1
|
Mai E, Malakar P, Batignani G, Martinati M, Ruhman S, Scopigno T. Orchestrating Nuclear Dynamics in a Permanganate Doped Crystal with Chirped Pump-Probe Spectroscopy. J Phys Chem Lett 2024; 15:6634-6646. [PMID: 38888442 DOI: 10.1021/acs.jpclett.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pump-probe spectroscopy is a powerful tool to investigate light-induced dynamical processes in molecules and solids. Targeting vibrational excitations occurring on the time scales of nuclear motions is challenging, as pulse durations shorter than a vibrational period are needed to initiate the dynamics, and complex experimental schemes are required to isolate weak signatures arising from wavepacket motion in different electronic states. Here, we demonstrate how introducing a temporal delay between the spectral components of femtosecond beams, namely a chirp resulting in the increase of their duration, can counterintuitively boost the desired signals by 2 orders of magnitude. Measuring the time-domain vibrational response of permanganate ions embedded in a KClO4 matrix, we identify an intricate dependence of the vibrational response on pulse chirps and probed wavelength that can be exploited to unveil weak signatures of the doping ions─otherwise dominated by the nonresonant matrix─or to obtain vibrational excitations pertaining only to the excited state, suppressing ground-state contributions.
Collapse
Affiliation(s)
- Emanuele Mai
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Giovanni Batignani
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Miles Martinati
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tullio Scopigno
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Graphene Laboratories, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
2
|
Green D, Bressan G, Heisler IA, Meech SR, Jones GA. Vibrational coherences in half-broadband 2D electronic spectroscopy: Spectral filtering to identify excited state displacements. J Chem Phys 2024; 160:234104. [PMID: 38884412 DOI: 10.1063/5.0214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Vibrational coherences in ultrafast pump-probe (PP) and 2D electronic spectroscopy (2DES) provide insights into the excited state dynamics of molecules. Femtosecond coherence spectra and 2D beat maps yield information about displacements of excited state surfaces for key vibrational modes. Half-broadband 2DES uses a PP configuration with a white light continuum probe to extend the detection range and resolve vibrational coherences in the excited state absorption (ESA). However, the interpretation of these spectra is difficult as they are strongly dependent on the spectrum of the pump laser and the relative displacement of the excited states along the vibrational coordinates. We demonstrate the impact of these convoluting factors for a model based upon cresyl violet. A careful consideration of the position of the pump spectrum can be a powerful tool in resolving the ESA coherences to gain insights into excited state displacements. This paper also highlights the need for caution in considering the spectral window of the pulse when interpreting these spectra.
Collapse
Affiliation(s)
- Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Rode AJ, Arpin PC, Turner DB. Theoretical model of femtosecond coherence spectroscopy of vibronic excitons in molecular aggregates. J Chem Phys 2024; 160:164101. [PMID: 38647298 DOI: 10.1063/5.0200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
When used as pump pulses in transient absorption spectroscopy measurements, femtosecond laser pulses can produce oscillatory signals known as quantum beats. The quantum beats arise from coherent superpositions of the states of the sample and are best studied in the Fourier domain using Femtosecond Coherence Spectroscopy (FCS), which consists of one-dimensional amplitude and phase plots of a specified oscillation frequency as a function of the detection frequency. Prior works have shown ubiquitous amplitude nodes and π phase shifts in FCS from excited-state vibrational wavepackets in monomer samples. However, the FCS arising from vibronic-exciton states in molecular aggregates have not been studied theoretically. Here, we use a model of vibronic-exciton states in molecular dimers based on displaced harmonic oscillators to simulate FCS for dimers in two important cases. Simulations reveal distinct spectral signatures of excited-state vibronic-exciton coherences in molecular dimers that may be used to distinguish them from monomer vibrational coherences. A salient result is that, for certain relative orientations of the transition dipoles, the key resonance condition between the electronic coupling and the frequency of the vibrational mode may yield strong enhancement of the quantum-beat amplitude and, perhaps, also cause a significant decrease of the oscillation frequency to a value far lower than the vibrational frequency. Future studies using these results will lead to new insights into the excited-state coherences generated in photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- Alexander J Rode
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul C Arpin
- Department of Physics, California State University, Chico, Chico, California 95929, USA
| | - Daniel B Turner
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
4
|
Barclay M, Huff JS, Pensack RD, Davis PH, Knowlton WB, Yurke B, Dean JC, Arpin PC, Turner DB. Characterizing Mode Anharmonicity and Huang-Rhys Factors Using Models of Femtosecond Coherence Spectra. J Phys Chem Lett 2022; 13:5413-5423. [PMID: 35679146 PMCID: PMC9234982 DOI: 10.1021/acs.jpclett.1c04162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Femtosecond laser pulses readily produce coherent quantum beats in transient-absorption spectra. These oscillatory signals often arise from molecular vibrations and therefore may contain information about the excited-state potential energy surface near the Franck-Condon region. Here, by fitting the measured spectra of two laser dyes to microscopic models of femtosecond coherence spectra (FCS) arising from molecular vibrations, we classify coherent quantum-beat signals as fundamentals or overtones and quantify their Huang-Rhys factors and anharmonicity values. We discuss the extracted Huang-Rhys factors in the context of quantum-chemical computations. This work solidifies the use of FCS for analysis of coherent quantum beats arising from molecular vibrations, which will aid studies of molecular aggregates and photosynthetic proteins.
Collapse
Affiliation(s)
- Matthew
S. Barclay
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jonathan S. Huff
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan D. Pensack
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jacob C. Dean
- Department
of Physical Science, Southern Utah University, Cedar City, Utah 84720, United States
| | - Paul C. Arpin
- Department
of Physics, California State University,
Chico, Chico, California 95929, United States
| | - Daniel B. Turner
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
5
|
Dhamija S, Bhutani G, Jayachandran A, De AK. A Revisit on Impulsive Stimulated Raman Spectroscopy: Importance of Spectral Dispersion of Chirped Broadband Probe. J Phys Chem A 2022; 126:1019-1032. [PMID: 35142494 DOI: 10.1021/acs.jpca.1c10566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The usefulness of a chirped broadband probe and spectral dispersion to obtain Raman spectra under nonresonant/resonant impulsive excitation is revisited. A general methodology is presented that inherently takes care of phasing the time-domain low-frequency oscillations without probe pulse compression and retrieves the absolute phase of the oscillations. As test beds, neat solvents (CCl4, CHCl3, and CH2Cl2) are used. Observation of periodic intensity modulation along detection wavelengths for particular modes is explained using a simple electric field interaction picture. This method is extended to diatomic molecule (iodine) and polyatomic molecules (Nile blue and methylene blue) to assign vibrational frequencies in ground/excited electronic state that are supported by density functional theory calculations. A comparison between frequency-domain and time-domain counterparts, i.e., stimulated Raman scattering and impulsive stimulated Raman scattering using degenerate pump-probe pairs is presented, and most importantly, it is shown how impulsive stimulated Raman scattering using chirped broadband probe retains unique advantages offered by both.
Collapse
Affiliation(s)
- Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ajay Jayachandran
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
6
|
Coherent vibrational dynamics reveals lattice anharmonicity in organic-inorganic halide perovskite nanocrystals. Nat Commun 2021; 12:2629. [PMID: 33976185 PMCID: PMC8113605 DOI: 10.1038/s41467-021-22934-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/30/2021] [Indexed: 12/05/2022] Open
Abstract
The halide ions of organic-inorganic hybrid perovskites can strongly influence the interaction between the central organic moiety and the inorganic metal halide octahedral units and thus their lattice vibrations. Here, we report the halide-ion-dependent vibrational coherences in formamidinium lead halide (FAPbX3, X = Br, I) perovskite nanocrystals (PNCs) via the combination of femtosecond pump–probe spectroscopy and density functional theory calculations. We find that the FAPbX3 PNCs generate halide-dependent coherent vibronic wave packets upon above-bandgap non-resonant excitation. More importantly, we observe several higher harmonics of the fundamental modes for FAPbI3 PNCs as compared to FAPbBr3 PNCs. This is likely due to the weaker interaction between the central FA moiety and the inorganic cage for FAPbI3 PNCs, and thus the PbI64− unit can vibrate more freely. This weakening reveals the intrinsic anharmonicity in the Pb-I framework, and thus facilitating the energy transfer into overtone and combination bands. These findings not only unveil the superior stability of Br–based PNCs over I–based PNCs but are also important for a better understanding of their electronic and polaronic properties. Using a combination of femtosecond pump-probe spectroscopy and first-principles calculations, Debnath et al. elucidated the halide-dependence of the excited state vibrational coherences in hybrid organic-inorganic perovskite nanocrystals. The study revealed an intrinsic anharmonicity of lead-halide framework, which correlates with perovskite stability and is influenced by the interaction between the framework and the organic molecules.
Collapse
|
7
|
Arpin PC, Turner DB. Signatures of Vibrational and Electronic Quantum Beats in Femtosecond Coherence Spectra. J Phys Chem A 2021; 125:2425-2435. [PMID: 33724844 PMCID: PMC8023717 DOI: 10.1021/acs.jpca.0c10807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Femtosecond laser pulses can produce oscillatory signals in transient-absorption spectroscopy measurements. The quantum beats are often studied using femtosecond coherence spectra (FCS), the Fourier domain amplitude, and phase profiles at individual oscillation frequencies. In principle, one can identify the mechanism that gives rise to each quantum-beat signal by comparing its measured FCS to those arising from microscopic models. To date, however, most measured FCS deviate from the ubiquitous harmonic oscillator model. Here, we expand the inventory of models to which the measured spectra can be compared. We develop quantum-mechanical models of the fundamental, overtone, and combination-band FCS arising from harmonic potentials, the FCS of anharmonic potentials, and the FCS of a purely electronic dimer. This work solidifies the use of FCS for identifying electronic coherences that can arise in measurements of molecular aggregates including photosynthetic proteins. Furthermore, future studies can use the derived expressions to fit the measured FCS and thereby extract microscopic parameters of molecular potential-energy surfaces.
Collapse
Affiliation(s)
- Paul C. Arpin
- Department
of Physics, California State University,
Chico, Chico, California 95929, United States
| | - Daniel B. Turner
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
8
|
|
9
|
Batignani G, Ferrante C, Scopigno T. Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2020; 11:7805-7813. [PMID: 32841039 PMCID: PMC7735730 DOI: 10.1021/acs.jpclett.0c01971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 05/08/2023]
Abstract
Excited state vibrations are crucial for determining the photophysical and photochemical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally restricted to ground state properties. Working under resonance conditions enables cross-section enhancement and selective excitation to a targeted electronic level but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information about ground and excited state vibrations can be disentangled by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring with the signal generation. The proposed method is then exploited to elucidate the vibrational properties of the ground and excited electronic states in the paradigmatic case of cresyl violet. We anticipate that the presented approach holds the potential for selective mapping of the reaction coordinates pertaining to transient electronic stages implied in photoactive compounds.
Collapse
Affiliation(s)
- Giovanni Batignani
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
| | - Carino Ferrante
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Center
for Life Nano Science @Sapienza, Istituto
Italiano di Tecnologia, Roma I-00161, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| | - Tullio Scopigno
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Center
for Life Nano Science @Sapienza, Istituto
Italiano di Tecnologia, Roma I-00161, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
10
|
Batignani G, Ferrante C, Fumero G, Scopigno T. Broadband Impulsive Stimulated Raman Scattering Based on a Chirped Detection. J Phys Chem Lett 2019; 10:7789-7796. [PMID: 31765160 DOI: 10.1021/acs.jpclett.9b03061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In impulsive stimulated Raman scattering, vibrational oscillations, coherently stimulated by a femtosecond Raman pulse, are monitored in real time and read out as intensity modulations in the transmission of a temporally delayed probe pulse. Critically, in order to retrieve broadband Raman spectra, a fine sampling of the time delays between the Raman and probe pulses is required, making conventional ISRS ineffective for probing irreversible phenomena and/or weak scatterers typically demanding long acquisition times, with signal-to-noise ratios that crucially depend on the pulse fluences and overlap stabilities. To overcome such limitations, here we introduce the chirped-based impulsive stimulated raman scattering (CISRS) technique. Specifically, we show how introducing a chirp in the probe pulse can be exploited for recording the Raman information without the need to scan over the Raman-probe pulse delay. We then experimentally demonstrate with a few examples how to use the introduced scheme to measure Raman spectra.
Collapse
Affiliation(s)
- Giovanni Batignani
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
| | - Carino Ferrante
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
- Istituto Italiano di Tecnologia , Center for Life Nano Science @Sapienza , Roma I-00161 , Italy
| | - Giuseppe Fumero
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
| | - Tullio Scopigno
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
- Istituto Italiano di Tecnologia , Center for Life Nano Science @Sapienza , Roma I-00161 , Italy
| |
Collapse
|
11
|
van Thor JJ. Advances and opportunities in ultrafast X-ray crystallography and ultrafast structural optical crystallography of nuclear and electronic protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:050901. [PMID: 31559317 PMCID: PMC6759419 DOI: 10.1063/1.5110685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/29/2019] [Indexed: 05/02/2023]
Abstract
Both nuclear and electronic dynamics contribute to protein function and need multiple and complementary techniques to reveal their ultrafast structural dynamics response. Real-space information obtained from the measurement of electron density dynamics by X-ray crystallography provides aspects of both, while the molecular physics of coherence parameters and frequency-frequency correlation needs spectroscopy methods. Ultrafast pump-probe applications of protein dynamics in crystals provide real-space information through direct X-ray crystallographic structure analysis or through structural optical crystallographic analysis. A discussion of methods of analysis using ultrafast macromolecular X-ray crystallography and ultrafast nonlinear structural optical crystallography is presented. The current and future high repetition rate capabilities provided by X-ray free electron lasers for ultrafast diffraction studies provide opportunities for optical control and optical selection of nuclear coherence which may develop to access higher frequency dynamics through improvements of sensitivity and time resolution to reveal coherence directly. Specific selection of electronic coherence requires optical probes, which can provide real-space structural information through photoselection of oriented samples and specifically in birefringent crystals. Ultrafast structural optical crystallography of photosynthetic energy transfer has been demonstrated, and the theory of two-dimensional structural optical crystallography has shown a method for accessing the structural selection of electronic coherence.
Collapse
Affiliation(s)
- Jasper J. van Thor
- Molecular Biophysics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Multidimensional Vibrational Coherence Spectroscopy. Top Curr Chem (Cham) 2018; 376:35. [DOI: 10.1007/s41061-018-0213-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
13
|
Jumper CC, van Stokkum IHM, Mirkovic T, Scholes GD. Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes. J Phys Chem B 2018; 122:6328-6340. [PMID: 29847127 DOI: 10.1021/acs.jpcb.8b02629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determining the key features of high-efficiency photosynthetic energy transfer remains an ongoing task. Recently, there has been evidence for the role of vibronic coherence in linking donor and acceptor states to redistribute oscillator strength for enhanced energy transfer. To gain further insights into the interplay between vibronic wavepackets and energy-transfer dynamics, we systematically compare four structurally related phycobiliproteins from cryptophyte algae by broad-band pump-probe spectroscopy and extend a parametric model based on global analysis to include vibrational wavepacket characterization. The four phycobiliproteins isolated from cryptophyte algae are two "open" structures and two "closed" structures. The closed structures exhibit strong exciton coupling in the central dimer. The dominant energy-transfer pathway occurs on the subpicosecond timescale across the largest energy gap in each of the proteins, from central to peripheral chromophores. All proteins exhibit a strong 1585 cm-1 coherent oscillation whose relative amplitude, a measure of vibronic intensity borrowing from resonance between donor and acceptor states, scales with both energy-transfer rates and damping rates. Central exciton splitting may aid in bringing the vibronically linked donor and acceptor states into better resonance resulting in the observed doubled rate in the closed structures. Several excited-state vibrational wavepackets persist on timescales relevant to energy transfer, highlighting the importance of further investigation of the interplay between electronic coupling and nuclear degrees of freedom in studies on high-efficiency photosynthesis.
Collapse
Affiliation(s)
- Chanelle C Jumper
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada.,Department of Chemistry , Princeton University , Washington Road , Princeton , New Jersey 08544 , United States
| | - Ivo H M van Stokkum
- LaserLaB, Department of Physics and Astronomy , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Tihana Mirkovic
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Gregory D Scholes
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada.,Department of Chemistry , Princeton University , Washington Road , Princeton , New Jersey 08544 , United States
| |
Collapse
|
14
|
Brühl E, Buckup T, Motzkus M. Experimental and numerical investigation of a phase-only control mechanism in the linear intensity regime. J Chem Phys 2018; 148:214310. [DOI: 10.1063/1.5029805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Elisabeth Brühl
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Bizimana LA, Carbery WP, Gellen TA, Turner DB. Signatures of Herzberg-Teller coupling in three-dimensional electronic spectroscopy. J Chem Phys 2018; 146:084311. [PMID: 28249416 DOI: 10.1063/1.4976995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The coupling between electronic and nuclear variables is a key consideration in molecular dynamics and spectroscopy. However, simulations that include detailed vibronic coupling terms are challenging to perform, and thus a variety of approximations can be used to model and interpret experimental results. Recent work shows that these simplified models can be inadequate. It is therefore important to understand spectroscopic signals that can identify failures of those approximations. Here we use an extended response-function method to simulate coherent three-dimensional electronic spectroscopy (3D ES) and study the sensitivity of this method to the breakdown of the Franck-Condon approximation. The simulations include a coordinate-dependent transition dipole operator that produces nodes, phase shifts, and peak patterns in 3D ES that can be used to identify Herzberg-Teller coupling. Guided by the simulation results, we interpret measurements on a molecular aggregate.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - William P Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Tobias A Gellen
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| |
Collapse
|
16
|
Brühl E, Buckup T, Motzkus M. Minimization of 1/f n phase noise in liquid crystal masks for reliable femtosecond pulse shaping. OPTICS EXPRESS 2017; 25:23376-23386. [PMID: 29041638 DOI: 10.1364/oe.25.023376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Liquid-crystal spatial light modulators (LCM) are a common tool to tailor femtosecond laser pulses. The phase stability of 1 kHz, sub-20 fs visible shaped and unshaped pulses are investigated. Our results show that the spectral phase after the LCM varies from pulse to pulse leading to strong deviations from the predicted pulse shapes. This phase instability is generated only by LCM and is strongly temperature dependent. Based on the experimental data, a numerical model for the phase was developed that takes the temperature-dependent phase instability as well as pixel coupling across the LCM into account. Phase stability after the LCM can be improved by an order of magnitude by combining the control the temperature of the LCM and by using rapid-scan averaging. Reliable pulse shapes on a pulse-to-pulse basis are crucial, especially in coherent control experiments, where small differences between pulse shape are important.
Collapse
|
17
|
Monacelli L, Batignani G, Fumero G, Ferrante C, Mukamel S, Scopigno T. Manipulating Impulsive Stimulated Raman Spectroscopy with a Chirped Probe Pulse. J Phys Chem Lett 2017; 8:966-974. [PMID: 28177628 DOI: 10.1021/acs.jpclett.6b03027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photophysical and photochemical processes are often dominated by molecular vibrations in various electronic states. Dissecting the corresponding, often overlapping, spectroscopic signals from different electronic states is a challenge hampering their interpretation. Here we address impulsive stimulated Raman spectroscopy (ISRS), a powerful technique able to coherently stimulate and record Raman-active modes using broadband pulses. Using a quantum-mechanical treatment of the ISRS process, we show the mode-specific way the various spectral components of the broadband probe contribute to the signal generated at a given wavelength. We experimentally demonstrate how to manipulate the signal by varying the probe chirp and the phase-matching across the sample, thereby affecting the relative phase between the various contributions to the signal. These novel control knobs allow us to selectively enhance desired vibrational features and distinguish spectral components arising from different excited states.
Collapse
Affiliation(s)
- Lorenzo Monacelli
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
| | - Giovanni Batignani
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli Studi dell'Aquila , L'Aquila I-67100, Italy
| | - Giuseppe Fumero
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
| | - Carino Ferrante
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Tullio Scopigno
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza , Roma I-00161, Italy
| |
Collapse
|
18
|
Hutchison CD, van Thor JJ. Populations and coherence in femtosecond time resolved X-ray crystallography of the photoactive yellow protein. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1276726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
19
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
20
|
Quantum Control of Population Transfer and Vibrational States via Chirped Pulses in Four Level Density Matrix Equations. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6110351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Brazard J, Bizimana LA, Gellen T, Carbery WP, Turner DB. Experimental Detection of Branching at a Conical Intersection in a Highly Fluorescent Molecule. J Phys Chem Lett 2016; 7:14-9. [PMID: 26647278 DOI: 10.1021/acs.jpclett.5b02476] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conical intersections are molecular configurations at which adiabatic potential-energy surfaces touch. They are predicted to be ubiquitous, yet condensed-phase experiments have focused on the few systems with clear spectroscopic signatures of negligible fluorescence, high photoactivity, or femtosecond electronic kinetics. Although rare, these signatures have become diagnostic for conical intersections. Here we detect a coherent surface-crossing event nearly two picoseconds after optical excitation in a highly fluorescent molecule that has no photoactivity and nanosecond electronic kinetics. Time-frequency analysis of high-sensitivity measurements acquired using sub-8 fs pulses reveals phase shifts of the signal due to branching of the wavepacket through a conical intersection. The time-frequency analysis methodology demonstrated here on a model compound will enable studies of conical intersections in molecules that do not exhibit their diagnostic signatures. Improving the ability to detect conical intersections will enrich the understanding of their mechanistic role in molecular photochemistry.
Collapse
Affiliation(s)
- Johanna Brazard
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Laurie A Bizimana
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Tobias Gellen
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - William P Carbery
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
22
|
Arpin PC, Turner DB, McClure SD, Jumper CC, Mirkovic T, Challa JR, Lee J, Teng CY, Green BR, Wilk KE, Curmi PMG, Hoef-Emden K, McCamant DW, Scholes GD. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations. J Phys Chem B 2015; 119:10025-34. [DOI: 10.1021/acs.jpcb.5b04704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul C. Arpin
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Daniel B. Turner
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Scott D. McClure
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Chanelle C. Jumper
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tihana Mirkovic
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - J. Reddy Challa
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joohyun Lee
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Chang Ying Teng
- Department
of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Beverley R. Green
- Department
of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Krystyna E. Wilk
- School
of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Paul M. G. Curmi
- School
of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kerstin Hoef-Emden
- Botanical
Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - David W. McCamant
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Gregory D. Scholes
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Konar A, Lozovoy VV, Dantus M. Solvent Environment Revealed by Positively Chirped Pulses. J Phys Chem Lett 2014; 5:924-928. [PMID: 26274090 DOI: 10.1021/jz500291h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The spectroscopy of large organic molecules and biomolecules in solution has been investigated using various time-resolved and frequency-resolved techniques. Of particular interest is the early response of the molecule and the solvent, which is difficult to study due to the ambiguity in assigning and differentiating inter- and intramolecular contributions to the electronic and vibrational populations and coherence. Our measurements compare the yield of fluorescence and stimulated emission for two laser dyes IR144 and IR125 as a function of chirp. While negatively chirped pulses are insensitive to solvent viscosity, positively chirped pulses are found to be uniquely sensitive probes of solvent viscosity. The fluorescence maximum for IR125 is observed near transform-limited pulses; however, for IR144, it is observed for positively chirped pulses once the pulses have been stretched to hundreds of femtoseconds. We conclude that chirped pulse spectroscopy is a simple one-beam method that is sensitive to early solvation dynamics.
Collapse
Affiliation(s)
- Arkaprabha Konar
- †Department of Chemistry and ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vadim V Lozovoy
- †Department of Chemistry and ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- †Department of Chemistry and ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
McClure SD, Turner DB, Arpin PC, Mirkovic T, Scholes GD. Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State. J Phys Chem B 2014; 118:1296-308. [DOI: 10.1021/jp411924c] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Scott D. McClure
- Department of Chemistry and
Centre for Quantum Information and Quantum Control, 80 Saint George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Daniel B. Turner
- Department of Chemistry and
Centre for Quantum Information and Quantum Control, 80 Saint George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul C. Arpin
- Department of Chemistry and
Centre for Quantum Information and Quantum Control, 80 Saint George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tihana Mirkovic
- Department of Chemistry and
Centre for Quantum Information and Quantum Control, 80 Saint George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Gregory D. Scholes
- Department of Chemistry and
Centre for Quantum Information and Quantum Control, 80 Saint George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
25
|
Hoffman DP, Ellis SR, Mathies RA. Low Frequency Resonant Impulsive Raman Modes Reveal Inversion Mechanism for Azobenzene. J Phys Chem A 2013; 117:11472-8. [DOI: 10.1021/jp408470a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David P. Hoffman
- Department of Chemistry, University of California Berkeley, Berkeley, California, 94720 United States
| | - Scott R. Ellis
- Department of Chemistry, University of California Berkeley, Berkeley, California, 94720 United States
| | - Richard A. Mathies
- Department of Chemistry, University of California Berkeley, Berkeley, California, 94720 United States
| |
Collapse
|
26
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
27
|
Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys Chem Chem Phys 2013; 15:14487-501. [DOI: 10.1039/c3cp50871d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wand A, Loevsky B, Friedman N, Sheves M, Ruhman S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J Phys Chem B 2012; 117:4670-9. [DOI: 10.1021/jp309189y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Boris Loevsky
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
29
|
Konar A, Lozovoy VV, Dantus M. Solvation Stokes-Shift Dynamics Studied by Chirped Femtosecond Laser Pulses. J Phys Chem Lett 2012; 3:2458-2464. [PMID: 26292133 DOI: 10.1021/jz300761x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The early optical dynamic response, resulting population, and electronic coherence are investigated experimentally and modeled theoretically for IR144 in solution. The fluorescence and stimulated emission response are studied systematically as a function of chirp. The magnitude of the chirp effect on fluorescence and stimulated emission is found to depend quadratically on pulse energy, even where excitation probabilities range from 0.02 to 5%, in the so-called "linear excitation regime". Interestingly, the shape of the chirp dependence on fluorescence and stimulated emission is found to be independent of pulse energy. The chirp dependence reveals dynamics related to solvent rearrangement following excitation and also depends on electronic relaxation of the chromophore. The experimental results are successfully simulated using a four-level model in the presence of inhomogeneous broadening of the electronic transitions.
Collapse
Affiliation(s)
- Arkaprabha Konar
- †Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vadim V Lozovoy
- †Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- †Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Biggs JD, Cina JA. Studies of impulsive vibrational influence on ultrafast electronic excitation transfer. J Phys Chem A 2012; 116:1683-93. [PMID: 22236325 DOI: 10.1021/jp2094609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated electronic energy-transfer dynamics in three model dimers within which coherent intramonomer nuclear motion had been induced by impulsive Raman excitation using an optimized, electronically preresonant control pulse. Calculations of the donor-survival probability, the ultrafast pump-probe signal, and the pump-probe difference signal are presented for dithia-anthracenophane and homodimers of 2-difluoromethylanthracene and 2-trifluoromethylanthracene. Survival probabilities and signals, along with phase-space analyses, elucidated the mechanisms, extent, and spectroscopic manifestations of external vibrational or torsional control over electronic excitation transfer.
Collapse
Affiliation(s)
- Jason D Biggs
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
31
|
Philip Kraack J, Motzkus M, Buckup T. Selective nonlinear response preparation using femtosecond spectrally resolved four-wave-mixing. J Chem Phys 2011; 135:224505. [DOI: 10.1063/1.3666846] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Wand A, Rozin R, Eliash T, Jung KH, Sheves M, Ruhman S. Asymmetric Toggling of a Natural Photoswitch: Ultrafast Spectroscopy of Anabaena Sensory Rhodopsin. J Am Chem Soc 2011; 133:20922-32. [DOI: 10.1021/ja208371g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rinat Rozin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, South Korea
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Kraack JP, Buckup T, Hampp N, Motzkus M. Ground- and Excited-State Vibrational Coherence Dynamics in Bacteriorhodopsin Probed With Degenerate Four-Wave-Mixing Experiments. Chemphyschem 2011; 12:1851-9. [DOI: 10.1002/cphc.201100032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/24/2011] [Indexed: 11/06/2022]
|
34
|
Schneider J, Wollenhaupt M, Winzenburg A, Bayer T, Köhler J, Faust R, Baumert T. Efficient and robust strong-field control of population transfer in sensitizer dyes with designed femtosecond laser pulses. Phys Chem Chem Phys 2011; 13:8733-46. [DOI: 10.1039/c0cp02723e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|