1
|
Lenz T, Javornik U, Hebenbrock M, Plavec J, Müller J. Determination of silver(I)-binding sites in canonical B-DNA by NMR spectroscopy. J Biol Inorg Chem 2025:10.1007/s00775-025-02115-y. [PMID: 40314813 DOI: 10.1007/s00775-025-02115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
The interaction of metal ions with nucleic acids was studied by determining the initial binding sites of Ag+ ions at unmodified B-DNA by NMR spectroscopy. In particular, NMR spectra were recorded of the Dickerson-Drew dodecamer sequence in the presence of different ratios of Ag+ ions to DNA. The data indicate that the coordination of the first three Ag+ ions per duplex preferentially takes place inside the B-DNA helix rather than at other possible binding sites such as the negatively charged phosphate backbone and/or the endocyclic N7 position of purine residues. Larger DNA aggregates are formed in the presence of excess Ag+ ions, as indicated by the formation of a precipitate and by significant changes in the circular dichroism spectra. As shown by a titration with chloride ions, the Ag+ ions are only loosely bound to the nucleic acids and can be released by precipitation of AgCl.
Collapse
Affiliation(s)
- Tabea Lenz
- Institute of Inorganic and Analytical Chemistry, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- EN-FIST Center of Excellence, SI-1000, Ljubljana, Slovenia
| | - Marian Hebenbrock
- Institute of Inorganic and Analytical Chemistry, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- EN-FIST Center of Excellence, SI-1000, Ljubljana, Slovenia
| | - Jens Müller
- Institute of Inorganic and Analytical Chemistry, Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
| |
Collapse
|
2
|
Kornienko IV, Aramova OY, Tishchenko AA, Rudoy DV, Chikindas ML. RNA Stability: A Review of the Role of Structural Features and Environmental Conditions. Molecules 2024; 29:5978. [PMID: 39770066 PMCID: PMC11676819 DOI: 10.3390/molecules29245978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The stability of RNA is a critical factor in determining its functionality and degradation in the cell. In recent years, it has been shown that the stability of RNA depends on a complex interaction of external and internal factors. External conditions, such as temperature fluctuations, the level of acidity of the environment, the presence of various substances and ions, as well as the effects of oxidative stress, can change the structure of RNA and affect its stability. Internal factors, including the specific structural features of RNA and its interactions with protein molecules, also have a significant impact on the regulation of the stability of these molecules. In this article, we review the main factors influencing RNA stability, since understanding the factors influencing this extremely complex process is important not only for understanding the regulation of expression at the RNA level but also for developing new methods for isolating and stabilizing RNA in preparation for creating biobanks of genetic material. We reviewed a modern solution to this problem and formulated basic recommendations for RNA storage aimed at minimizing degradation and damage to the molecule.
Collapse
Affiliation(s)
- Igor V. Kornienko
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
- Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences, Chekhov Ave. 41, Rostov-on-Don 344006, Russia
- Department of Genetics Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, Rostov-on-Don 344090, Russia
| | - Olga Yu. Aramova
- Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences, Chekhov Ave. 41, Rostov-on-Don 344006, Russia
- Department of Genetics Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, Rostov-on-Don 344090, Russia
| | - Anna A. Tishchenko
- Department of Big Data and Machine Learning, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, St. Petersburg 197101, Russia;
| | - Dmitriy V. Rudoy
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901-8525, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bldg 2, Moscow 119048, Russia
| |
Collapse
|
3
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
4
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Safenkova IV, Samokhvalov AV, Serebrennikova KV, Eremin SA, Zherdev AV, Dzantiev BB. DNA Probes for Cas12a-Based Assay with Fluorescence Anisotropy Enhanced Due to Anchors and Salts. BIOSENSORS 2023; 13:1034. [PMID: 38131794 PMCID: PMC10741848 DOI: 10.3390/bios13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
CRISPR/Cas12a is a potent biosensing tool known for its high specificity in DNA analysis. Cas12a recognizes the target DNA and acquires nuclease activity toward single-stranded DNA (ssDNA) probes. We present a straightforward and versatile approach to transforming common Cas12a-cleavable DNA probes into enhancing tools for fluorescence anisotropy (FA) measurements. Our study involved investigating 13 ssDNA probes with linear and hairpin structures, each featuring fluorescein at one end and a rotation-slowing tool (anchor) at the other. All anchors induced FA changes compared to fluorescein, ranging from 24 to 110 mr. Significant FA increases (up to 180 mr) were obtained by adding divalent metal salts (Mg2+, Ca2+, Ba2+), which influenced the rigidity and compactness of the DNA probes. The specific Cas12a-based recognition of double-stranded DNA (dsDNA) fragments of the bacterial phytopathogen Erwinia amylovora allowed us to determine the optimal set (probe structure, anchor, concentration of divalent ion) for FA-based detection. The best sensitivity was obtained using a hairpin structure with dC10 in the loop and streptavidin located near the fluorescein at the stem in the presence of 100 mM Mg2+. The detection limit of the dsDNA target was equal to 0.8 pM, which was eight times more sensitive compared to the common fluorescence-based method. The enhancing set ensured detection of single cells of E. amylovora per reaction in an analysis based on CRISPR/Cas12a with recombinase polymerase amplification. Our approach is universal and easy to implement. Combining FA with Cas12a offers enhanced sensitivity and signal reliability and could be applied to different DNA and RNA analytes.
Collapse
Affiliation(s)
- Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Alexey V. Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Kseniya V. Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (I.V.S.); (A.V.S.); (K.V.S.); (S.A.E.); (A.V.Z.)
| |
Collapse
|
6
|
Boychuk BTA, Wetmore SD. Assessment of Density Functional Theory Methods for the Structural Prediction of Transition and Post-Transition Metal-Nucleic Acid Complexes. J Chem Theory Comput 2023. [PMID: 37399186 DOI: 10.1021/acs.jctc.3c00127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Understanding the structure of metal-nucleic acid systems is important for many applications such as the design of new pharmaceuticals, metal detection platforms, and nanomaterials. Herein, we explore the ability of 20 density functional theory (DFT) functionals to reproduce the crystal structure geometry of transition and post-transition metal-nucleic acid complexes identified in the Protein Data Bank and Cambridge Structural Database. The environmental extremes of the gas phase and implicit water were considered, and analysis focused on the global and inner coordination geometry, including the coordination distances. Although gas-phase calculations were unable to describe the structure of 12 out of the 53 complexes in our test set regardless of the DFT functional considered, accounting for the broader environment through implicit solvation or constraining the model truncation points to crystallographic coordinates generally afforded agreement with the experimental structure, suggesting that functional performance for these systems is likely due to the models rather than the methods. For the remaining 41 complexes, our results show that the reliability of functionals depends on the metal identity, with the magnitude of error varying across the periodic table. Furthermore, minimal changes in the geometries of these metal-nucleic acid complexes occur upon use of the Stuttgart-Dresden effective core potential and/or inclusion of an implicit water environment. The overall top three performing functionals are ωB97X-V, ωB97X-D3(BJ), and MN15, which reliably describe the structure of a broad range of metal-nucleic acid systems. Other suitable functionals include MN15-L, which is a cheaper alternative to MN15, and PBEh-3c, which is commonly used in QM/MM calculations of biomolecules. In fact, these five methods were the only functionals tested to reproduce the coordination sphere of Cu2+-containing complexes. For metal-nucleic acid systems that do not contain Cu2+, ωB97X and ωB97X-D are also suitable choices. These top-performing methods can be utilized in future investigations of diverse metal-nucleic acid complexes of relevance to biology and material science.
Collapse
Affiliation(s)
- Briana T A Boychuk
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
7
|
Ion-pairing equilibria and kinetics of dimethyl phosphate: A model for counter-ion binding to the phosphate backbone of nucleic acids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
fingeRNAt—A novel tool for high-throughput analysis of nucleic acid-ligand interactions. PLoS Comput Biol 2022; 18:e1009783. [PMID: 35653385 PMCID: PMC9197077 DOI: 10.1371/journal.pcbi.1009783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/14/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt—a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt)—a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction fingerprint-based similarity as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of interaction fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties. The fingeRNAt software is freely available at https://github.com/n-szulc/fingeRNAt.
Collapse
|
9
|
Wuebben C, Schiemann O. Quantifying the Number and Affinity of Mn 2+-Binding Sites with EPR Spectroscopy. Methods Mol Biol 2022; 2439:91-101. [PMID: 35226317 DOI: 10.1007/978-1-0716-2047-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During the last decades, various functional oligonucleotides have been discovered including DNAzymes, ribozymes, and riboswitches. Their function is based on their ability to form and change their three-dimensional structure. Binding of divalent ions to specific binding pockets was found to be important for the global structure and function. Here, we present a protocol that allows counting the number of Mn2+-binding sites and to determine their dissociation constants by means of continuous wave X-band Electron Paramagnetic Resonance (EPR) spectroscopy. In this method, Mn2+ is titrated into the oligonucleotide-containing sample and the intensity of the EPR spectrum is recorded. By comparison with a Mn2+-only reference sample, the binding isotherm can be constructed and fitted to binding models yielding the number and affinities of the binding sites. This method has been successfully applied to several functional oligonucleotides.
Collapse
Affiliation(s)
- Christine Wuebben
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University, Bonn, Germany.
| |
Collapse
|
10
|
Escher D, Hossain MN, Kraatz HB, Müller J. Metal-dependent electrochemical discrimination of DNA quadruplex sequences. J Biol Inorg Chem 2021; 26:659-666. [PMID: 34347161 PMCID: PMC8437839 DOI: 10.1007/s00775-021-01881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Films of four different DNA quadruplex-forming (G4) sequences (c-KIT, c-MYC, HTelo, and BCL2) on gold surfaces were investigated by electrochemical impedance spectroscopy (EIS) to evaluate whether they evoke unique electrochemical responses that can be used for their identification. This could render EIS an alternative means for the determination of G4 sequences of unknown structure. Towards, this end, cation-dependent topology changes in the presence of either K+, K+ in combination with Li+, or Pb2+ in the presence of Li+ were first evaluated by circular dichroism (CD) spectroscopy, and electrochemical studies were performed subsequently. As a result, G4-sequence specific charge transfer resistance (RCT) patterns were in fact observed for each G4 sequence, allowing their discrimination by EIS.
Collapse
Affiliation(s)
- Daniela Escher
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
| |
Collapse
|
11
|
Guha R, Defayay D, Hepp A, Müller J. Targeting Guanine Quadruplexes with Luminescent Platinum(II) Complexes Bearing a Pendant Nucleobase. Chempluschem 2021; 86:662-673. [PMID: 33881231 DOI: 10.1002/cplu.202100135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/28/2021] [Indexed: 12/14/2022]
Abstract
Guanine quadruplexes are tetra-stranded nucleic acid structures currently raising significant interest in the context of the development of potential anticancer therapeutics with a new mode of action. They are composed of planar guanine tetrads, allowing a high-affinity targeting by using molecules with a large π surface. However, the extreme topological versatility of guanine quadruplexes impedes a straightforward targeting of particular preselected guanine-rich sequences. We report here a systematic study of a family of luminescent platinum(II) complexes devised to overcome this challenge. By attaching a pendant adenine or thymine nucleobase as a substituent to one of the ligands at the platinum center, an additional recognition site is introduced with the aim of modulating the affinity of the metal complex to different DNA sequences. By comparing different attached nucleobases and a series of linker moieties, first conclusions are drawn with respect to the scope of this approach.
Collapse
Affiliation(s)
- Rweetuparna Guha
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 30, 48149, Münster, Germany
| | - Denise Defayay
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 30, 48149, Münster, Germany
| | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 30, 48149, Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 30, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Cells in Motion Interfaculty Centre, Corrensstr. 30, 48149, Münster, Germany
| |
Collapse
|
12
|
Escher D, Müller J. Silver(I)‐mediated hetero base pairs of 6‐pyrazolylpurine and its deaza derivatives. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniela Escher
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| |
Collapse
|
13
|
Naskar S, Guha R, Müller J. Metal-Modified Nucleic Acids: Metal-Mediated Base Pairs, Triples, and Tetrads. Angew Chem Int Ed Engl 2019; 59:1397-1406. [PMID: 31259475 DOI: 10.1002/anie.201905913] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 01/02/2023]
Abstract
The incorporation of metal ions into nucleic acids by means of metal-mediated base pairs represents a promising and prominent strategy for the site-specific decoration of these self-assembling supramolecules with metal-based functionality. Over the past 20 years, numerous nucleoside surrogates have been introduced in this respect, broadening the metal scope by providing perfectly tailored metal-binding sites. More recently, artificial nucleosides derived from natural purine or pyrimidine bases have moved into the focus of AgI -mediated base pairing, due to their expected compatibility with regular Watson-Crick base pairs. This minireview summarizes these advances in metal-mediated base pairing but also includes further recent progress in the field. Moreover, it addresses other aspects of metal-modified nucleic acids, highlighting an expansion of the concept to metal-mediated base triples (in triple helices and three-way junctions) and metal-mediated base tetrads (in quadruplexes). For all types of metal-modified nucleic acids, proposed or accomplished applications are briefly mentioned, too.
Collapse
Affiliation(s)
- Shuvankar Naskar
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Rweetuparna Guha
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
14
|
Naskar S, Guha R, Müller J. Metallmodifizierte Nukleinsäuren: Metallvermittelte Basenpaare, ‐tripel und ‐tetraden. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shuvankar Naskar
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Deutschland
| | - Rweetuparna Guha
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Deutschland
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Deutschland
| |
Collapse
|
15
|
|
16
|
Schönrath I, Tsvetkov VB, Zatsepin TS, Aralov AV, Müller J. Silver(I)-mediated base pairing in parallel-stranded DNA involving the luminescent cytosine analog 1,3-diaza-2-oxophenoxazine. J Biol Inorg Chem 2019; 24:693-702. [DOI: 10.1007/s00775-019-01682-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
|
17
|
Metal-mediated base pairing in DNA involving the artificial nucleobase imidazole-4-carboxylate. J Inorg Biochem 2019; 191:85-93. [DOI: 10.1016/j.jinorgbio.2018.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
|
18
|
Kudrev AG. Scheme of the Complex Formation of DNA Telomeric Sequence with TMPyP4 Porphyrine. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218120198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
A stable zinc(II)-mediated base pair in a parallel-stranded DNA duplex. J Inorg Biochem 2018; 186:301-306. [DOI: 10.1016/j.jinorgbio.2018.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/12/2018] [Accepted: 07/01/2018] [Indexed: 12/16/2022]
|
20
|
Karthikeyan A, Zeller M, Thomas Muthiah P. Supramolecular architectures in metal(II) (Cd/Zn) halide/nitrate complexes of cytosine/5-fluorocytosine. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:789-796. [PMID: 29973418 DOI: 10.1107/s2053229618007672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022]
Abstract
Three new metal(II)-cytosine (Cy)/5-fluorocytosine (5FC) complexes, namely bis(4-amino-1,2-dihydropyrimidin-2-one-κN3)diiodidocadmium(II) or bis(cytosine)diiodidocadmium(II), [CdI2(C4H5N3O)2], (I), bis(4-amino-1,2-dihydropyrimidin-2-one-κN3)bis(nitrato-κ2O,O')cadmium(II) or bis(cytosine)bis(nitrato)cadmium(II), [Cd(NO3)2(C4H5N3O)2], (II), and (6-amino-5-fluoro-1,2-dihydropyrimidin-2-one-κN3)aquadibromidozinc(II)-6-amino-5-fluoro-1,2-dihydropyrimidin-2-one (1/1) or (6-amino-5-fluorocytosine)aquadibromidozinc(II)-4-amino-5-fluorocytosine (1/1), [ZnBr2(C4H5FN3O)(H2O)]·C4H5FN3O, (III), have been synthesized and characterized by single-crystal X-ray diffraction. In complex (I), the CdII ion is coordinated to two iodide ions and the endocyclic N atoms of the two cytosine molecules, leading to a distorted tetrahedral geometry. The structure is isotypic with [CdBr2(C4H5N3O)2] [Muthiah et al. (2001). Acta Cryst. E57, m558-m560]. In compound (II), each of the two cytosine molecules coordinates to the CdII ion in a bidentate chelating mode via the endocyclic N atom and the O atom. Each of the two nitrate ions also coordinates in a bidentate chelating mode, forming a bicapped distorted octahedral geometry around cadmium. The typical interligand N-H...O hydrogen bond involving two cytosine molecules is also present. In compound (III), one zinc-coordinated 5FC ligand is cocrystallized with another uncoordinated 5FC molecule. The ZnII atom coordinates to the N(1) atom (systematic numbering) of 5FC, displacing the proton to the N(3) position. This N(3)-H tautomer of 5FC mimics N(3)-protonated cytosine in forming a base pair (via three hydrogen bonds) with 5FC in the lattice, generating two fused R22(8) motifs. The distorted tetrahedral geometry around zinc is completed by two bromide ions and a water molecule. The coordinated and nonccordinated 5FCs are stacked over one another along the a-axis direction, forming the rungs of a ladder motif, whereas Zn-Br bonds and N-H...Br hydrogen bonds form the rails of the ladder. The coordinated water molecules bridge the two types of 5FC molecules via O-H...O hydrogen bonds. The cytosine molecules are coordinated directly to the metal ion in each of the complexes and are hydrogen bonded to the bromide, iodide or nitrate ions. In compound (III), the uncoordinated 5FC molecule pairs with the coordinated 5FC ligand through three hydrogen bonds. The crystal structures are further stabilized by N-H...O, N-H...N, O-H...O, N-H...I and N-H...Br hydrogen bonds, and stacking interactions.
Collapse
Affiliation(s)
- Ammasai Karthikeyan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | |
Collapse
|
21
|
Jash B, Müller J. Metal-Mediated Base Pairs: From Characterization to Application. Chemistry 2017; 23:17166-17178. [PMID: 28833684 DOI: 10.1002/chem.201703518] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 12/11/2022]
Abstract
The investigation of metal-mediated base pairs and the development of their applications represent a prominent area of research at the border of bioinorganic chemistry and supramolecular coordination chemistry. In metal-mediated base pairs, the complementary nucleobases in a nucleic acid duplex are connected by coordinate bonds to an embedded metal ion rather than by hydrogen bonds. Because metal-mediated base pairs facilitate a site-specific introduction of metal-based functionality into nucleic acids, they are ideally suited for use in DNA nanotechnology. This minireview gives an overview of the general requirements that need to be considered when devising a new metal-mediated base pair, both from a conceptual and from an experimental point of view. In addition, it presents selected recent applications of metal-modified nucleic acids to indicate the scope of metal-mediated base pairing.
Collapse
Affiliation(s)
- Biswarup Jash
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Corrensstr. 28/30, 48149, Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Corrensstr. 28/30, 48149, Münster, Germany
| |
Collapse
|
22
|
Platinum(II) and palladium(II) complexes of tridentate hydrazone-based ligands as selective guanine quadruplex binders. J Inorg Biochem 2017; 175:58-66. [DOI: 10.1016/j.jinorgbio.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
|
23
|
Paul S, Ahmed T, Samanta A. Influence of Divalent Counterions on the Dynamics in DNA as Probed by Using a Minor-Groove Binder. Chemphyschem 2017; 18:2058-2064. [DOI: 10.1002/cphc.201700251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Paul
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Tasnim Ahmed
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Anunay Samanta
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| |
Collapse
|
24
|
Marsoner T, Schmidt OP, Triemer T, Luedtke NW. DNA-Targeted Inhibition of MGMT. Chembiochem 2017; 18:894-898. [PMID: 28177192 DOI: 10.1002/cbic.201600652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 12/17/2022]
Abstract
The cationic porphyrin 5,10,15,20-tetrakis (diisopropyl-guanidine)-21H,23H-porphine (DIGPor) selectively binds to DNA containing O6 -methylguanine (O6 -MeG) and inhibits the DNA repair enzyme O6 -methylguanine-DNA methyltransferase (MGMT). The O6 -MeG selectivity and MGMT inhibitory activity of DIGPor were improved by incorporating ZnII into the porphyrin. The resulting metal complex (Zn-DIGPor) potentiated the activity of the DNA-alkylating drug temozolomide in an MGMT-expressing cell line. To the best of our knowledge, this is the first example of DNA-targeted MGMT inhibition.
Collapse
Affiliation(s)
- Theodor Marsoner
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Olivia P Schmidt
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Therese Triemer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
25
|
Mohapatra B, Pratibha, Verma S. Directed adenine functionalization for creating complex architectures for material and biological applications. Chem Commun (Camb) 2017; 53:4748-4758. [PMID: 28393940 DOI: 10.1039/c7cc00222j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Chemistry Indian Institute of Technology Kanpur, Kanpur, India.
| | | | | |
Collapse
|
26
|
Peracchi A, Bonaccio M, Credali A. Local conformational changes in the 8–17 deoxyribozyme core induced by activating and inactivating divalent metal ions. Org Biomol Chem 2017; 15:8802-8809. [DOI: 10.1039/c7ob02001e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Placing 2-aminopurine at position 15 of the 8–17 DNAzyme allows the detection of a specific metal-induced conformational change, apparently coupled to the activation of catalysis.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Maria Bonaccio
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Alfredo Credali
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| |
Collapse
|
27
|
|
28
|
Schürch S. Characterization of nucleic acids by tandem mass spectrometry - The second decade (2004-2013): From DNA to RNA and modified sequences. MASS SPECTROMETRY REVIEWS 2016; 35:483-523. [PMID: 25288464 DOI: 10.1002/mas.21442] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:483-523, 2016.
Collapse
Affiliation(s)
- Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| |
Collapse
|
29
|
Schweizer K, Léon JC, Ravoo BJ, Müller J. Thermodynamics of the formation of Ag(I)-mediated azole base pairs in DNA duplexes. J Inorg Biochem 2016; 160:256-63. [DOI: 10.1016/j.jinorgbio.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/08/2016] [Accepted: 03/12/2016] [Indexed: 12/26/2022]
|
30
|
Hammud HH, El-Dakdouki MH, Sonji N, Sonji G, Bouhadir KH. Interactions of Some Divalent Metal Ions with Thymine and Uracil Thiosemicarbazide Derivatives. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:259-76. [PMID: 27049340 DOI: 10.1080/15257770.2016.1143558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The study of interactions between metal ions and nucleobases, nucleosides, nucleotides, or nucleic acids has become an active research area in chemical, biological, and therapeutic fields. In this respect, the coordination behavior of nucleobase derivatives to transition metals was studied in order to get a better understanding about DNA-metal interactions in in vitro and in vivo systems. Two nucleobase derivatives, 3-benzoyl-1-[3-(thymine-1-yl)propamido]thiourea and 3-benzoyl-1-[3-(uracil-1-yl)propamido]thiourea, were synthesized and their dissociation constants were determined at different temperatures and 0.3 ionic strength. Potentiometric studies were carried out on the interaction of the derivatives towards some divalent metals in 50% v/v ethanol-water containing 0.3 mol.dm(-3) KCl, at five different temperatures. The formation constants of the metal complexes for both ligands follow the order: Cu(2+) > Ni(2+) > Co(2+) > Zn(2+) > Pb(2+) > Cd(2+) > Mn(2+). The thermodynamic parameters were estimated; the complexation process has been found to be spontaneous, exothermic, and entropically favorable.
Collapse
Affiliation(s)
- Hassan H Hammud
- a Department of Chemistry, Faculty of Science , King Faisal University , Al-Ahsa , Saudi Arabia
| | - Mohammad H El-Dakdouki
- b Department of Chemistry, Faculty of Science , Beirut Arab University , Debbieh , Lebanon
| | - Nada Sonji
- b Department of Chemistry, Faculty of Science , Beirut Arab University , Debbieh , Lebanon
| | - Ghassan Sonji
- b Department of Chemistry, Faculty of Science , Beirut Arab University , Debbieh , Lebanon
| | - Kamal H Bouhadir
- c Department of Chemistry, Faculty of Arts and Sciences , American University of Beirut , Beirut , Lebanon
| |
Collapse
|
31
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
32
|
Mata G, Schmidt OP, Luedtke NW. A fluorescent surrogate of thymidine in duplex DNA. Chem Commun (Camb) 2016; 52:4718-21. [DOI: 10.1039/c5cc09552b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DMAT is a new fluorescent thymidine mimic composed of 2′-deoxyuridine fused to dimethylaniline.
Collapse
Affiliation(s)
- Guillaume Mata
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Olivia P. Schmidt
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
33
|
Sinha I, Hepp A, Kösters J, Müller J. Metal complexes of 6-pyrazolylpurine derivatives as models for metal-mediated base pairs. J Inorg Biochem 2015; 153:355-360. [DOI: 10.1016/j.jinorgbio.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/10/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
|
34
|
Synthesis and X-ray crystal structure of the dirhenium complex Re2(i-C3H7COO)4Cl2 and its interactions with the DNA purine nucleobases. J Inorg Biochem 2015; 153:114-120. [DOI: 10.1016/j.jinorgbio.2015.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/12/2015] [Accepted: 06/14/2015] [Indexed: 11/18/2022]
|
35
|
4-(2′-Pyridyl)imidazole as an artificial nucleobase in highly stabilizing Ag(I)-mediated base pairs. J Biol Inorg Chem 2015; 20:895-903. [DOI: 10.1007/s00775-015-1274-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/28/2015] [Indexed: 11/26/2022]
|
36
|
Stasyuk OA, Szatylowicz H, Krygowski TM. Aromaticity of H-bonded and metal complexes of guanine tautomers. Struct Chem 2015. [DOI: 10.1007/s11224-015-0605-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Mg(II) and Ni(II) induce aggregation of poly(rA)poly(rU) to either tetra-aggregate or triplex depending on the metal ion concentration. J Inorg Biochem 2015; 151:115-22. [PMID: 26004214 DOI: 10.1016/j.jinorgbio.2015.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/28/2015] [Accepted: 05/02/2015] [Indexed: 11/21/2022]
Abstract
The ability of magnesium(II) and nickel(II) to induce dramatic conformational changes in the synthetic RNA poly(rA)poly(rU) has been investigated. Kinetic experiments, spectrofluorometric titrations, melting experiments and DSC measurements contribute in shedding light on a complex behaviour where the action of metal ions (Na(+), Mg(2+), Ni(2+)), in synergism with other operators as the intercalating dye coralyne and temperature, all concur in stabilising a peculiar RNA form. Mg(2+) and Ni(2+) (M) bind rapidly and almost quantitatively to the duplex (AU) to give a RNA/metal ion complex (AUM). Then, by the union of two AUM units, an unstable tetra-aggregate (UAUA(M2)*) is formed which, in the presence of a relatively modest excess of metal, evolves to the UAUM triplex by releasing a single AM strand. On the other hand, under conditions of high metal content, the UAUA(M2)* intermediate rearranges to give a more stable tetra-aggregate (UAUA(M2)). As concerns the role of coralyne (D), it is found that D strongly interacts with UAUA(M2). Also, in the presence of coralyne, the ability of divalent ions to promote the transition of AUD into UAUD is enhanced, according to the efficiency sequence [Ni(2+)]≫[Mg(2+)]≫[Na(+)].
Collapse
|
38
|
Lu H, Li S, Chen J, Xia J, Zhang J, Huang Y, Liu X, Wu HC, Zhao Y, Chai Z, Hu Y. Metal ions modulate the conformation and stability of a G-quadruplex with or without a small-molecule ligand. Metallomics 2015; 7:1508-14. [DOI: 10.1039/c5mt00188a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Abstract
Recent applications of solid-state NMR spectroscopy to studies of nucleic acids and their components.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry
- Prague
- Czech Republic
| | | |
Collapse
|
40
|
Opherden L, Oertel J, Barkleit A, Fahmy K, Keller A. Paramagnetic decoration of DNA origami nanostructures by Eu³⁺ coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8152-9. [PMID: 24956405 DOI: 10.1021/la501112a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The folding of DNA into arbitrary two- and three-dimensional shapes, called DNA origami, represents a powerful tool for the synthesis of functional nanostructures. Here, we present the first approach toward the paramagnetic functionalization of DNA origami nanostructures by utilizing postassembly coordination with Eu(3+) ions. In contrast to the usual formation of toroidal dsDNA condensates in the presence of trivalent cations, planar as well as rod-like DNA origami maintain their shape and monomeric state even under high loading with the trivalent lanthanide. Europium coordination was demonstrated by the change in Eu(3+) luminescence upon binding to the two DNA origami. Their natural circular dichroism in the Mg(2+)- and Eu(3+)-bound state was found to be very similar to that of genomic DNA, evidencing little influence of the DNA origami superstructure on the local chirality of the stacked base pairs. In contrast, the magnetic circular dichroism of the Mg(2+)-bound DNA origami deviates from that of genomic DNA. Furthermore, the lanthanide affects the magnetic properties of DNA in a superstructure-dependent fashion, indicative of the existence of superstructure-specific geometry of Eu(3+) binding sites in the DNA origami that are not formed in genomic DNA. This simple approach lays the foundation for the generation of magneto-responsive DNA origami nanostructures. Such systems do not require covalent modifications and can be used for the magnetic manipulation of DNA nanostructures or for the paramagnetic alignment of molecules in NMR spectroscopy.
Collapse
Affiliation(s)
- Lars Opherden
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , P.O.B. 510119, 01314 Dresden, Germany
| | | | | | | | | |
Collapse
|
41
|
Cytotoxicity, antioxidant and glutathione S-transferase inhibitory activity of palladium(II) chloride complexes bearing nucleobase ligands. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9848-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Richters T, Müller J. A Metal-Mediated Base Pair with a [2+1] Coordination Environment. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201301491] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Dračínský M, Šála M, Hodgkinson P. Dynamics of water molecules and sodium ions in solid hydrates of nucleotides. CrystEngComm 2014. [DOI: 10.1039/c4ce00727a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dynamics of the co-ordinating water and metal cations in solid hydrates of nucleotide salts is explored with solid-state NMR spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Martin Dračínský
- Department of Chemistry
- Durham University
- Durham, UK
- Institute of Organic Chemistry and Biochemistry
- Prague, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry
- Prague, Czech Republic
| | | |
Collapse
|
44
|
Kang I, Wang Y, Reagan C, Fu Y, Wang MX, Gu LQ. Designing DNA interstrand lock for locus-specific methylation detection in a nanopore. Sci Rep 2013; 3:2381. [PMID: 24135881 PMCID: PMC3798886 DOI: 10.1038/srep02381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 07/12/2013] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic regulation of gene transcription. Locus-specific DNA methylation can be used as biomarkers in various diseases including cancer. Many methods have been developed for genome-wide methylation analysis, but molecular diagnotics needs simple tools to determine methylation states at individual CpG sites in a gene fragment. In this report, we utilized the nanopore single-molecule sensor to investigate a base-pair specific metal ion/nucleic acids interaction, and explored its potential application in locus-specific DNA methylation analysis. We identified that divalent Mercury ion (Hg2+) can selectively bind a uracil-thymine mismatch (U-T) in a dsDNA. The Hg2+ binding creates a reversible interstrand lock, called MercuLock, which enhances the hybridization strength by two orders of magnitude. Such MercuLock cannot be formed in a 5-methylcytosine-thymine mismatch (mC-T). By nanopore detection of dsDNA stability, single bases of uracil and 5-methylcytosine can be distinguished. Since uracil is converted from cytosine by bisulfite treatment, cytosine and 5′-methylcytosine can be discriminated. We have demonstrated the methylation analysis of multiple CpGs in a p16 gene CpG island. This single-molecule assay may have potential in detection of epigenetic cancer biomarkers in biofluids, with an ultimate goal for early diagnosis of cancer.
Collapse
Affiliation(s)
- Insoon Kang
- Department of Bioengineering and Dalton Cardiovascular Research Center
| | | | | | | | | | | |
Collapse
|
45
|
Biver T. Stabilisation of non-canonical structures of nucleic acids by metal ions and small molecules. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Kumbhar S, Johannsen S, Sigel RK, Waller MP, Müller J. A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs. J Inorg Biochem 2013; 127:203-10. [DOI: 10.1016/j.jinorgbio.2013.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/18/2013] [Accepted: 03/18/2013] [Indexed: 01/04/2023]
|
47
|
De Rache A, Doneux T, Kejnovská I, Buess-Herman C. On the interaction between [Ru(NH3)6]3+ and the G-quadruplex forming thrombin binding aptamer sequence. J Inorg Biochem 2013; 126:84-90. [PMID: 23787142 DOI: 10.1016/j.jinorgbio.2013.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
The interaction between the thrombin binding aptamer (TBA), a G-quadruplex forming DNA sequence, and the electroactive hexaammineruthenium(III) cation has been studied by electrochemical methods and circular dichroism spectroscopy. When TBA is immobilised on a gold surface in a typical aptasensor configuration, the [Ru(NH3)6](3+) cation can be bound to the electrode surface through its interaction with the TBA sequence. This interaction is strong enough to enable the ruthenium complex to remain at the surface when the electrode is immersed in an electrolyte free of [Ru(NH3)6](3+), meaning that the complex does not diffuse back into the solution. A stoichiometry of 2 [Ru(NH3)6](3+) per TBA strand has been determined, indicating that the interaction differs from the conventional, non-specific electrostatic charge compensation, for which a 5 to 1 ratio would be expected between the triply charged cation and the 15 bases sequence. It is shown that this interaction takes place not only at the surface, but also when both TBA and hexaammineruthenium(III) are dissolved in solution. Under such conditions, a similar stoichiometry of 2 [Ru(NH3)6](3+) per TBA strand has been evidenced by two independent methods, namely circular dichroism spectroscopy and differential pulse voltammetry.
Collapse
Affiliation(s)
- Aurore De Rache
- Chimie Analytique et Chimie des Interfaces, Faculté des Sciences, Université Libre de Bruxelles, CP 255, Boulevard du Triomphe 2, B-1050 Bruxelles, Belgium
| | | | | | | |
Collapse
|
48
|
Wang G, Zhao Q, Kang X, Guan X. Probing mercury(II)-DNA interactions by nanopore stochastic sensing. J Phys Chem B 2013; 117:4763-9. [PMID: 23565989 DOI: 10.1021/jp309541h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, DNA-Hg(II) interactions were investigated by monitoring the translocation of DNA hairpins in a protein ion channel in the absence and presence of metal ions. Our experiments demonstrate that target-specific hairpin structures could be stabilized much more significantly by mercuric ions than by the stem length and the loop size of the hairpin due to the formation of Thymine-Hg(II)-Thymine complexes. In addition, the designed DNA probe allows the development of a highly sensitive nanopore sensor for Hg(2+) with a detection limit of 25 nM. Further, the sensor is specific, and other tested metal ions including Pb(2+), Cu(2+), Cd(2+), and so on with concentrations of up to 2 orders of magnitude greater than that of Hg(2+) would not interfere with the mercury detection.
Collapse
Affiliation(s)
- Guihua Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | | | | | | |
Collapse
|
49
|
Reedijk J. Coordination chemistry beyond Werner: interplay between hydrogen bonding and coordination. Chem Soc Rev 2013; 42:1776-83. [DOI: 10.1039/c2cs35239g] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Robbins TJ, Wang Y. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations. J Biomol Struct Dyn 2012; 31:1311-23. [PMID: 23153112 DOI: 10.1080/07391102.2012.732344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.
Collapse
Affiliation(s)
- Timothy J Robbins
- a Department of Chemistry , University of Memphis , Memphis , TN , 38152 , USA
| | | |
Collapse
|