1
|
Katsyuba SA, Burganov TI. Computationally assisted vibrational spectroscopy of nucleic acid bases. 2. Thymine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123832. [PMID: 38190776 DOI: 10.1016/j.saa.2023.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
As in the case of cytosine [Phys. Chem. Chem. Phys. 2023, 25, 24121-24128], Raman and infrared (IR) spectra of aqueous thymine and its N-deuterated derivative, thymine-d2 have been computationally reproduced and interpreted with the use of the recently developed efficient protocol to explicit quantum mechanical modeling of structure and IR spectra of liquids and solutions [J. Phys. Chem. B, 2020, 124, 6664-6670]. A cluster model of a solute surrounded by 30 water molecules is shown to be sufficient to reproduce experimental vibrational frequencies and relative Raman intensities with the use of B3LYP-D3/def2-TZVP or B3LYP-D3/aug-cc-pVDZ simulations. Analogous PBE-D3 computations provided a less good, but still reasonably accurate, modeling of Raman spectra. It is shown that strong changes of frequencies and relative intensities of the Raman bands of thymine, caused by its hydration, can be interpreted mainly as a result of hydrogen bonding with 6 nearest water molecules. Non-negligible improvement of the quality of simulations for larger clusters comprising water molecules that do not have direct contacts with the solute, suggests that spectroscopic effects of hydration should be ascribed to the joined action of solute-solvent and solvent-solvent interactions. Nevertheless, the moderate number of water molecules required for successful simulations of the Raman spectra of aqueous thymine, suggests that the vibrational modes and derivatives of the polarizability of the solute are mainly locally influenced, while the effect of bulk water is rather modest.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.
| | - Timur I Burganov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia
| |
Collapse
|
2
|
Katsyuba SA, Burganov TI. Computational analysis of the vibrational spectra and structure of aqueous cytosine. Phys Chem Chem Phys 2023; 25:24121-24128. [PMID: 37655545 DOI: 10.1039/d3cp03059h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The recently developed efficient protocol for the explicit quantum mechanical modeling of the structure and IR spectra of liquids and solutions [Katsyuba et al., J. Phys. Chem. B, 2020, 124, 6664-6670] is used to describe aqueous solutions of cytosine. The same cluster model of a solute surrounded by the first solvation shell of solvent molecules was shown to be sufficient to reproduce experimental vibrational frequencies and relative IR and Raman intensities. An equally good quality of Raman spectra was provided by B3LYP-D3/def2-TZVP and B3LYP-D3/aug-cc-pVDZ simulations. Computations using the PBE functional were sufficient for modeling of the IR spectra but failed in the simulations of Raman scattering. It is shown that strong changes of frequencies and relative intensities of Raman and IR bands of cytosine, caused by its hydration, cannot be completely assigned to the influence of hydrogen bonds (HBs) with 7 or 8 closest water molecules. They are rather ascribed to the combined effect of solute-solute and solute-solvent HBs with the participation of at least 30 water molecules separating cytosine from the bulk solvent. This suggests that the vibrational modes and derivatives of the polarizability and dipole moment of the solute are mainly locally influenced by its first hydration shell, while the influence of bulk water is rather modest.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.
| | - Timur I Burganov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.
| |
Collapse
|
3
|
Semmeq A, Badawi M, Dziurla MA, Ouaskit S, Monari A. Nucleic Acids under Stress: Understanding and Simulating Nucleobase Fragmentation Pathways. Chempluschem 2021; 86:1426-1435. [PMID: 34637193 DOI: 10.1002/cplu.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/24/2021] [Indexed: 11/10/2022]
Abstract
The effects of radiations on nucleic acids and their constituents is widely studied across several research fields using different experimental and theoretical protocols. While a large number of studies were performed in this context, many fundamental physical and chemical effects are still being investigated, particularly involving the effect of the biological environment. As an example, the interpretation of experimental nucleic acid bases mass spectra, and hence inferring their reactivity in complex environment still poses great challenge. This Minireview summarizes recent theoretical advancements aiming to predict and interpret the reactivity of nucleic acid bases. We focus not only on the understanding of the inherent fragmentation pathways of isolated nucleobases but also on the modeling of a realistic nano-environments highlighting the importance of molecular dynamics simulations and the non-innocent role of the environment and also the possibility to open novel fragmentation pathways.
Collapse
Affiliation(s)
| | - Michael Badawi
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | | | - Said Ouaskit
- Laboratoire de Physique de la Matière Condensée, Faculté de Sciences Ben M'sick, University Hassan II of Casablanca, Morocco
| | - Antonio Monari
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
- Université de Paris and CNRS, ITODYS, 75006, Paris, France
| |
Collapse
|
4
|
Mattioli G, Avaldi L, Bolognesi P, Bozek JD, Castrovilli MC, Chiarinelli J, Domaracka A, Indrajith S, Maclot S, Milosavljević AR, Nicolafrancesco C, Rousseau P. Water-biomolecule clusters studied by photoemission spectroscopy and multilevel atomistic simulations: hydration or solvation? Phys Chem Chem Phys 2021; 23:15049-15058. [PMID: 34231588 DOI: 10.1039/d1cp02031e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The properties of mixed water-uracil nanoaggregates have been probed by core electron-photoemission measurements to investigate supramolecular assembly in the gas phase driven by weak interactions. The interpretation of the measurements has been assisted by multilevel atomistic simulations, based on semi-empirical tight-binding and DFT-based methods. Our protocol established a positive-feedback loop between experimental and computational techniques, which has enabled a sound and detailed atomistic description of such complex heterogeneous molecular aggregates. Among biomolecules, uracil offers interesting and generalized skeletal features; its structure encompasses an alternation of hydrophilic H-bond donor and acceptor sites and hydrophobic moieties, typical in biomolecular systems, that induces a supramolecular core-shell-like organization of the mixed clusters with a water core and an uracil shell. This structure is far from typical models of both solid-state hydration, with water molecules in defined positions, or liquid solvation, where disconnected uracil molecules are completely surrounded by water.
Collapse
Affiliation(s)
- Giuseppe Mattioli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Lorenzo Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Paola Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - John D Bozek
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192, Gif-sur-Yvette Cedex, France
| | - Mattea C Castrovilli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Jacopo Chiarinelli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Alicja Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | | | - Sylvain Maclot
- Physics Department, University of Gothenburg, Origovägen 6B, 41296 Göteborg, Sweden
| | | | - Chiara Nicolafrancesco
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192, Gif-sur-Yvette Cedex, France and Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Patrick Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| |
Collapse
|
5
|
Miranda ÉGA, Araujo-Chaves JC, Kawai C, Brito AMM, Dias IWR, Arantes JT, Nantes-Cardoso IL. Cardiolipin Structure and Oxidation Are Affected by Ca 2+ at the Interface of Lipid Bilayers. Front Chem 2020; 7:930. [PMID: 32039150 PMCID: PMC6986261 DOI: 10.3389/fchem.2019.00930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Ca2+-overload contributes to the oxidation of mitochondrial membrane lipids and associated events such as the permeability transition pore (MPTP) opening. Numerous experimental studies about the Ca2+/cardiolipin (CL) interaction are reported in the literature, but there are few studies in conjunction with theoretical approaches based on ab initio calculations. In the present study, the lipid fraction of the inner mitochondrial membrane was modeled as POPC/CL large unilamellar vesicles (LUVs). POPC/CL and, comparatively, POPC, and CL LUVs were challenged by singlet molecular oxygen using the anionic porphyrin TPPS4 as a photosensitizer and by free radicals produced by Fe2+-citrate. Calcium ion favored both types of lipid oxidation in a lipid composition-dependent manner. In membranes containing predominantly or exclusively POPC, Ca2+ increased the oxidation at later reaction times while the oxidation of CL membranes was exacerbated at the early times of reaction. Considering that Ca2+ interaction affects the lipid structure and packing, density functional theory (DFT) calculations were applied to the Ca2+ association with totally and partially protonated and deprotonated CL, in the presence of water. The interaction of totally and partially protonated CL head groups with Ca2+ decreased the intramolecular P-P distance and increased the hydrophobic volume of the acyl chains. Consistently with the theoretically predicted effect of Ca2+ on CL, in the absence of pro-oxidants, giant unilamellar vesicles (GUVs) challenged by Ca2+ formed buds and many internal vesicles. Therefore, Ca2+ induces changes in CL packing and increases the susceptibility of CL to the oxidation promoted by free radicals and excited species.
Collapse
Affiliation(s)
- Érica G A Miranda
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Juliana C Araujo-Chaves
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Cintia Kawai
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Adrianne M M Brito
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Igor W R Dias
- Center of Engineering, Modeling, and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Jeverson T Arantes
- Center of Engineering, Modeling, and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Iseli L Nantes-Cardoso
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
6
|
Omelchenko IV, Shishkin OV, Dopieralski P, Latajka Z. About the Aromaticity of symm-Triaminotrinitrobenzene. J Phys Chem A 2019; 123:2244-2251. [DOI: 10.1021/acs.jpca.9b00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Iryna V. Omelchenko
- Department of X-ray Diffraction Study and Quantum Chemistry, SSI “Institute for Single Crystals” NAS of Ukraine, 60 Nauky ave., Kharkiv 61072, Ukraine
- Faculty of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine
| | - Oleg V. Shishkin
- Department of X-ray Diffraction Study and Quantum Chemistry, SSI “Institute for Single Crystals” NAS of Ukraine, 60 Nauky ave., Kharkiv 61072, Ukraine
- Faculty of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine
| | | | - Zdzislaw Latajka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
7
|
Alcolea Palafox M. Effect of the sulfur atom on S2 and S4 positions of the uracil ring in different DNA:RNA hybrid microhelixes with three nucleotide base pairs. Biopolymers 2019; 110:e23247. [PMID: 30676643 DOI: 10.1002/bip.23247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
The effect of the sulphur atom on the uracil ring was analyzed in different DNA:RNA microhelixes with three nucleotide base-pairs, including uridine, 2-thiouridine, 4-thiouridine, 2,4-dithiouridine, cytidine, adenosine and guanosine. Distinct backbone and helical parameters were optimized at different density functional (DFT) levels. The Watson-Crick pair with 2-thiouridine appears weaker than with uridine, but its interaction with water molecules appears easier. Two types of microhelixes were found, depending on the H-bond of H2' hydroxyl atom: A-type appears with the ribose ring in 3 E-envelope C3' -endo, and B-type in 2 E-envelope C2' -endo. B-type is less common but it is more stable and with higher dipole-moment. The sulphur atoms significantly increase the dipole-moment of the microhelix, as well as the rise and propeller twist parameters. Simulations with four Na atoms H-bonded to the phosphate groups, and further hydration with explicit water molecules were carried out. A re-definition of the numerical value calculation of several base-pair and base-stacking parameters is suggested.
Collapse
Affiliation(s)
- Mauricio Alcolea Palafox
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Konovalova IS, Shishkina SV, Bani-Khaled G, Muzyka EN, Boyko AN. Intermolecular interactions in crystals of benzene and its mono- and dinitro derivatives: study from the energetic viewpoint. CrystEngComm 2019. [DOI: 10.1039/c8ce02099j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The weak intermolecular interactions and their role in mono- and dinitrobenzene crystal structure formation have been studied using quantum-chemical calculations.
Collapse
Affiliation(s)
- Irina S. Konovalova
- SSI “Institute for Single Crystals” National Academy of Science of Ukraine
- Kharkiv
- Ukraine
- National University of Radio Electronics
- Kharkiv
| | - Svitlana V. Shishkina
- SSI “Institute for Single Crystals” National Academy of Science of Ukraine
- Kharkiv
- Ukraine
- National University of Radio Electronics
- Kharkiv
| | | | | | | |
Collapse
|
9
|
Milovanović B, Kojić M, Petković M, Etinski M. New Insight into Uracil Stacking in Water from ab Initio Molecular Dynamics. J Chem Theory Comput 2018; 14:2621-2632. [DOI: 10.1021/acs.jctc.8b00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marko Kojić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Alcolea Palafox M, Rastogi V, Singh S. Effect of the sulphur atom on geometry and spectra of the biomolecule 2-thiouracil and in the WC base pair 2-thiouridine-adenosine. Influence of water in the first hydration shell. J Biomol Struct Dyn 2017; 36:1225-1254. [DOI: 10.1080/07391102.2017.1318304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Alcolea Palafox
- Facultad de Ciencias Químicas, Departamento de Química-Fisica1, Universidad Complutense, Madrid 28040, Spain
| | - V.K. Rastogi
- R.D. Foundation Group of Institutions, NH-58, Kadrabad, Modinagar, Ghaziabad, India
- Indian Spectroscopy Society, KC 68/1, Old Kavinagar, Ghaziabad 201 002, India
| | - S.P. Singh
- Department of Physics, Dr B R Ambedkar Govt Degree College, Mainpuri, India
| |
Collapse
|
11
|
Fogarasi G, Szalay PG. Quantum chemical MP2 results on some hydrates of cytosine: binding sites, energies and the first hydration shell. Phys Chem Chem Phys 2015; 17:29880-90. [PMID: 26487481 DOI: 10.1039/c5cp04563k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed quantum chemical investigation was undertaken to obtain the structure and energetics of cytosine hydrates Cyt·nH2O, with n = 1 to 7. The MP2(fc)/aug-cc-pVDZ level was used as the standard, with some DFT (B3LYP) and coupled cluster calculations, as well as calculations with the aug-cc-pVTZ basis set added for comparison. In a systematic search for microhydrated forms of cytosine, we have found that several structures have not yet been reported in the literature. The energies of different isomers, as well as binding energies are compared. When predicting the stability of a complex, we suggest using a scheme where the water molecules are extracted from a finite model of bulk water. Finally, based on energetic data, we suggest a rational definition of the first hydration shell; with this definition, it contains just six water molecules.
Collapse
Affiliation(s)
- Géza Fogarasi
- Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary.
| | | |
Collapse
|
12
|
Cerón-Carrasco JP, Jacquemin D. DNA spontaneous mutation and its role in the evolution of GC-content: assessing the impact of the genetic sequence. Phys Chem Chem Phys 2015; 17:7754-60. [DOI: 10.1039/c4cp05806b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We use theoretical tools to investigate the possible role played by a DNA sequence in the base pair tautomerization phenomena.
Collapse
|
13
|
Shanak S, Helms V. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations. J Chem Phys 2014; 141:22D512. [PMID: 25494783 DOI: 10.1063/1.4897525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.
Collapse
Affiliation(s)
- Siba Shanak
- Zentrum für Bioinformatik, Universität des Saarlandes, P.O. Box 15 11 50, 66123 Saarbrücken, Germany
| | - Volkhard Helms
- Zentrum für Bioinformatik, Universität des Saarlandes, P.O. Box 15 11 50, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Zubatiuk TA, Shishkin OV, Gorb L, Hovorun DM, Leszczynski J. B-DNA characteristics are preserved in double stranded d(A)3·d(T)3 and d(G)3·d(C)3 mini-helixes: conclusions from DFT/M06-2X study. Phys Chem Chem Phys 2014; 15:18155-66. [PMID: 24065071 DOI: 10.1039/c3cp51584b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the results of the first comprehensive DFT study on the d(A)3·d(T)3 and d(G)3·d(C)3 nucleic acid duplexes. The ability of mini-helixes to preserve the conformation of B-DNA in the gas phase and under the influence of such factors as: solvent, uncompensated charge, and counter-ions was evaluated using M06-2X functional with 6-31G(d,p) basis set. The accuracy of the models was ascertained based on their ability to reproduce key structural features of natural B-DNA. Analysis of the helicity suggests that the helical conformations adopt geometrical parameters which are close to those of the B-DNA form. The torsion angles fall somewhere between the values observed for BI/BII conformational classes. The comparative analysis of parameters of isolated Watson-Crick base pairs versus B-DNA-like conformations indicates the same tendency of base-pair polarization and hydration. Specifically, effects of polarization of nucleobases in continuum type dielectric medium mimicking water are stronger than those caused by the presence of backbone. Polar environment as well as the presence of counterions stabilizes duplexes, facilitating helix formation. Substantial conformational changes of nucleotides upon duplex formation decrease the binding energy. In spite of structural and energetic changes, the placement of a mini-helix into the gas phase does not lead to significant disruption of the structure. On the contrary, the duplex preserves its helicity and the strands remain bound.
Collapse
Affiliation(s)
- Tetiana A Zubatiuk
- Division of Functional Materials Chemistry, SSI "Institute for Single Crystals" National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv, 61001, Ukraine
| | | | | | | | | |
Collapse
|
15
|
DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent, COSMO. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Muñoz Freán S, Alcolea Palafox M, Rastogi V. Effect of the microhydration on the tautomerism in the anticarcinogenic drug 5-fluorouracil and relationships with other 5-haloderivatives. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Anticancer drug IUdR and other 5-halogen derivatives of 2′-deoxyuridine: conformers, hydrates, and structure–activity relationships. Struct Chem 2013. [DOI: 10.1007/s11224-013-0225-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Abstract
Comparison of the results of Car-Parrinello molecular dynamics simulations of isolated benzene, pyrimidine and 1,2,4-triazine molecules reveals that the unusually low population of planar geometry of the benzene ring is caused by entropy effects despite its high aromaticity. The decrease in symmetry of the molecule results in smaller changes in entropy and Gibbs free energy due to out-of-plane deformations of the ring, leading to an increase in the population of planar geometry of the ring. This leads to differences in the topology of potential energy and Gibbs free energy surfaces.
Collapse
|
19
|
Remarkably strong polarization of amidine fragment in the crystals of 1-imino-1H-isoindol-3-amine. Struct Chem 2012. [DOI: 10.1007/s11224-012-0131-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
|
21
|
Xiao S, Liang H. The conformational flexibility of nucleic acid bases paired in gas phase: A Car-Parrinello molecular dynamics study. J Chem Phys 2012; 136:205102. [DOI: 10.1063/1.4720352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Sychrovský V, Sochorová Vokáčová Z, Trantírek L. Guanine bases in DNA G-quadruplex adopt nonplanar geometries owing to solvation and base pairing. J Phys Chem A 2012; 116:4144-51. [PMID: 22471881 DOI: 10.1021/jp2110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of base pairing and solvation on pyramidalization of the glycosidic nitrogen found in the residues of parallel G-quadruplex with NDB ID UDF062 is analyzed and explained with theoretical calculations. The extent of the pyramidalization depends on the local geometry of the 2'-deoxyguanosine residues, namely on their glycosidic torsion and sugar pucker, which are predetermined by the 3D-architecture of G-quadruplex. Pyramidal inversion of the glycosidic nitrogen found in 2'-deoxyguanosines of G-quadruplex is induced owing to site-specifically coordinated solvent. Different adiabatic structural constraints used for fixing the base-to-sugar orientation of 2'-deoxyguanosine in geometry optimizations result in different extents of pyramidalization and induce pyramidal inversion of the glycosidic nitrogen. These model geometry constraints helped us analyze the effect of real constraints represented by explicit molecular environment of selected residues of the G-quadruplex. The maximal extent of the glycosidic nitrogen pyramidalization found in the high-resolution crystal structure corresponds to the calculation to deformation energy of only 1 kcal mol(-1). The out-of-plane deformations of nucleobases thus provide a way for compensating the site-specific external environmental stress on the G-quadruplex.
Collapse
Affiliation(s)
- Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo square 2, 166 10 Prague 6, Czech Republic.
| | | | | |
Collapse
|
23
|
The shape of the conical intersections of monohydrated pyrimidine bases cytosine, uracil, and thymine: a theoretical study. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0447-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|