1
|
Wang HC, You SL. Asymmetric Allylic Amination of Alkyl-Substituted Allylic Carbonates with Pyridones Catalyzed by the Krische Iridium Complex. Org Lett 2024; 26:8632-8635. [PMID: 39331508 DOI: 10.1021/acs.orglett.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
An efficient Ir-catalyzed asymmetric allylic amination reaction of alkyl-substituted allylic carbonates is disclosed. With the Krische iridium complex as the catalyst, asymmetric allylic amination of alkyl-substituted allylic carbonates with pyridones proceeds effectively, affording pyridone derivatives containing a stereocenter α to the nitrogen atom in excellent yields and enantioselectivity (up to 99% yield, 95% ee). This catalytic system broadens the substrate scope of the reaction compared with that of the known catalytic systems. This reaction can also be conducted on a gram scale, further enhancing its potential for synthetic application.
Collapse
Affiliation(s)
- Hu-Chong Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Pieper K, Bleith R, Köhler C, Mika R, Gansäuer A. A Flexible Synthesis of Polypropionates via Diastereodivergent Reductive Ring-Opening of Trisubstituted Secondary Glycidols. Angew Chem Int Ed Engl 2024; 63:e202317525. [PMID: 38108105 DOI: 10.1002/anie.202317525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Polypropionates, characterized by their alternating sequence of stereocenters bearing methyl- and hydroxy-groups, are structurally diverse natural products of utmost importance.[1] Herein, we introduce a novel concept approach towards polypropionate synthesis featuring a diastereodivergent reductive epoxide-opening as a key step. Readily available and stereochemically uniform trisubstituted sec-glycidols serve as branching points for the highly selective synthesis of all isomers of polypropionate building blocks with three or more consecutive stereocenters. Stereodiversification is accomplished by an unprecedented mechanism-control over the stereochemically complementary modification of the epoxide's tertiary C-atom with excellent control of regio- and stereoselectivity. Since our method is not only suited for the preparation of specific targets but also for compound libraries, it will have a great impact on polypropionate synthesis.
Collapse
Affiliation(s)
- Katharina Pieper
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Robin Bleith
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Christian Köhler
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
3
|
Pan ZZ, Li JH, Tian H, Yin L. Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202315293. [PMID: 37955332 DOI: 10.1002/anie.202315293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric β-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.
Collapse
Affiliation(s)
- Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Heng Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Collins S, Sieber JD. Studies Toward Improved Enantiocontrol in the Asymmetric Cu-Catalyzed Reductive Coupling of Ketones and Allenamides: 1,2-Aminoalcohol Synthesis. Org Lett 2023; 25:1425-1430. [PMID: 36847445 DOI: 10.1021/acs.orglett.3c00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein, we report the development of an improved system for the Cu-catalyzed enantioselective reductive coupling of ketones and allenamides through the optimization of the allenamide to avoid an on-cycle rearrangement. High enantioselectivities could be obtained for a variety of ketones. Use of the acyclic allenamides described herein selectively generated anti-diastereomers in contrast to cyclic allenamides that were previously shown to favor the syn-form. A rationale for this change in diastereoselectivity is also presented.
Collapse
Affiliation(s)
- Stephen Collins
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3028, United States
| | - Joshua D Sieber
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3028, United States
| |
Collapse
|
5
|
Zhang Z, Liu J, Gao S, Su B, Chen M. Highly Stereoselective Syntheses of α,α-Disubstituted ( E)- and ( Z)-Crotylboronates. J Org Chem 2023. [PMID: 36791418 DOI: 10.1021/acs.joc.2c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report herein stereoselective syntheses of α,α-disubstituted (E)- and (Z)-crotylboronates. Starting from α-boryl (E)- or (Z)-crotylboronate, base-mediated alkylation occurred exclusively at the position α to the boryl groups to give targeted boronates while retaining the geometries of the alkenes in the starting crotylboronates. Under proper conditions, the resulting α,α-disubstituted crotylboronates underwent aldehyde addition to give allylated products with high stereoselectivities.
Collapse
Affiliation(s)
- Zheye Zhang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Bo Su
- College of Pharmacy, State Key Laboratory of Medical Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
6
|
Jung WO, Yoo M, Migliozzi MM, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed Amination of Alkyl-Substituted Allylic Acetates with Secondary Amines. Org Lett 2022; 24:441-445. [PMID: 34905364 PMCID: PMC8764998 DOI: 10.1021/acs.orglett.1c04135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Robust air-stable cyclometalated π-allyliridium C,O-benzoates modified by (S)-tol-BINAP catalyze the reaction of secondary aliphatic amines with racemic alkyl-substituted allylic acetates to furnish products of allylic amination with high levels of enantioselectivity. Complete branched regioselectivities were observed despite the formation of more highly substituted C-N bonds.
Collapse
Affiliation(s)
- Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Minjin Yoo
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madyson M Migliozzi
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Ho DB, Gargaro S, Klake RK, Sieber JD. Development of a Modified System to Provide Improved Diastereocontrol in the Linear-Selective Cu-Catalyzed Reductive Coupling of Ketones and Allenamides. J Org Chem 2021; 87:2142-2153. [PMID: 34807603 DOI: 10.1021/acs.joc.1c02062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral γ-lactones are prevalent organic architectures found in a large array of natural products. In this work, we disclose the development of a modified catalytic system utilizing a commercially available Cu-phosphite catalyst for the diastereoselective reductive coupling of chiral allenamides and ketones to afford chiral γ-lactone precursors in 80:20 to 99:1 dr.
Collapse
Affiliation(s)
- Dang Binh Ho
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States.,Medicines for All Institute, Virginia Commonwealth University, 737 North Fifth Street, Richmond, Virginia 23219, United States
| | - Samantha Gargaro
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Raphael K Klake
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Joshua D Sieber
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States.,Medicines for All Institute, Virginia Commonwealth University, 737 North Fifth Street, Richmond, Virginia 23219, United States
| |
Collapse
|
8
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021; 60:24096-24106. [PMID: 34608723 DOI: 10.1002/anie.202107004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/14/2022]
Abstract
We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α-CH2 Bpin-substituted crotylboronate. Chiral phosphoric acid (S)-A-catalyzed asymmetric allyl addition with the reagent gave Z-anti-homoallylic alcohols with excellent enantioselectivities and Z-selectivities. When the enantiomeric acid catalyst (R)-A was utilized, the stereoselectivity was completely reversed and E-anti-homoallylic alcohols were obtained with high E-selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA.,Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
9
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
10
|
Agrawal T, Martin RT, Collins S, Wilhelm Z, Edwards MD, Gutierrez O, Sieber JD. Access to Chiral Diamine Derivatives through Stereoselective Cu-Catalyzed Reductive Coupling of Imines and Allenamides. J Org Chem 2021; 86:5026-5046. [PMID: 33724828 PMCID: PMC8025098 DOI: 10.1021/acs.joc.0c02971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Chiral 1,2-diamino compounds are important building blocks in organic chemistry for biological applications and as asymmetric inducers in stereoselective synthesis that are challenging to prepare in a straightforward and stereoselective manner. Herein, we disclose a cost-effective and readily available Cu-catalyzed system for the reductive coupling of a chiral allenamide with N-alkyl substituted aldimines to access chiral 1,2-diamino synthons as single stereoisomers in high yields. The method shows broad reaction scope and high diastereoselectivity and can be easily scaled using standard Schlenk techniques. Mechanistic investigations by density functional theory calculations identified the mechanism and origin of stereoselectivity. In particular, the addition to the imine was shown to be reversible, which has implications toward development of catalyst-controlled stereoselective variants of the identified reductive coupling of imines and allenamides.
Collapse
Affiliation(s)
- Toolika Agrawal
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Robert T. Martin
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Stephen Collins
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Zachary Wilhelm
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Mytia D. Edwards
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Osvaldo Gutierrez
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Joshua D. Sieber
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| |
Collapse
|
11
|
Zhang TY, Deng Y, Wei K, Yang YR. Enantioselective Iridium-Catalyzed Allylic Alkylation of Racemic Branched Alkyl-Substituted Allylic Acetates with Malonates. Org Lett 2021; 23:1086-1089. [PMID: 33480703 DOI: 10.1021/acs.orglett.0c04309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regio- and enantioselective allylic substitution of branched alkyl-substituted allylic acetates employing malonates has been achieved through a process that calls for Krische's π-allyliridium C,O-benzoate catalyst. The protocol reported herein can be applied to a diverse set of branched alkyl substrates that are generally not well tolerated in the other two types of Ir-catalyzed allylation.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
12
|
Sieber JD, Klake RK, Agrawal T, Ho DB, Gargaro SL, Collins S, Edwards MD. Cross‐Coupling of Allenamides and
C
‐Based Nucleophiles by Pd‐Catalyzed Allylic Alkylation. Isr J Chem 2020. [DOI: 10.1002/ijch.202000096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Joshua D. Sieber
- Department of Chemistry Virginia Commonwealth University 1001 West Main Street Richmond VA 23284-3208 USA
| | - Raphael K. Klake
- Department of Chemistry Virginia Commonwealth University 1001 West Main Street Richmond VA 23284-3208 USA
| | - Toolika Agrawal
- Department of Chemistry Virginia Commonwealth University 1001 West Main Street Richmond VA 23284-3208 USA
| | - Dang Binh Ho
- Department of Chemistry Virginia Commonwealth University 1001 West Main Street Richmond VA 23284-3208 USA
| | - Samantha L. Gargaro
- Department of Chemistry Virginia Commonwealth University 1001 West Main Street Richmond VA 23284-3208 USA
| | - Stephen Collins
- Department of Chemistry Virginia Commonwealth University 1001 West Main Street Richmond VA 23284-3208 USA
| | - Mytia D. Edwards
- Department of Chemistry Virginia Commonwealth University 1001 West Main Street Richmond VA 23284-3208 USA
| |
Collapse
|
13
|
Friedrich RM, Friestad GK. Inspirations from tetrafibricin and related polyketides: new methods and strategies for 1,5-polyol synthesis. Nat Prod Rep 2020; 37:1229-1261. [PMID: 32412021 DOI: 10.1039/c9np00070d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2019 Selective synthesis with control of remote stereogenic centers has long been a challenge in organic chemistry. In recent years the interest in this topic has been energized by isolation and synthetic studies of tetrafibricin and other natural products containing 1,5-polyols, such as amphidinol 3, marinomycins, and caylobolide. Here we discuss recent developments in 1,5-polyol synthesis, including an overview of selected bioactive natural products in this class and examples of new synthetic methodologies and strategies dedicated to remote stereocontrol in these structures. To illustrate in greater depth, we review several instructive examples of how these innovations have been applied in synthetic studies on tetrafibricin.
Collapse
Affiliation(s)
- Ryan M Friedrich
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Gregory K Friestad
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
14
|
|
15
|
Shimomura M, Sato M, Azuma H, Sakata J, Tokuyama H. Total Synthesis of (-)-Lepadiformine A via Radical Translocation-Cyclization Reaction. Org Lett 2020; 22:3313-3317. [PMID: 32182082 DOI: 10.1021/acs.orglett.0c00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Total synthesis of (-)-lepadiformine A featuring construction of the 1-azaspiro[4.5]decane skeleton by a highly diastereoselective radical translocation-cyclization reaction of a γ-lactam derivative bearing a chiral butenolide moiety is described. The enantioselective construction of butenolide is conducted via Krische's catalytic asymmetric allylation protocol. After the radical translocation-cyclization reaction, a hydroxymethyl group at the C-13 position was stereoselectively introduced by a one-pot partial reduction-allylation protocol of the unprotected lactam derivative. Finally, the total synthesis is completed by formation of a C ring.
Collapse
Affiliation(s)
- Masashi Shimomura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Manabu Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroki Azuma
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
16
|
Klake RK, Gargaro SL, Gentry SL, Elele SO, Sieber JD. Development of a Strategy for Linear-Selective Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral γ-Hydroxyaldehyde Equivalents. Org Lett 2019; 21:7992-7998. [PMID: 31532684 PMCID: PMC6781103 DOI: 10.1021/acs.orglett.9b02973] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We report the development of a stereoselective
method for the allylation
of ketones utilizing N-substituted allyl equivalents
generated from a chiral allenamide. By choice of the appropriate ligand
for the Cu-catalyst, high linear selectivity can be obtained with
good diastereocontrol. This methodology allows access to chiral γ-hydroxyaldehyde
equivalents that were applied in the synthesis of chiral γ-lactones
and 2,5-disubstitued tetrahydrofurans.
Collapse
Affiliation(s)
- Raphael K Klake
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Samantha L Gargaro
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Skyler L Gentry
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Sharon O Elele
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Joshua D Sieber
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| |
Collapse
|
17
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis. Angew Chem Int Ed Engl 2019; 58:14055-14064. [PMID: 31162793 PMCID: PMC6764920 DOI: 10.1002/anie.201905532] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 12/11/2022]
Abstract
Use of abundant feedstock pronucleophiles in catalytic carbonyl reductive coupling enhances efficiency in target-oriented synthesis. For such reactions, equally inexpensive reductants are desired or, ideally, corresponding hydrogen autotransfer processes may be enacted wherein alcohols serve dually as reductant and carbonyl proelectrophile. As described in this Minireview, these concepts allow reactions that traditionally require preformed organometallic reagents to be conducted catalytically in a byproduct-free manner from inexpensive π-unsaturated precursors.
Collapse
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Cole C. Meyer
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
18
|
Cabrera JM, Krische MJ. Total Synthesis of Clavosolide A via Asymmetric Alcohol-Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angew Chem Int Ed Engl 2019; 58:10718-10722. [PMID: 31166641 PMCID: PMC6656614 DOI: 10.1002/anie.201906259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 11/07/2022]
Abstract
The 20-membered marine macrodiolide clavosolide A is prepared in 7 steps (LLS) in the absence of protecting groups or chiral auxiliaries via enantioselective alcohol-mediated carbonyl addition. In 9 prior total syntheses, 11-34 steps (LLS) were required.
Collapse
Affiliation(s)
- James M. Cabrera
- University of Texas at Austin, Department of Chemistry 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
19
|
Cabrera JM, Krische MJ. Total Synthesis of Clavosolide A via Asymmetric Alcohol‐Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- James M. Cabrera
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
20
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
21
|
Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed N-Allylation of Indoles and Related Azoles with Racemic Branched Alkyl-Substituted Allylic Acetates. Angew Chem Int Ed Engl 2019; 58:7762-7766. [PMID: 30964961 DOI: 10.1002/anie.201902799] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 12/16/2022]
Abstract
Cyclometallated π-allyliridium C,O-benzoates modified with (S)-tol-BINAP, which are stable to air, water, and SiO2 , catalyze highly enantioselective N-allylations of indoles and related azoles. This reaction complements previously reported metal-catalyzed indole allylations in that complete levels of N versus C3 and branched versus linear regioselectivity are observed.
Collapse
Affiliation(s)
- Seung Wook Kim
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Tabitha T Schempp
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
22
|
Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Regio‐ and Enantioselective Iridium‐Catalyzed N‐Allylation of Indoles and Related Azoles with Racemic Branched Alkyl‐Substituted Allylic Acetates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Seung Wook Kim
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Tabitha T. Schempp
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Jason R. Zbieg
- Discovery ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Craig E. Stivala
- Discovery ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Michael J. Krische
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
23
|
Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Catalytic asymmetric allylation of aldehydes with alkenes through allylic C(sp 3)-H functionalization mediated by organophotoredox and chiral chromium hybrid catalysis. Chem Sci 2019; 10:3459-3465. [PMID: 30996935 PMCID: PMC6430092 DOI: 10.1039/c8sc05677c] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
We describe a hybrid system that realizes cooperativity between an organophotoredox acridinium catalyst and a chiral chromium complex catalyst, thereby enabling unprecedented exploitation of unactivated hydrocarbon alkenes as precursors to chiral allylchromium nucleophiles for asymmetric allylation of aldehydes. The reaction proceeds under visible light irradiation at room temperature, affording the corresponding homoallylic alcohols with a diastereomeric ratio >20/1 and up to 99% ee. The addition of Mg(ClO4)2 markedly enhanced both the reactivity and enantioselectivity.
Collapse
Affiliation(s)
- Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Bunkyo-ku , Tokyo 113-0033 , Japan . ;
| | - Shun Tanabe
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Bunkyo-ku , Tokyo 113-0033 , Japan . ;
| | - Hiromu Fuse
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Bunkyo-ku , Tokyo 113-0033 , Japan . ;
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies , Open and Transdisciplinary Research Initiatives , Osaka University , Osaka 565-0871 , Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Bunkyo-ku , Tokyo 113-0033 , Japan . ;
| |
Collapse
|
24
|
Luo G, Xiang M, Krische MJ. Successive Nucleophilic and Electrophilic Allylation for the Catalytic Enantioselective Synthesis of 2,4-Disubstituted Pyrrolidines. Org Lett 2019; 21:2493-2497. [PMID: 30816719 DOI: 10.1021/acs.orglett.9b00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Successive nucleophilic and electrophilic allylation mediated by the bis-Boc-carbonate derived from 2-methylene-1,3-propane diol enables formation of enantiomerically enriched 2,4-disubstituted pyrrolidines. An initial enantioselective iridium-catalyzed transfer hydrogenative carbonyl C-allylation is followed by Tsuji-Trost N-allylation using 2-nitrobenzenesulfonamide. Subsequent Mitsunobu cyclization provides the N-protected 2,4-disubstituted pyrrolidines.
Collapse
Affiliation(s)
- Guoshun Luo
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ming Xiang
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
25
|
Zhang L, Zhang M, Qi C, Yang Z. Synthetic Studies toward Natural Occurred Cyanolide A and Cocosolide. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201904071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Kim SW, Schwartz LA, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed Amination of Racemic Branched Alkyl-Substituted Allylic Acetates with Primary and Secondary Aromatic and Heteroaromatic Amines. J Am Chem Soc 2018; 141:671-676. [PMID: 30571092 DOI: 10.1021/jacs.8b12152] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The air- and water-stable π-allyliridium C,O-benzoate modified by ( S)-tol-BINAP, ( S)-Ir-II, catalyzes highly regio- and enantioselective Tsuji-Trost-type aminations of racemic branched alkyl-substituted allylic acetates using primary or secondary (hetero)aromatic amines. Specifically, in the presence of ( S)-Ir-II (5 mol%) in DME solvent at 60-70 °C, α-methyl allyl acetate 1a (100 mol%) reacts with primary (hetero)aromatic amines 2a-2l (200 mol%) or secondary (hetero)aromatic amines 3a-3l (200 mol%) to form the branched products of allylic amination 4a-4l and 5a-5l, respectively, as single regioisomers in good to excellent yield with uniformly high levels of enantioselectivity. As illustrated by the conversion of heteroaromatic amine 3m to adducts 6a-6g, excellent levels of regio- and enantioselectivity are retained across diverse branched allylic acetates bearing normal alkyl or secondary alkyl substituents. For reactants 3n-3p, which incorporate both primary and secondary aryl amine moieties, regio- and enantioselective amination occurs with complete site-selectivity to furnish adducts 7a-7c. Mechanistic studies involving amination of the enantiomerically enriched, deuterium-labeled acetate 1h corroborate C-N bond formation via outer-sphere addition.
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jason R Zbieg
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Craig E Stivala
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
27
|
Abstract
The field of natural product total synthesis has reached the point where synthetic efficiency has become more important than merely defining a viable (yet less ideal) route to the target molecule. Synthetic efficiency is best represented by the number of steps it takes to finish the target molecule from readily available starting materials, as by reducing the number of steps, all other factors of synthetic efficiency are influenced positively. By comparing several total syntheses from the recent years, the most successful strategies for step efficient syntheses will be highlighted. Each synthesis will be presented using a color-coded synthetic flowchart, in which each step is categorized by a colored box. Five categories of transformations are defined and rated according to their synthetic value. Each class will be signified by different colors so that the reader can quickly see which parts of the synthesis are productive and those that are not.
Collapse
Affiliation(s)
- Johannes Schwan
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 10781 Berlin, Germany.
| | | |
Collapse
|
28
|
Brito GA, Della-Felice F, Luo G, Burns AS, Pilli RA, Rychnovsky SD, Krische MJ. Catalytic Enantioselective Allylations of Acetylenic Aldehydes via 2-Propanol-Mediated Reductive Coupling. Org Lett 2018; 20:4144-4147. [PMID: 29938513 PMCID: PMC6205292 DOI: 10.1021/acs.orglett.8b01776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclometalated π-allyliridium C,O-benzoates modified by ( S)-SEGPHOS or ( S)-Cl,OMe-BIPHEP catalyze enantioselective 2-propanol-mediated reductive couplings of diverse nonmetallic allyl pronucleophiles with the acetylenic aldehyde TIPSC≡CCHO. Absolute stereochemistries of the resulting secondary homoallylic-propargylic alcohols were assigned using Rychnovsky's competing enantioselective conversion method.
Collapse
Affiliation(s)
- Gilmar A Brito
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
- Institute of Chemistry, University of Campinas (UNICAMP) , P.O. Box 6154, CEP, 13083-970 Campinas , São Paulo , Brazil
| | - Franco Della-Felice
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
- Institute of Chemistry, University of Campinas (UNICAMP) , P.O. Box 6154, CEP, 13083-970 Campinas , São Paulo , Brazil
| | - Guoshun Luo
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alexander S Burns
- Department of Chemistry , University of California at Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Ronaldo A Pilli
- Institute of Chemistry, University of Campinas (UNICAMP) , P.O. Box 6154, CEP, 13083-970 Campinas , São Paulo , Brazil
| | - Scott D Rychnovsky
- Department of Chemistry , University of California at Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
29
|
Kumar GS, Singh D, Kumar M, Kapur M. Palladium-Catalyzed Aerobic Oxidative Coupling of Allylic Alcohols with Anilines in the Synthesis of Nitrogen Heterocycles. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00287] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Diksha Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
30
|
Chen P, Wu Y, Zhu S, Jiang H, Ma Z. Ir-Catalyzed reactions in natural product synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00665a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review highlights the recent applications of Ir-catalyzed reactions in the total synthesis of natural products.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Yuecheng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
31
|
Lee M, Nguyen M, Brandt C, Kaminsky W, Lalic G. Catalytic Hydroalkylation of Allenes. Angew Chem Int Ed Engl 2017; 56:15703-15707. [PMID: 29052303 DOI: 10.1002/anie.201709144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/13/2017] [Indexed: 11/06/2022]
Abstract
We have developed a catalytic method for the hydroalkylation of allenes using alkyl triflates as electrophiles and silane as a hydride source. The reaction has an excellent substrate scope and is compatible with a wide range of functional groups, including esters, aryl halides, aryl boronic esters, sulfonamides, alkyl tosylates, and alkyl bromides. We found evidence for a reaction mechanism that involves unusual dinuclear copper ally complexes as catalytic intermediates. The unusual structure of these complexes provides a rationale for their unexpected reactivity.
Collapse
Affiliation(s)
- Mitchell Lee
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Mary Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Chance Brandt
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
32
|
Lee M, Nguyen M, Brandt C, Kaminsky W, Lalic G. Catalytic Hydroalkylation of Allenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitchell Lee
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | - Mary Nguyen
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | - Chance Brandt
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | - Werner Kaminsky
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | - Gojko Lalic
- Department of Chemistry University of Washington Seattle WA 98195 USA
| |
Collapse
|
33
|
Schwartz LA, Krische MJ. Hydrogen-Mediated C−C Bond Formation: Stereo- and Site-Selective Chemical Synthesis Beyond Stoichiometric Organometallic Reagents. Isr J Chem 2017. [DOI: 10.1002/ijch.201700088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leyah A. Schwartz
- University of Texas at Austin; Department of Chemistry, Welch Hall (A5300); 105 E 24 St. Austin TX 78712 USA
| | - Michael J. Krische
- University of Texas at Austin; Department of Chemistry, Welch Hall (A5300); 105 E 24 St. Austin TX 78712 USA
| |
Collapse
|
34
|
Kim SW, Zhang W, Krische MJ. Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier. Acc Chem Res 2017; 50:2371-2380. [PMID: 28792731 DOI: 10.1021/acs.accounts.7b00308] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merging the characteristics of transfer hydrogenation and carbonyl addition, we have developed a new class of catalytic enantioselective C-C bond formations. In these processes, hydrogen transfer between alcohols and π-unsaturated reactants generates carbonyl-organometal pairs that combine to deliver products of addition. On the basis of this mechanistic paradigm, lower alcohols are converted directly to higher alcohols in the absence of premetalated reagents or discrete alcohol-to-carbonyl redox reactions. In certain cases, due to a pronounced kinetic preference for primary versus secondary alcohol dehydrogenation, diols and higher polyols are found to engage in catalytic stereo- and site-selective C-C bond formation-a capability that further enhances efficiency by enabling skeletal construction events without extraneous manipulations devoted to the installation and removal of protecting groups. While this Account focuses on redox-neutral couplings of alcohols, corresponding aldehyde reductive couplings mediated by 2-propanol were developed in parallel for most of the catalytic transformations reported herein. Mechanistically, two distinct classes of alcohol C-H functionalizations have emerged, which are distinguished by the mode of pronucleophile activation, specifically, processes wherein alcohol oxidation is balanced by (a) π-bond hydrometalation or (b) C-X bond reductive cleavage. Each pathway offers access to allylmetal or allenylmetal intermediates and, therefrom, enantiomerically enriched homoallylic or homopropargylic alcohol products, respectively. In the broadest terms, carbonyl addition mediated by premetalated reagents has played a central role in synthetic organic chemistry for well over a century, but the requisite organometallic reagents pose issues of safety, require multistep syntheses, and generate stoichiometric quantities of metallic byproducts. The concepts and catalytic processes described in this Account, conceived and developed wholly within the author's laboratory, signal a departure from the use of stoichiometric organometallic reagents in carbonyl addition. Rather, they reimagine carbonyl addition as a hydrogen autotransfer process or cross-coupling in which alcohol reactants, by virtue of their native reducing ability, drive the generation of transient organometallic nucleophiles and, in doing so, serve dually as carbonyl proelectrophiles. The catalytic allylative and propargylative transformations developed to date display capabilities far beyond their classical counterparts, and their application to the total synthesis of type-I polyketide natural products have evoked a step-change in efficiency. More importantly, the present data suggest that diverse transformations traditionally reliant on premetalated reagents may now be conducted catalytically without stoichiometric metals. This Account provides the reader and potential practitioner with a catalog of enantioselective alcohol-mediated carbonyl additions-a user's guide, 10-year retrospective, and foundation for future work in this emerging area of catalytic C-C bond formation.
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Chemistry, University of Texas at Austin, Welch
Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Wandi Zhang
- Department of Chemistry, University of Texas at Austin, Welch
Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, Welch
Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
35
|
Haydl AM, Breit B, Liang T, Krische MJ. Alkynes as Electrophilic or Nucleophilic Allylmetal Precursors in Transition-Metal Catalysis. Angew Chem Int Ed Engl 2017; 56:11312-11325. [PMID: 28605083 PMCID: PMC5637541 DOI: 10.1002/anie.201704248] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/06/2022]
Abstract
Diverse late transition metal catalysts convert terminal or internal alkynes into transient allylmetal species that display electrophilic or nucleophilic properties. Whereas classical methods for the generation of allylmetal species often form stoichiometric by-products, the recent use of alkynes as allylmetal precursors enables completely atom-efficient catalytic processes to be carried out, including enantioselective transformations.
Collapse
Affiliation(s)
- Alexander M Haydl
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg i. Brsg., Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg i. Brsg., Germany
| | - Tao Liang
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Welch Hall, A5300, Austin, TX, 78712-1167, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Welch Hall, A5300, Austin, TX, 78712-1167, USA
| |
Collapse
|
36
|
Katahara S, Kobayashi S, Fujita K, Matsumoto T, Sato T, Chida N. Reductive Approach to Nitrones from N-Siloxyamides and N-Hydroxyamides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Seiya Katahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Shoichiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Kanami Fujita
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Tsutomu Matsumoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| |
Collapse
|
37
|
Haydl AM, Breit B, Liang T, Krische MJ. Alkine als alternativer Einstieg in elektrophile und nukleophile Übergangsmetall-katalysierte Allylierungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704248] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander M. Haydl
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg i. Brsg. Deutschland), -frei burg.de
| | - Bernhard Breit
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg i. Brsg. Deutschland), -frei burg.de
| | - Tao Liang
- Department of Chemistry; University of Texas at Austin; 105 E 24th St. Welch Hall, A5300 Austin TX 78712-1167 USA
| | - Michael J. Krische
- Department of Chemistry; University of Texas at Austin; 105 E 24th St. Welch Hall, A5300 Austin TX 78712-1167 USA
| |
Collapse
|
38
|
Barbier-type anti-Diastereo- and Enantioselective Synthesis of β-Trimethylsilyl, Fluorinated Methyl, Phenylthio Homoallylic Alcohols. Sci Rep 2017; 7:4873. [PMID: 28687768 PMCID: PMC5501818 DOI: 10.1038/s41598-017-04986-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Catalytic Asymmetric allylation of aldehydes with functionalized allylic reagents represents an important process in synthetic organic chemistry because the resulting chiral homoallylic alcohols are valuable building blocks in diverse research fields. Despite the obvious advantages of allyl halides as allylation reagent under Barbier-type conditions, catalytic asymmetric version using functionalized allyl halides remains largely underdeveloped. Here, we addressed this issue by employing a chromium-catalysis system. The use of readily available allyl bromides with γ substitutions including trimethylsilyl, fluorinated methyl and phenylthio groups provided an efficient and convenient method to introduce those privileged functionalities into homoallylic alcohols. Good yields, high anti-diastereo- and excellent enantioselectivities were achieved under mild reaction conditions.
Collapse
|
39
|
Markley JL, Hanson PR. P-Tether-Mediated, Iterative S N2'-Cuprate Alkylation Strategy to Skipped Polyol Stereotetrads: Utility of an Oxidative "Function Switch" with Phosphite-Borane Tethers. Org Lett 2017; 19:2556-2559. [PMID: 28471180 DOI: 10.1021/acs.orglett.7b00852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a P-tether-mediated, iterative SN2'-cuprate alkylation protocol for the formation of 1,3-skipped polyol stereotetrads is reported. This two-directional synthetic strategy builds molecular complexity from simple, readily prepared C2-symmetric dienediols and unites the chemistry of both temporary phosphite-borane tethers and temporary phosphate tethers-through an oxidative "function switch" of the P-tether itself-to generate intermediates that were previously inaccessible via either method alone.
Collapse
Affiliation(s)
- Jana L Markley
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66054-7582, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66054-7582, United States
| |
Collapse
|
40
|
Kim SW, Lee W, Krische MJ. Asymmetric Allylation of Glycidols Mediated by Allyl Acetate via Iridium-Catalyzed Hydrogen Transfer. Org Lett 2017; 19:1252-1254. [PMID: 28221810 PMCID: PMC5651674 DOI: 10.1021/acs.orglett.7b00343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycidols prepared via Sharpless asymmetric epoxidation participate in asymmetric redox-neutral carbonyl allylation with good levels of catalyst-directed diastereoselectivity. Equally stereoselective allylations may be performed from the aldehyde oxidation level using 2-propanol as the terminal reductant. An epoxide ring-opening reaction using AlMe3-n-BuLi is used to prepare the propionate-based stereotetrad spanning C17-C23 of dictyostatin, illustrating how this method may be applied to polyketide construction.
Collapse
Affiliation(s)
- Seung Wook Kim
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712
| | - Wonchul Lee
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712
| |
Collapse
|
41
|
Mohan N, Ramesh R. Transfer hydrogenation of ketones catalysed by half-sandwich (η6
-p
-cymene) ruthenium(II) complexes incorporating benzoylhydrazone ligands. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nanjan Mohan
- Centre for Organometallic Chemistry, School of Chemistry; Bharathidasan University; Tiruchirappalli Tamil Nadu India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry; Bharathidasan University; Tiruchirappalli Tamil Nadu India
| |
Collapse
|
42
|
Rh(III)-catalyzed double molecular alkyne imine C–H activation: a facile and efficient synthesis of functionalized acridine compounds. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Feng J, Kasun ZA, Krische MJ. Enantioselective Alcohol C-H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. J Am Chem Soc 2016; 138:5467-78. [PMID: 27113543 PMCID: PMC4871165 DOI: 10.1021/jacs.6b02019] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development and application of stereoselective and site-selective catalytic methods that directly convert lower alcohols to higher alcohols are described. These processes merge the characteristics of transfer hydrogenation and carbonyl addition, exploiting alcohols and π-unsaturated reactants as redox pairs, which upon hydrogen transfer generate transient carbonyl-organometal pairs en route to products of C-C coupling. Unlike classical carbonyl additions, stoichiometric organometallic reagents and discrete alcohol-to-carbonyl redox reactions are not required. Additionally, due to a kinetic preference for primary alcohol dehydrogenation, the site-selective modification of glycols and higher polyols is possible, streamlining or eliminating use of protecting groups. The total syntheses of several iconic type I polyketide natural products were undertaken using these methods. In each case, the target compounds were prepared in significantly fewer steps than previously achieved.
Collapse
Affiliation(s)
- Jiajie Feng
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Zachary A. Kasun
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
44
|
Katahara S, Kobayashi S, Fujita K, Matsumoto T, Sato T, Chida N. An Iridium-Catalyzed Reductive Approach to Nitrones from N-Hydroxyamides. J Am Chem Soc 2016; 138:5246-9. [DOI: 10.1021/jacs.6b02324] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seiya Katahara
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shoichiro Kobayashi
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kanami Fujita
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tsutomu Matsumoto
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
45
|
Zhang H, Chen J, Zhao XM. Enantioselective synthesis of fluorinated branched allylic compounds via Ir-catalyzed allylations of functionalized fluorinated methylene derivatives. Org Biomol Chem 2016; 14:7183-6. [DOI: 10.1039/c6ob01246a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of the functionalized monofluorinated methylenes into the allylic fragment under Ir catalysis gave the fluorinated branched allyl products in good to high yields with excellent regio- and enantioselectivities.
Collapse
Affiliation(s)
- Hongbo Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai 200092
- P. R. China
| | - Jiteng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai 200092
- P. R. China
| | - Xiao-Ming Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai 200092
- P. R. China
| |
Collapse
|
46
|
Shin I, Krische MJ. Asymmetric Iridium-Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition. Top Curr Chem (Cham) 2016; 372:85-101. [PMID: 26187028 PMCID: PMC4716893 DOI: 10.1007/128_2015_651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions.
Collapse
Affiliation(s)
- Inji Shin
- Department of Chemistry, University of Texas at Austin, 1 University Station - A5300, Austin, TX, 78712-1167, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 1 University Station - A5300, Austin, TX, 78712-1167, USA.
| |
Collapse
|
47
|
Liu W, Zhao X. Synthesis of allylic sulfonic acids via regioselective Pd-catalyzed allylic substitutions of Na 2 SO 3. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Affiliation(s)
- Dong Wang
- ISM, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
49
|
Liu L, Wang J, Zhou H. Selectfluor-Promoted Sequential Reactions via Allene Intermediates: Metal-Free Construction of Fused Polycyclic Skeletons. J Org Chem 2015; 80:4749-53. [DOI: 10.1021/acs.joc.5b00261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Le Liu
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People’s Rupublic of China
- Department
of Chemistry, Zhejiang University (Campus Xixi), Hangzhou 310028, People’s Republic of China
| | - Jianbo Wang
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People’s Rupublic of China
| | - Hongwei Zhou
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People’s Rupublic of China
- Department
of Chemistry, Zhejiang University (Campus Xixi), Hangzhou 310028, People’s Republic of China
| |
Collapse
|
50
|
Gao N, Zhao XM, Cai CS, Cai JW. Enantioselective synthesis of monofluorinated allylic compounds: Pd-catalyzed asymmetric allylations of dimethyl 2-fluoromalonate using new N-sulfinyl-based ligands. Org Biomol Chem 2015; 13:9551-8. [DOI: 10.1039/c5ob01434d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using both new chiralS,N-ligand and dimethyl 2-fluoromalonate, Pd-catalyzed asymmetric allylic substitutions of allylic acetates with dimethyl 2-fluoromalonate were accomplished. This method produced monofluorinated allylation products in up to high yield with excellent enantioselectivity.
Collapse
Affiliation(s)
- Ning Gao
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- 200092 Shanghai
- P.R. China
| | - Xiao-Ming Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- 200092 Shanghai
- P.R. China
| | - Cheng-Si Cai
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- 200092 Shanghai
- P.R. China
| | - Jue-Wang Cai
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- 200092 Shanghai
- P.R. China
| |
Collapse
|