneous ice nucleation due to the low background of impurities. The experiments on aqueous PVA solutions revealed that the ice nucleation activity of shorter PVA chains strongly decreases with a decrease in molar mass. While the cumulative number of ice nucleating sites per mass nm of polymers with different molar masses is the same, it becomes smaller for oligomers and completely vanishes for dimer and monomer representatives such as 1,3-butanediol, propan-2-ol, and ethanol, most likely because these molecules become too small to effectively stabilize the critical ice embryo. Overall, our results are consistent with PVA polymers and oligomers acting as heterogeneous ice nucleators.
Collapse
Affiliation(s)
- Lukas Eickhoff
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Mira Keßler
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Christopher Stubbs
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jakob Derksen
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Martina Viefhues
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Berthold Hoge
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Koop
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Cui M, Zhan T, Yang J, Dang H, Yang G, Han H, Liu L, Xu Y. Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. ACS Biomater Sci Eng 2023; 9:1151-1163. [PMID: 36744931 DOI: 10.1021/acsbiomaterials.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryopreservation is currently a key step in translational medicine that could provide new ideas for clinical applications in reproductive medicine, regenerative medicine, and cell therapy. With the advantages of a low concentration of cryoprotectant, fast cooling rate, and easy operation, droplet-based printing for vitrification has received wide attention in the field of cryopreservation. This review summarizes the droplet generation, vitrification, and warming method. Droplet generation techniques such as inkjet printing, microvalve printing, and acoustic printing have been applied in the field of cryopreservation. Droplet vitrification includes direct contact with liquid nitrogen vitrification and droplet solid surface vitrification. The limitations of droplet vitrification (liquid nitrogen contamination, droplet evaporation, gas film inhibition of heat transfer, frosting) and solutions are discussed. Furthermore, a comparison of the external physical field warming method with the conventional water bath method revealed that better applications can be achieved in automated rapid warming of microdroplets. The combination of droplet vitrification technology and external physical field warming technology is expected to enable high-throughput and automated cryopreservation, which has a promising future in biomedicine and regenerative medicine.
Collapse
Affiliation(s)
- Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Jiamin Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hangyu Dang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Guoliang Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Linfeng Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| |
Collapse
|
4
|
Bergmann AM, Donau C, Späth F, Jahnke K, Göpfrich K, Boekhoven J. Evolution and Single‐Droplet Analysis of Fuel‐Driven Compartments by Droplet‐Based Microfluidics. Angew Chem Int Ed Engl 2022; 61:e202203928. [PMID: 35657164 PMCID: PMC9400878 DOI: 10.1002/anie.202203928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander M. Bergmann
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| | - Carsten Donau
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| | - Fabian Späth
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| | - Kevin Jahnke
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Job Boekhoven
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
5
|
Bergmann AM, Donau C, Späth F, Jahnke K, Göpfrich K, Boekhoven J. Evolution and Single‐Droplet Analysis of Fuel‐Driven Compartments by Droplet‐Based Microfluidics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Carsten Donau
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Fabian Späth
- TU München: Technische Universitat Munchen Chemistry GERMANY
| | - Kevin Jahnke
- Max-Planck-Institute for Medical Research: Max-Planck-Institut fur medizinische Forschung Medical Research GERMANY
| | - Kerstin Göpfrich
- Max-Planck-Institute for Medical Research: Max-Planck-Institut fur medizinische Forschung Medical Research GERMANY
| | - Job Boekhoven
- Technical University of Munchen Chemistry Lichtenbergstrasse 485748Germany 85748 Garching GERMANY
| |
Collapse
|
6
|
Tarn MD, Sikora SNF, Porter GCE, Shim JU, Murray BJ. Homogeneous Freezing of Water Using Microfluidics. MICROMACHINES 2021; 12:223. [PMID: 33672200 PMCID: PMC7926757 DOI: 10.3390/mi12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of -35.1 to -36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice-supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m-2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Sebastien N. F. Sikora
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| |
Collapse
|
7
|
Porter GCE, Sikora SNF, Shim JU, Murray BJ, Tarn MD. On-chip density-based sorting of supercooled droplets and frozen droplets in continuous flow. LAB ON A CHIP 2020; 20:3876-3887. [PMID: 32966480 DOI: 10.1039/d0lc00690d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The freezing of supercooled water to ice and the materials which catalyse this process are of fundamental interest to a wide range of fields. At present, our ability to control, predict or monitor ice formation processes is poor. The isolation and characterisation of frozen droplets from supercooled liquid droplets would provide a means of improving our understanding and control of these processes. Here, we have developed a microfluidic platform for the continuous flow separation of frozen from unfrozen picolitre droplets based on differences in their density, thus allowing the sorting of ice crystals and supercooled water droplets into different outlet channels with 94 ± 2% efficiency. This will, in future, facilitate downstream or off-chip processing of the frozen and unfrozen populations, which could include the analysis and characterisation of ice-active materials or the selection of droplets with a particular ice-nucleating activity.
Collapse
Affiliation(s)
- Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
Tarn MD, Sikora SNF, Porter GCE, Wyld BV, Alayof M, Reicher N, Harrison AD, Rudich Y, Shim JU, Murray BJ. On-chip analysis of atmospheric ice-nucleating particles in continuous flow. LAB ON A CHIP 2020; 20:2889-2910. [PMID: 32661539 DOI: 10.1039/d0lc00251h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 μm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around -36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10 000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe.
Collapse
Affiliation(s)
- Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Bethany V Wyld
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Matan Alayof
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Reicher
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
9
|
Huang H, Rey-Bedón C, Yarmush ML, Usta OB. Deep-supercooling for extended preservation of adipose-derived stem cells. Cryobiology 2020; 92:67-75. [PMID: 31751557 PMCID: PMC7195234 DOI: 10.1016/j.cryobiol.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023]
Abstract
Cell preservation is an enabling technology for widespread distribution and applications of mammalian cells. Traditional cryopreservation via slow-freezing or vitrification provides long-term storage but requires cytotoxic cryoprotectants (CPA) and tedious CPA loading/unloading, cooling, and recovering procedures. Hypothermic storage around 0-4 °C is an alternative method but only works for a short period due to its high storage temperatures. Here, we report on the deep-supercooling (DSC) preservation of human adipose-derived stem cells at deep subzero temperatures without freezing for extended storage. Enabled by surface sealing with an immiscible oil phase, cell suspension can be preserved in a liquid state at -13 °C and -16 °C for 7 days with high cell viability, retention of stemness, attachment, and multilineage differentiation capacities. These results demonstrate that DSC is an improved short-term preservation approach to provide off-the-shelf cell sources for booming cell-based medicine and bioengineering.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
| | - Camilo Rey-Bedón
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, United States.
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States.
| |
Collapse
|
10
|
Eickhoff L, Dreischmeier K, Zipori A, Sirotinskaya V, Adar C, Reicher N, Braslavsky I, Rudich Y, Koop T. Contrasting Behavior of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation Promoters. J Phys Chem Lett 2019; 10:966-972. [PMID: 30742446 DOI: 10.1021/acs.jpclett.8b03719] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Several types of natural molecules interact specifically with ice crystals. Small antifreeze proteins (AFPs) adsorb to particular facets of ice crystals, thus inhibiting their growth, whereas larger ice-nucleating proteins (INPs) can trigger the formation of new ice crystals at temperatures much higher than the homogeneous ice nucleation temperature of pure water. It has been proposed that both types of proteins interact similarly with ice and that, in principle, they may be able to exhibit both functions. Here we investigated two naturally occurring antifreeze proteins, one from fish, type-III AFP, and one from beetles, TmAFP. We show that in addition to ice growth inhibition, both can also trigger ice nucleation above the homogeneous freezing temperature, providing unambiguous experimental proof for their contrasting behavior. Our analysis suggests that the predominant difference between AFPs and INPs is their molecular size, which is a very good predictor of their ice nucleation temperature.
Collapse
Affiliation(s)
- Lukas Eickhoff
- Bielefeld University , Faculty of Chemistry , D-33615 Bielefeld , Germany
| | | | - Assaf Zipori
- The Weizmann Institute of Science , Department of Earth and Planetary Sciences , Rehovot 7610001 , Israel
| | - Vera Sirotinskaya
- The Hebrew University of Jerusalem , Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition , Rehovot 7610001 , Israel
| | - Chen Adar
- The Hebrew University of Jerusalem , Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition , Rehovot 7610001 , Israel
| | - Naama Reicher
- The Weizmann Institute of Science , Department of Earth and Planetary Sciences , Rehovot 7610001 , Israel
| | - Ido Braslavsky
- The Hebrew University of Jerusalem , Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition , Rehovot 7610001 , Israel
| | - Yinon Rudich
- The Weizmann Institute of Science , Department of Earth and Planetary Sciences , Rehovot 7610001 , Israel
| | - Thomas Koop
- Bielefeld University , Faculty of Chemistry , D-33615 Bielefeld , Germany
| |
Collapse
|
11
|
Fukuyama M, Tokeshi M, Proskurnin MA, Hibara A. Dynamic wettability of polyethylene glycol-modified poly(dimethylsiloxane) surfaces in an aqueous/organic two-phase system. LAB ON A CHIP 2018; 18:356-361. [PMID: 29264613 DOI: 10.1039/c7lc01121k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We herein report the preparation of a surface that behaves in a hydrophobic manner but does not undergo protein adsorption in an aqueous/organic two-phase system. We found that polyethylene-glycol (PEG)-modified poly(dimethylsiloxane) (PDMS) exhibits hydrophobic properties when the surface is immersed in an organic solution, while the PEG moiety prevents protein adsorption on the PDMS surface in an aqueous solution at high protein concentrations due to the dynamic behaviour of the PEG moiety. As such, we demonstrated the in-well droplet formation of an aqueous solution containing a high protein concentration. In addition, to demonstrate the feasibility of this method in single cell analyses, a droplet array of a liquid medium containing 10% fetal bovine serum and HeLa cells was formed. The preparation of a droplet array using our PDMS-PEG surface to promote in-well droplet formation avoided the use of flow control equipment and complicated microstructures. We therefore expect that the dynamic wettability of our reported surface will be applicable in single cell and biochemical analyses, such as protein characterisation using crystallography or immunoassays.
Collapse
Affiliation(s)
- Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577, Japan.
| | | | | | | |
Collapse
|
12
|
Tarn MD, Sikora SNF, Porter GCE, O’Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:52. [PMID: 29720926 PMCID: PMC5915516 DOI: 10.1007/s10404-018-2069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Mike Adams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | | | - Jesús Vergara-Temprado
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Theodore W. Wilson
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Owlstone Medical Ltd., 127 Science Park, Cambridge, CB4 0GD UK
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
13
|
Li S, Zeng M, Gaule T, McPherson MJ, Meldrum FC. Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702154. [PMID: 28873281 DOI: 10.1002/smll.201702154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Segmented flow microfluidic devices offer an attractive means of studying crystallization processes. However, while they are widely employed for protein crystallization, there are few examples of their use for sparingly soluble compounds due to problems with rapid device fouling and irreproducibility over longer run-times. This article presents a microfluidic device which overcomes these issues, as this is constructed around a novel design of "picoinjector" that facilitates direct injection into flowing droplets. Exploiting a Venturi junction to reduce the pressure within the droplet, it is shown that passive injection of solution from a side-capillary can be achieved in the absence of an applied electric field. The operation of this device is demonstrated for calcium carbonate, where highly reproducible results are obtained over long run-times at high supersaturations. This compares with conventional devices that use a Y-junction to achieve solution loading, where in-channel precipitation of calcium carbonate occurs even at low supersaturations. This work not only opens the door to the use of microfluidics to study the crystallization of low solubility compounds, but the simple design of a passive picoinjector will find wide utility in areas including multistep reactions and investigation of reaction dynamics.
Collapse
Affiliation(s)
- Shunbo Li
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Muling Zeng
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Thembaninkosi Gaule
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael J McPherson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
14
|
Weng L, Tessier SN, Smith K, Edd JF, Stott SL, Toner M. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9229-36. [PMID: 27495973 PMCID: PMC5501280 DOI: 10.1021/acs.langmuir.6b02212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures. The results show that the median freezing temperature of the suspension containing 1 mg/mL of a lyophilized preparation of P. syringae is as high as -4.6 °C for 100% D2O, compared to -8.9 °C for 100% H2O. As the D2O concentration increases every 25% (v/v), the profile of the ice-nucleation kinetics of D2O + H2O mixtures containing 1 mg/mL Snomax shifts by about 1 °C, suggesting an ideal mixing behavior of D2O and H2O. Furthermore, all of the cryoprotectants investigated in this study are found to depress the freezing phenomenon. Both the homogeneous and heterogeneous freezing temperatures of these aqueous solutions depend on the water activity and are independent of the nature of the solute. These findings enrich our fundamental knowledge of D2O-related ice nucleation and suggest that the combination of D2O and ice-nucleating agents could be a potential self-ice-nucleating formulation. The implications of self-nucleation include a higher, precisely controlled ice seeding temperature for slow freezing that would significantly improve the viability of many ice-assisted cryopreservation protocols.
Collapse
Affiliation(s)
- Lindong Weng
- Center for Engineering in Medicine, BioMEMS Resource Center, Harvard Medical School, Boston, Massachusetts 02129, United States
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shannon N. Tessier
- Center for Engineering in Medicine, BioMEMS Resource Center, Harvard Medical School, Boston, Massachusetts 02129, United States
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Shriners Hospital for Children, Boston, Massachusetts 02114, United States
| | - Kyle Smith
- Center for Engineering in Medicine, BioMEMS Resource Center, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Jon F. Edd
- Center for Engineering in Medicine, BioMEMS Resource Center, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shannon L. Stott
- Center for Engineering in Medicine, BioMEMS Resource Center, Harvard Medical School, Boston, Massachusetts 02129, United States
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mehmet Toner
- Center for Engineering in Medicine, BioMEMS Resource Center, Harvard Medical School, Boston, Massachusetts 02129, United States
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Shriners Hospital for Children, Boston, Massachusetts 02114, United States
- Corresponding Author:
| |
Collapse
|
15
|
Usta OB, McCarty WJ, Bale S, Hegde M, Jindal R, Bhushan A, Golberg I, Yarmush ML. Microengineered cell and tissue systems for drug screening and toxicology applications: Evolution of in-vitro liver technologies. TECHNOLOGY 2015; 3:1-26. [PMID: 26167518 PMCID: PMC4494128 DOI: 10.1142/s2339547815300012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism's toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop "organs-on-a-chip". One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results.
Collapse
Affiliation(s)
- O B Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - W J McCarty
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - S Bale
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M Hegde
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - R Jindal
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - A Bhushan
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - I Golberg
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA ; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Song J, Chung M, Kim D. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:016103. [PMID: 25638130 DOI: 10.1063/1.4905184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (-5.1 °C/s) and a low freezing temperature (-14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.
Collapse
Affiliation(s)
- Jin Song
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do 449-728, South Korea
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 121-791, South Korea
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do 449-728, South Korea
| |
Collapse
|
17
|
Kim J, Vanapalli SA. Microfluidic production of spherical and nonspherical fat particles by thermal quenching of crystallizable oils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12307-12316. [PMID: 24000772 DOI: 10.1021/la401338m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the microfluidic production of spherical and nonspherical fat particles from crystallizable oils. The method is based on microfluidic generation of oil droplets at a cross-junction followed by thermal solidification downstream in a microcapillary. We vary the drop production conditions and the device temperature and demonstrate that the size, shape, and crystallinity can be controlled. By measuring thermal gradients in the microcapillary, we show that crystalline fat particles are best produced when the device temperature is below the onset temperature of bulk fat crystallization. To produce monodisperse nonspherical fat particles, we find that the carrier fluid flow rate needs to be sufficiently high to provide strong hydrodynamic forces to transport the confined rod-like particles. We identify the scaling relationship between geometric confinement and particle elasticity necessary to maintain the nonspherical shape. Thus, our study provides guidelines for the production of spherical and nonspherical fat particles that can be potentially used for controlling microstructure, rheology, and drug encapsulation in foods, cosmetics, and pharmaceutical creams that employ crystallizable oils.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| | | |
Collapse
|
18
|
Davey RJ, Schroeder SLM, ter Horst JH. Keimbildung organischer Kristalle aus molekularer Sichtweise. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201204824] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Davey RJ, Schroeder SLM, ter Horst JH. Nucleation of organic crystals--a molecular perspective. Angew Chem Int Ed Engl 2013; 52:2166-79. [PMID: 23307268 DOI: 10.1002/anie.201204824] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/12/2022]
Abstract
The outcome of synthetic procedures for crystalline organic materials strongly depends on the first steps along the molecular self-assembly pathway, a process we know as crystal nucleation. New experimental techniques and computational methodologies have spurred significant interest in understanding the detailed molecular mechanisms by which nuclei form and develop into macroscopic crystals. Although classical nucleation theory (CNT) has served well in describing the kinetics of the processes involved, new proposed nucleation mechanisms are additionally concerned with the evolution of structure and the competing nature of crystallization in polymorphic systems. In this Review, we explore the extent to which CNT and nucleation rate measurements can yield molecular-scale information on this process and summarize current knowledge relating to molecular self-assembly in nucleating systems.
Collapse
Affiliation(s)
- Roger J Davey
- School of Chemical Engineering and Analytical Sciences, University of Manchester, The Mill, Sackville Street, Manchester M13 9PL, UK.
| | | | | |
Collapse
|
20
|
Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci U S A 2013; 110:1309-14. [PMID: 23300286 DOI: 10.1073/pnas.1213603110] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules.
Collapse
|
21
|
Riechers B, Wittbracht F, Hütten A, Koop T. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Phys Chem Chem Phys 2013; 15:5873-87. [DOI: 10.1039/c3cp42437e] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Reinhardt A, Doye JPK, Noya EG, Vega C. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water. J Chem Phys 2012. [DOI: 10.1063/1.4766362] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
23
|
Ota S, Kitagawa H, Takeuchi S. Generation of Femtoliter Reactor Arrays within a Microfluidic Channel for Biochemical Analysis. Anal Chem 2012; 84:6346-50. [DOI: 10.1021/ac301204v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sadao Ota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo,
153-8505, Japan
| | - Hiroaki Kitagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo,
153-8505, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo,
153-8505, Japan
- Exploratory Research for Advanced Technology (ERATO), 4-6-1, Komaba, Meguro-ku,
Tokyo 153-8505, Japan
- Japan Science and Technology Agency (JST), 4-6-1, Komaba, Meguro-ku, Tokyo
153-8505, Japan
| |
Collapse
|
24
|
Peters B. On the coupling between slow diffusion transport and barrier crossing in nucleation. J Chem Phys 2011; 135:044107. [DOI: 10.1063/1.3613674] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
25
|
Pereyra RG, Szleifer I, Carignano MA. Temperature dependence of ice critical nucleus size. J Chem Phys 2011; 135:034508. [DOI: 10.1063/1.3613672] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
26
|
Park S, Wijethunga PAL, Moon H, Han B. On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device. LAB ON A CHIP 2011; 11:2212-21. [PMID: 21603697 PMCID: PMC3138493 DOI: 10.1039/c1lc20111e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
For tissue engineering and regenerative medicine, cryopreservation, a technique for preserving biomaterials in the frozen state with cryoprotective agents (CPAs), is critically important for preserving engineered tissues (ETs) as well as cells necessary to create ETs. As more diverse ETs are produced using various cell types, CPAs and corresponding freeze/thaw (F/T) protocols need to be developed cell/tissue-type specifically. This is because CPAs and F/T protocols that have been successful for one cell/tissue type have proven to be difficult to adapt to other cell/tissue types. The most critical barrier to address this challenge is the inability to screen and identify CPA or CPA mixtures efficiently. In this paper, we developed an "electro-wetting-on-dielectic" (EWOD) based digital microfluidic platform to characterize and screen CPA mixtures cell-type specifically. The feasibility of the EWOD platform was demonstrated by characterizing and optimizing a mixture of dimethlysulfoxide (DMSO) and PBS for human breast cancer cell line as model CPA mixture and cell line. The developed platform multiplexed droplets of DMSO and PBS to create an array of DMSO-PBS mixtures, and mapped the phase change diagram of the mixture. After loading cell suspensions on the platform, the mixture was further screened on-chip for toxicity and cryoprotection. The results were discussed to illustrate the capabilities and limitations of the EWOD platform for cell and tissue-type specific optimization of CPA mixtures and F/T protocols.
Collapse
Affiliation(s)
- Sinwook Park
- School of Mechanical Engineering, Purdue University
| | | | - Hyejin Moon
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University
- Weldon School of Biomedical Engineering, Purdue University
- Corresponding Author: Bumsoo Han, PhD, 585 Purdue Mall, West Lafayette, IN 47906, USA, , Phone: +1-765-494-5626
| |
Collapse
|
27
|
Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron 2011; 26:2707-10. [PMID: 20888750 PMCID: PMC3141325 DOI: 10.1016/j.bios.2010.09.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
Here we present a microfluidic method for the analysis of single cell secretions. The method co-encapsulates cells with microspheres conjugated with capture antibodies and detection fluorescence-labeled antibodies. The secreted substance captured on the microsphere surface and detected via detection antibodies generating a localized fluorescent signal on a microsphere surface. Using this method, CD4+CD25+ regulatory T cells were encapsulated and assayed to detect IL-10 secreting cell in population.
Collapse
Affiliation(s)
- Tania Konry
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St., Boston, MA, USA.
| | | | | | | | | |
Collapse
|
28
|
Pompano RR, Liu W, Du W, Ismagilov RF. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:59-81. [PMID: 21370983 DOI: 10.1146/annurev.anchem.012809.102303] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spatially defined arrays of droplets differ from bulk emulsions in that droplets in arrays can be indexed on the basis of one or more spatial variables to enable identification, monitoring, and addressability of individual droplets. Spatial indexing is critical in experiments with hundreds to millions of unique compartmentalized microscale processes--for example, in applications such as digital measurements of rare events in a large sample, high-throughput time-lapse studies of the contents of individual droplets, and controlled droplet-droplet interactions. This review describes approaches for spatially organizing and manipulating droplets in one-, two-, and three-dimensional structured arrays, including aspiration, laminar flow, droplet traps, the SlipChip, self-assembly, and optical or electrical fields. This review also presents techniques to analyze droplets in arrays and applications of spatially defined arrays, including time-lapse studies of chemical, enzymatic, and cellular processes, as well as further opportunities in chemical, biological, and engineering sciences, including perturbation/response experiments and personal and point-of-care diagnostics.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
29
|
Sgro AE, Chiu DT. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets. LAB ON A CHIP 2010; 10:1873-7. [PMID: 20467690 PMCID: PMC5600195 DOI: 10.1039/c001108h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper describes a platform for cooling microfluidic chips so as to freeze aqueous droplets flowing in oil. Using a whole-chip cooling chamber, we can control the ambient temperature surrounding a microfluidic chip and induce cooling and freezing inside the channels. When combined with a droplet generation and droplet docking chip, this platform allows for the facile freezing of droplets immobilized in resistance-based docks. Depending on the design and shape of the docks, the frozen droplets can either be trapped stably in the docks or be released because deformed non-frozen aqueous droplets turn spherical when frozen, and thus can become dislodged from the docks. Additionally, using this chamber and chip combination we are able to exchange immiscible phases and surfactants surrounding the frozen droplets. The materials and methods are inexpensive and easily accessible to microfluidics researchers, making this a simple addition to an existing microfluidic platform.
Collapse
Affiliation(s)
- Allyson E Sgro
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|
30
|
Theberge A, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew Chem Int Ed Engl 2010; 49:5846-68. [DOI: 10.1002/anie.200906653] [Citation(s) in RCA: 833] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
32
|
Goh L, Chen K, Bhamidi V, He G, Kee NC, Kenis PJ, Zukoski CF, Braatz RD. A Stochastic Model for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems. CRYSTAL GROWTH & DESIGN 2010; 10:2515-2521. [PMID: 20953348 PMCID: PMC2953805 DOI: 10.1021/cg900830y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The measured induction times in droplet-based microfluidic systems are stochastic and are not described by the deterministic population balances or moment equations commonly used to model the crystallization of amino acids, proteins, and active pharmaceutical ingredients. A stochastic model in the form of a Master equation is formulated for crystal nucleation in droplet-based microfluidic systems for any form of nucleation rate expression under conditions of time-varying supersaturation. An analytical solution is provided to describe the (1) time evolution of the probability of crystal nucleation, (2) the average number of crystals that will form at time t for a large number of droplets, (3) the induction time distribution, and (4) the mean, most likely, and median induction times. These expressions are used to develop methods for determining the nucleation kinetics. Nucleation kinetics are determined from induction times measured for paracetamol and lysozyme at high supersaturation in an evaporation-based high-throughput crystallization platform, which give low prediction errors when the nucleation kinetics were used to predict induction times for other experimental conditions. The proposed stochastic model is relevant to homogeneous and heterogeneous crystal nucleation in a wide range of droplet-based and microfluidic crystallization platforms.
Collapse
Affiliation(s)
- Limay Goh
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| | - Kejia Chen
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| | - Venkateswarlu Bhamidi
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| | - Guangwen He
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| | - Nicholas C.S. Kee
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| | - Paul J.A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| | - Charles F. Zukoski
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| | - Richard D. Braatz
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801
| |
Collapse
|
33
|
Stan CA, Schneider GF, Shevkoplyas SS, Hashimoto M, Ibanescu M, Wiley BJ, Whitesides GM. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. LAB ON A CHIP 2009; 9:2293-305. [PMID: 19636459 DOI: 10.1039/b906198c] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This paper describes a microfluidic instrument that produces drops of supercooled water suspended in a moving stream of liquid fluorocarbon, and measures the temperatures at which ice nucleates in the drops. A microfluidic chip containing a monodisperse drop generator and a straight channel with 38 embedded resistance thermometers was placed in contact with a seven-zone temperature-control plate and imaged under a microscope with a high-speed camera. This instrument can record the freezing temperatures of tens of thousands of drops within minutes, with an accuracy of 0.4 degrees C. The ice-nucleation temperatures in approximately 80-microm drops were reported for the freezing of 37 061 drops of pure water, and of 8898 drops of water seeded with silver iodide. Nucleation of ice in pure water was homogenous and occurred at temperatures between -36 and -37.8 degrees C, while water containing silver iodide froze between -10 and -19 degrees C. The instrument recorded the largest sets of individual freezing temperatures (37 061), had the fastest data acquisition rate (75 measurements/s), and the best optical (3 microm) and temporal (70 micros) resolutions among instruments designed to study nucleation of ice. The dendritic growth of ice in 150-microm drops of supercooled water at -35 degrees C was observed and imaged at a rate of 16 000 frames/s.
Collapse
Affiliation(s)
- Claudiu A Stan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 01238, USA
| | | | | | | | | | | | | |
Collapse
|