1
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
2
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Tsao KK, Lee AC, Racine KÉ, Keillor JW. Site-Specific Fluorogenic Protein Labelling Agent for Bioconjugation. Biomolecules 2020; 10:E369. [PMID: 32121143 PMCID: PMC7175205 DOI: 10.3390/biom10030369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/29/2023] Open
Abstract
Many clinically relevant therapeutic agents are formed from the conjugation of small molecules to biomolecules through conjugating linkers. In this study, two novel conjugating linkers were prepared, comprising a central coumarin core, functionalized with a dimaleimide moiety at one end and a terminal alkyne at the other. In our first design, we developed a protein labelling method that site-specifically introduces an alkyne functional group to a dicysteine target peptide tag that was genetically fused to a protein of interest. This method allows for the subsequent attachment of azide-functionalized cargo in the facile synthesis of novel protein-cargo conjugates. However, the fluorogenic aspect of the reaction between the linker and the target peptide was less than we desired. To address this shortcoming, a second linker reagent was prepared. This new design also allowed for the site-specific introduction of an alkyne functional group onto the target peptide, but in a highly fluorogenic and rapid manner. The site-specific addition of an alkyne group to a protein of interest was thus monitored in situ by fluorescence increase, prior to the attachment of azide-functionalized cargo. Finally, we also demonstrated that the cargo can also be attached first, in an azide/alkyne cycloaddition reaction, prior to fluorogenic conjugation with the target peptide-fused protein.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.K.T.); (A.C.L.); (K.É.R.)
| |
Collapse
|
4
|
Hu G, Jia H, Zhao L, Cho DH, Fang J. Small molecule fluorescent probes of protein vicinal dithiols. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Strmiskova M, Tsao K, Keillor JW. Rational design of a highly reactive dicysteine peptide tag for fluorogenic protein labelling. Org Biomol Chem 2019; 16:6332-6340. [PMID: 30131994 DOI: 10.1039/c8ob01417e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rationally designed libraries of a short helical peptide sequence containing two cysteine residues were screened kinetically for their reactivity towards complementary dimaleimide fluorogens. This screening revealed variant sequences whose reactivity has been increased by an order of magnitude relative to the original sequence. The most reactive engineered sequences feature mutant residues bearing positive charges, suggesting the pKa values of the adjacent thiol groups have been significantly lowered, through electrostatic stabilization of the thiolate ionization state. pH-Rate profiles measured for several mutant sequences support this mechanism of rate enhancement. The practical utility of the enhanced reactivity of the final engineered dicysteine tag ('dC10*') was then demonstrated in the fluorogenic intracellular labelling of histone H2B in living HeLa cells.
Collapse
Affiliation(s)
- Miroslava Strmiskova
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada.
| | | | | |
Collapse
|
6
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
7
|
Raycroft MAR, Racine KÉ, Rowley CN, Keillor JW. Mechanisms of Alkyl and Aryl Thiol Addition to N-Methylmaleimide. J Org Chem 2018; 83:11674-11685. [DOI: 10.1021/acs.joc.8b01638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mark A. R. Raycroft
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Karl É. Racine
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N. Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
|
9
|
Chen Y, Tsao K, Acton SL, Keillor JW. A Green BODIPY-Based, Super-Fluorogenic, Protein-Specific Labelling Agent. Angew Chem Int Ed Engl 2018; 57:12390-12394. [DOI: 10.1002/anie.201805482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yingche Chen
- Department of Chemistry; University of Ottawa; 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| | - Kelvin Tsao
- Department of Chemistry; University of Ottawa; 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| | - Sydney L. Acton
- Department of Chemistry; University of Ottawa; 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| | - Jeffrey W. Keillor
- Department of Chemistry; University of Ottawa; 10 Marie-Curie Ottawa ON K1N 6N5 Canada
| |
Collapse
|
10
|
Iegre J, Gaynord JS, Robertson NS, Sore HF, Hyvönen M, Spring DR. Two-Component Stapling of Biologically Active and Conformationally Constrained Peptides: Past, Present, and Future. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jessica Iegre
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | | | | | - Hannah F. Sore
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | - Marko Hyvönen
- Department of Biochemistry; University of Cambridge; Cambridge CB2 1GA UK
| | - David R. Spring
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| |
Collapse
|
11
|
Renault K, Fredy JW, Renard PY, Sabot C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Bioconjug Chem 2018; 29:2497-2513. [PMID: 29954169 DOI: 10.1021/acs.bioconjchem.8b00252] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since their first use in bioconjugation more than 50 years ago, maleimides have become privileged chemical partners for the site-selective modification of proteins via thio-Michael addition of biothiols and, to a lesser extent, via Diels-Alder (DA) reactions with biocompatible dienes. Prominent examples include immunotoxins and marketed maleimide-based antibody-drug conjugates (ADCs) such as Adcetris, which are used in cancer therapies. Among the key factors in the success of these groups is the availability of several maleimides that can be N-functionalized by fluorophores, affinity tags, spin labels, and pharmacophores, as well as their unique reactivities in terms of selectivity and kinetics. However, maleimide conjugate reactions have long been considered irreversible, and only recently have systematic studies regarding their reversibility and stability toward hydrolysis been reported. This review provides an overview of the diverse applications for maleimides in bioconjugation, highlighting their strengths and weaknesses, which are being overcome by recent strategies. Finally, the fluorescence quenching ability of maleimides was leveraged for the preparation of fluorogenic probes, which are mainly used for the specific detection of thiol analytes. A summary of the reported structures, their photophysical features, and their relative efficiencies is discussed in the last part of the review.
Collapse
Affiliation(s)
- Kévin Renault
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| | - Jean Wilfried Fredy
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| | - Pierre-Yves Renard
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| | - Cyrille Sabot
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| |
Collapse
|
12
|
Kormos A, Koehler C, Fodor EA, Rutkai ZR, Martin ME, Mező G, Lemke EA, Kele P. Bistetrazine-Cyanines as Double-Clicking Fluorogenic Two-Point Binder or Crosslinker Probes. Chemistry 2018; 24:8841-8847. [PMID: 29676491 DOI: 10.1002/chem.201800910] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Fluorogenic probes can be used to minimize the background fluorescence of unreacted and nonspecifically adsorbed reagents. The preceding years have brought substantial developments in the design and synthesis of bioorthogonally applicable fluorogenic systems mainly based on the quenching effects of azide and tetrazine moieties. The modulation power exerted by these bioorthogonal motifs typically becomes less efficient on more conjugated systems; that is, on probes with redshifted emission wavelength. To reach efficient quenching, that is, fluorogenicity, even in the red range of the spectrum, we present the synthesis, fluorogenic, and conjugation characterization of bistetrazine-cyanine probes with emission maxima between 600 and 620 nm. The probes can bind to genetically altered proteins harboring an 11-amino acid peptide tag with two appending cyclooctyne motifs. Moreover, we also demonstrate the use of these bistetrazines as fluorogenic, covalent cross-linkers between monocyclooctynylated proteins.
Collapse
Affiliation(s)
- Attila Kormos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Christine Koehler
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128, Mainz, Germany.,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Eszter A Fodor
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Zsófia R Rutkai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Madison E Martin
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Pázmány Péter sétány 1a, 1117, Budapest, Hungary
| | - Edward A Lemke
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128, Mainz, Germany.,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Péter Kele
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., 1117, Budapest, Hungary
| |
Collapse
|
13
|
Górka AK, Górecki A, Dziedzicka-Wasylewska M. Site-directed fluorescence labeling of intrinsically disordered region of human transcription factor YY1: The inhibitory effect of zinc ions. Protein Sci 2017; 27:390-401. [PMID: 29024161 DOI: 10.1002/pro.3323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022]
Abstract
Site-specific labeling of proteins with fluorescent dyes allows the study of protein structure and function using a wide variety of fluorescent techniques. However, specific labeling is not trivial in the case of proteins containing multiple cysteine residues. An example of such a protein is transcription factor Yin Yang 1, which comprises eight cysteine residues in four C2H2 type zinc fingers in the C-terminal region. Kinetic measurements of the labeling process allowed us to develop preparative labeling of three cysteine residues differently introduced to the N-terminal, disordered fragment of the protein. The protocol developed in the present study allows to prepare the protein with high recovery yield and high selectivity of the labeling. This was confirmed using proteolytic digestion and spectroscopic approach. The labeling process was significantly affected by the presence of zinc ions and was dependent on the localization of the engineered cysteine residue. This is the first known example of the use of cysteine metal protection and labeling (CyMPL) technology for the labeling of protein regions with no stable secondary structures.
Collapse
Affiliation(s)
- Adam Kazimierz Górka
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
14
|
Tran PT, Larsen CØ, Røndbjerg T, De Foresta M, Kunze MBA, Marek A, Løper JH, Boyhus LE, Knuhtsen A, Lindorff-Larsen K, Pedersen DS. Diversity-Oriented Peptide Stapling: A Third Generation Copper-Catalysed Azide-Alkyne Cycloaddition Stapling and Functionalisation Strategy. Chemistry 2017; 23:3490-3495. [DOI: 10.1002/chem.201700128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Phuong Thu Tran
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Christian Ørnbøl Larsen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Tobias Røndbjerg
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Martina De Foresta
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Micha B. A. Kunze
- Structural Biology and NMR Laboratory; Department of Biology; University of Copenhagen; Ole Maaloes Vej 5 2200 Copenhagen Denmark
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; 16610 Prague 6 Czech Republic
| | - Jacob Hartvig Løper
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Lotte-Emilie Boyhus
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory; Department of Biology; University of Copenhagen; Ole Maaloes Vej 5 2200 Copenhagen Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
15
|
Walker AS, Rablen PX, Schepartz A. Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH. J Am Chem Soc 2016; 138:7143-50. [PMID: 27163487 PMCID: PMC5381806 DOI: 10.1021/jacs.6b03422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorogenic dyes such as FlAsH and ReAsH are used widely to localize, monitor, and characterize proteins and their assemblies in live cells. These bis-arsenical dyes can become fluorescent when bound to a protein containing four proximal Cys thiols-a tetracysteine (Cys4) motif. Yet the mechanism by which bis-arsenicals become fluorescent upon binding a Cys4 motif is unknown, and this nescience limits more widespread application of this tool. Here we probe the origins of ReAsH fluorogenicity using both computation and experiment. Our results support a model in which ReAsH fluorescence depends on the relative orientation of the aryl chromophore and the appended arsenic chelate: the fluorescence is rotamer-restricted. Our results do not support a model in which fluorogenicity arises from the relief of ring strain. The calculations identify those As-aryl rotamers that support fluorescence and those that do not and correlate well with prior experiments. The rotamer-restricted model we propose is supported further by biophysical studies: the excited-state fluorescence lifetime of a complex between ReAsH and a protein bearing a high-affinity Cys4 motif is longer than that of ReAsH-EDT2, and the fluorescence intensity of ReAsH-EDT2 increases in solvents of increasing viscosity. By providing a higher resolution view of the structural basis for fluorogenicity, these results provide a clear strategy for the design of more selective bis-arsenicals and better-optimized protein targets, with a concomitant improvement in the ability to characterize previously invisible protein conformational changes and assemblies in live cells.
Collapse
Affiliation(s)
- Allison S. Walker
- Department of Chemistry, Yale University, 225 Prospect St., New Haven CT 06520
| | - Paul X. Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA 19081
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect St., New Haven CT 06520
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 225 Prospect St., New Haven CT 06520
| |
Collapse
|
16
|
Chen Y, Tsao K, De Francesco É, Keillor JW. Ring Substituent Effects on the Thiol Addition and Hydrolysis Reactions of N-Arylmaleimides. J Org Chem 2015; 80:12182-92. [DOI: 10.1021/acs.joc.5b02036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingche Chen
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Kelvin Tsao
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Élise De Francesco
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey W. Keillor
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
17
|
Assem N, Ferreira DJ, Wolan DW, Dawson PE. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502607] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Assem N, Ferreira DJ, Wolan DW, Dawson PE. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling. Angew Chem Int Ed Engl 2015; 54:8665-8. [PMID: 26096515 DOI: 10.1002/anie.201502607] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 11/09/2022]
Abstract
Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags.
Collapse
Affiliation(s)
- Naila Assem
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA (USA)
| | - David J Ferreira
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA (USA)
| | - Dennis W Wolan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA (USA)
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA (USA).
| |
Collapse
|
19
|
Pan X, Liang Z, Li J, Wang S, Kong F, Xu K, Tang B. Active-Site-Matched Fluorescent Probes for Rapid and Direct Detection of Vicinal-Sulfydryl-Containing Peptides/Proteins in Living Cells. Chemistry 2014; 21:2117-22. [DOI: 10.1002/chem.201405349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Indexed: 11/10/2022]
|
20
|
Chen Y, Clouthier CM, Tsao K, Strmiskova M, Lachance H, Keillor JW. Coumarin-based fluorogenic probes for no-wash protein labeling. Angew Chem Int Ed Engl 2014; 53:13785-8. [PMID: 25314130 DOI: 10.1002/anie.201408015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 12/25/2022]
Abstract
A fluorescent protein-labeling strategy was developed in which a protein of interest (POI) is genetically tagged with a short peptide sequence presenting two Cys residues that can selectively react with synthetic fluorogenic reagents. These fluorogens comprise a fluorophore and two maleimide groups that quench fluorescence until they both undergo thiol addition during the labeling reaction. Novel fluorogens were prepared and kinetically characterized to demonstrate the importance of a methoxy substituent on the maleimide in suppressing reactivity with glutathione, an intracellular thiol, while maintaining reactivity with the dithiol tag. This system allows the rapid and specific labeling of intracellular POIs.
Collapse
Affiliation(s)
- Yingche Chen
- Department of Chemistry, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5 (Canada)
| | | | | | | | | | | |
Collapse
|
21
|
Chen Y, Clouthier CM, Tsao K, Strmiskova M, Lachance H, Keillor JW. Coumarin-Based Fluorogenic Probes for No-Wash Protein Labeling. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Youziel J, Akhbar AR, Aziz Q, Smith MEB, Caddick S, Tinker A, Baker JR. Bromo- and thiomaleimides as a new class of thiol-mediated fluorescence 'turn-on' reagents. Org Biomol Chem 2014; 12:557-60. [PMID: 24297212 DOI: 10.1039/c3ob42141d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bromo- and thiomaleimides are shown to serve as highly effective quenchers of a covalently attached fluorophore. Reactions with thiols that lead to removal of the maleimide conjugation, or detachment of the fluorophore from the maleimide, result in 'turn-on' of the fluorescence. These reagents thus offer opportunities in thiol sensing and intracellular reporting.
Collapse
Affiliation(s)
- Judith Youziel
- Department of Chemistry, University College London, 20 Gordon St, London, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lu Y, Ngo Ndjock Mbong G, Liu P, Chan C, Cai Z, Weinrich D, Boyle AJ, Reilly RM, Winnik MA. Synthesis of Polyglutamide-Based Metal-Chelating Polymers and Their Site-Specific Conjugation to Trastuzumab for Auger Electron Radioimmunotherapy. Biomacromolecules 2014; 15:2027-37. [DOI: 10.1021/bm500174p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yijie Lu
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ghislaine Ngo Ndjock Mbong
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Peng Liu
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Conrad Chan
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Zhongli Cai
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Dirk Weinrich
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Amanda J. Boyle
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Raymond M. Reilly
- Department
of Pharmaceutical Sciences, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
- Department
of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, Ontario M5T 1W7, Canada
- Toronto
General Research Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Oteng-Pabi SK, Pardin C, Stoica M, Keillor JW. Site-specific protein labelling and immobilization mediated by microbial transglutaminase. Chem Commun (Camb) 2014; 50:6604-6. [DOI: 10.1039/c4cc00994k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial transglutaminase (mTG) mediates site-specific propargylation of target proteins, allowing their subsequent modification in in vitro bio-conjugation applications.
Collapse
Affiliation(s)
| | | | - Maria Stoica
- Department of Chemistry
- University of Ottawa
- Ottawa, Canada K1N 6N5
| | | |
Collapse
|
25
|
Lee JS, Vendrell M, Chang YT. Diversity-oriented optical imaging probe development. Curr Opin Chem Biol 2011; 15:760-7. [DOI: 10.1016/j.cbpa.2011.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022]
|
26
|
Huang C, Yin Q, Zhu W, Yang Y, Wang X, Qian X, Xu Y. Highly Selective Fluorescent Probe for Vicinal-Dithiol-Containing Proteins and In Situ Imaging in Living Cells. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Huang C, Yin Q, Zhu W, Yang Y, Wang X, Qian X, Xu Y. Highly Selective Fluorescent Probe for Vicinal-Dithiol-Containing Proteins and In Situ Imaging in Living Cells. Angew Chem Int Ed Engl 2011; 50:7551-6. [DOI: 10.1002/anie.201101317] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/21/2011] [Indexed: 01/08/2023]
|
28
|
Lee JJ, Lee SC, Zhai D, Ahn YH, Yeo HY, Tan YL, Chang YT. Bodipy-diacrylate imaging probes for targeted proteins inside live cells. Chem Commun (Camb) 2011; 47:4508-10. [PMID: 21387059 DOI: 10.1039/c1cc10362h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A bodipy probe was developed for site-specific labeling of tagged proteins inside live cells which displays a large spectral change upon covalent coupling to the designed peptide that contains two pairs of Arg-Cys.
Collapse
Affiliation(s)
- Jae-Jung Lee
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138667, Singapore
| | | | | | | | | | | | | |
Collapse
|
29
|
Caron K, Lachapelle V, Keillor JW. Dramatic increase of quench efficiency in “spacerless” dimaleimide fluorogens. Org Biomol Chem 2011; 9:185-97. [DOI: 10.1039/c0ob00455c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Jia J, Chen W, Ma H, Wang K, Zhao C. Use of a rhodamine-based bifunctional probe in N-terminal specific labeling of Thermomyces lanuginosus xylanase. MOLECULAR BIOSYSTEMS 2010; 6:1829-33. [DOI: 10.1039/c005223j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|