1
|
Nayal OS, Grossmann O, Pratt DA. Inhibition of acrylic acid and acrylate autoxidation. Org Biomol Chem 2025; 23:4675-4685. [PMID: 40260616 DOI: 10.1039/d5ob00265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Acrylic acid (AA) is a versatile monomer whose high reactivity can present a challenge for transport and storage due to its highly exergonic oligomerization, which can lead to runaway polymerization and explosion. To prevent premature polymerization of acrylic acid, hydroquinone monomethyl ether (MeHQ) and phenothiazine (PTZ) are commonly used as inhibitors/stabilizers. Despite their widespread use, the limited radical-trapping stoichiometry of MeHQ and oxidative consumption of PTZ at process temperatures are clear limitations. Herein, we apply a recently devised spectrophotometric approach employing the autoxidizable STY-BODIPY dye to monitor reaction progress in autoxidations of acrylic acid, n-butyl acrylate and the non-polymerizable 2-ethylhexanol, and the impact of a panel of radical-trapping antioxidants (RTAs, including MeHQ and PTZ) upon them. We find that the radical-trapping stoichiometry is highly substrate-dependent, with nitroxides and aromatic amines that can be converted to nitroxides in situ exhibiting superstoichiometric activities in substrates where hydroperoxyl radicals are formed or in the presence of acid. N-Alkyl derivatives of phenoxazine, the most potent RTA uncovered to date, are found to be particularly excellent inhibitors of AA autoxidation. It is proposed that gradual acid-mediated dealkylation to phenoxazine minimizes accumulation of the phenoxazine-derived nitroxide, which can otherwise undergo acid-catalyzed disproportionation and diminish radical-trapping capacity. These results suggest that N-alkylated phenoxazine derivatives should be explored further as stabilizers of AA.
Collapse
Affiliation(s)
- Onkar S Nayal
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada.
| | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
2
|
Jacky PE, Easley AD, Fors BP. Controlled anionic polymerization mediated by carbon dioxide. Nat Chem 2025:10.1038/s41557-025-01819-7. [PMID: 40360830 DOI: 10.1038/s41557-025-01819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025]
Abstract
Anionic polymerizations of vinyl monomers are powerful synthetic platforms for making well-defined materials. However, these reactions are extremely sensitive to moisture and oxygen, require the use of highly purified reagents, must be run at low temperatures, and use hazardous and difficult-to-handle alkyl lithium initiators. Together, these drawbacks limit the practicality of these polymerizations and impede their widespread usage. On this basis, the development of a user-friendly anionic polymerization process for methacrylates is a grand challenge. Here we report an anionic polymerization of methacrylates mediated by CO2 that can be run at elevated temperatures and uses an easy-to-handle solid initiator. The reversible addition of CO2 to the enolate chain end efficiently tempers the reactivity of the anion, giving polymers with narrow molar mass distributions and excellent molecular weight targeting at elevated temperatures. Our scalable and more user-friendly CO2-mediated method improves the accessibility and safety of anionic polymerizations and facilitates the production of a variety of polymeric materials.
Collapse
Affiliation(s)
- Paige E Jacky
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Alexandra D Easley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Ghorbani M, Roxburgh NPC, Tran MP, Blinco JP, Kempe K. Nitroxide-Containing Poly(2-oxazoline)s Show Dual-Stimuli-Responsive Behavior and Radical-Trapping Activity. Biomacromolecules 2025; 26:1260-1273. [PMID: 39883722 DOI: 10.1021/acs.biomac.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx). The ratios of EtOx/TempOx were adjusted to optimize the nitroxide content while maintaining suitable water solubility of the resulting P(EtOxx-stat-TempOx-Oy•) copolymers upon deprotection. P(EtOx40-stat-TempOx-O10•) and P(EtOx33-stat-TempOx-O17•) showed a dual stimuli-responsive behavior and demonstrated significant radical-trapping activities in aqueous media. Particularly, a meaningful augmentation in the activity of TempOx-O• was observed when it was immobilized as P(EtOxx-stat-TempOx-Oy•). The P(EtOx40-stat-TempOx-O10•) system exhibited a longer-lasting activity in water, statistically comparable to that of the antioxidant ferrostatin-1 (Fer-1). Overall, this study introduces a biocompatible polymeric platform for TEMPO immobilization that augments its radical-trapping activity and offers controllable stimuli-responsive properties.
Collapse
Affiliation(s)
- Milad Ghorbani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Nicholas P C Roxburgh
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Mai P Tran
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - James P Blinco
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Shiroudi A, Śmiechowski M, Czub J, Abdel-Rahman MA. A Computational Analysis of the Proton Affinity and the Hydration of TEMPO and Its Piperidine Analogs. Chemphyschem 2024; 25:e202400518. [PMID: 39222322 DOI: 10.1002/cphc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The study investigated the impact of protonation and hydration on the geometry of nitroxide radicals using B3LYP and M06-2X methods. Results indicated that TEMPO exhibited the highest proton affinity in comparison to TEMPOL and TEMPONE. Two pathways contribute to hydrated protonated molecules. TEMPO shows lower first enthalpies of hydration (ΔH1-M), indicating stronger H-bonding interactions, while TEMPONE shows higher values, indicating weaker interactions with H2O. Solvent effects affect charge distribution by decreasing their atomic charge. Spin density (SD) is primarily concentrated in the NO segment, with minimal water molecule contamination. Protonation increases SD on N-atom, while hydration causes a more pronounced redistribution for water molecules. The stability of the dipolar structure (>N⋅+-O-) is evident in SD redistributions. The frontier molecular orbital (FMO) analysis of TEMPONE reveals a minimum EHOMO-LUMO gap (EH-L), enhancing the piperidine ring's reactivity. TEMPO is the most nucleophilic species, while TEMPONE exhibits strong electrophilicity. Transitioning from NO radicals to protonated forms increases the EH-L gap, indicating protonation stabilizes FMOs. Increased water molecules make the molecule less reactive, while increasing hydration decreases this energy gap, making the molecule more reactive. A smaller EH-L gap indicates the compound becomes softer and more prone to electron density and reactivity changes.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Mohamed A Abdel-Rahman
- College of Engineering, Peking University, Beijing, 10087, China
- Department of Chemistry, Faculty of Science, Suez University, P.O. Box: 43221, Suez, Egypt
| |
Collapse
|
5
|
Shiroudi A, Śmiechowski M, Czub J, Abdel-Rahman MA. Computational analysis of substituent effects on proton affinity and gas-phase basicity of TEMPO derivatives and their hydrogen bonding interactions with water molecules. Sci Rep 2024; 14:8434. [PMID: 38600208 PMCID: PMC11006853 DOI: 10.1038/s41598-024-58582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
The study investigates the molecular structure of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives in the gas phase using B3LYP and M06-2X functional methods. Intermolecular interactions are analyzed using natural bond orbital (NBO) and atoms in molecules (AIM) techniques. NO2-substituted TEMPO displays high reactivity, less stability, and softer properties. The study reveals that the stability of TEMPO derivatives is mainly influenced by LP(e) → σ∗ electronic delocalization effects, with the highest stabilization observed on the oxygen atom of the nitroxide moiety. This work also considers electron density, atomic charges, and energetic and thermodynamic properties of the studied NO radicals, and their relative stability. The proton affinity and gas-phase basicity of the studied compounds were computed at T = 298 K for O-protonation and N-protonation, respectively. The studied DFT method calculations show that O-protonation is more stable than N-protonation, with an energy difference of 16.64-20.77 kcal/mol (22.80-25.68 kcal/mol) at the B3LYP (M06-2X) method. The AIM analysis reveals that the N-O…H interaction in H2O complexes has the most favorable hydrogen bond energy computed at bond critical points (3, - 1), and the planar configurations of TEMPO derivatives exhibit the highest EHB values. This indicates stronger hydrogen bonding interactions between the N-O group and water molecules.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
- BioTechMed Center, Gdańsk University of Technology, 80-233, Gdańsk, Poland.
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- BioTechMed Center, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Mohamed A Abdel-Rahman
- Department of Chemistry, Faculty of Science, Suez University, P.O. Box: 43221, Suez, Egypt.
| |
Collapse
|
6
|
Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023; 13:1291. [PMID: 37759691 PMCID: PMC10526874 DOI: 10.3390/biom13091291] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid peroxidation (LP) is the most important type of oxidative-radical damage in biological systems, owing to its interplay with ferroptosis and to its role in secondary damage to other biomolecules, such as proteins. The chemistry of LP and its biological consequences are reviewed with focus on the kinetics of the various processes, which helps understand the mechanisms and efficacy of antioxidant strategies. The main types of antioxidants are discussed in terms of structure-activity rationalization, with focus on mechanism and kinetics, as well as on their potential role in modulating ferroptosis. Phenols, pyri(mi)dinols, antioxidants based on heavy chalcogens (Se and Te), diarylamines, ascorbate and others are addressed, along with the latest unconventional antioxidant strategies based on the double-sided role of the superoxide/hydroperoxyl radical system.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
7
|
Larin ACR, Pfrunder MC, Mullen KM, Wiedbrauk S, Boase NR, Fairfull-Smith KE. Synergistic or antagonistic antioxidant combinations - a case study exploring flavonoid-nitroxide hybrids. Org Biomol Chem 2023; 21:1780-1792. [PMID: 36728689 DOI: 10.1039/d2ob02101c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases impose a considerable medical and public health burden on populations throughout the world. Oxidative stress, an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of reactive oxygen species (ROS), has been implicated in the progression of a number of neurodegenerative diseases. The manipulation of ROS levels may represent a promising treatment option to slow down neurodegeneration, although adequate potency of treatments has not yet been achieved. Using a hybrid pharmacology approach, free radical nitroxide antioxidants were hybridised with a class of natural antioxidants, flavonoids, to form a potential multitargeted antioxidant. Modification of the Baker-Venkataraman reaction achieved the flavonoid-nitroxide hybrids (6-9) in modest yields. Antioxidant evaluation of the hybrids by cyclic voltammetry showed both redox functionalities were still active, with little influence on oxidation potential. Assessment of the peroxyl radical scavenging ability through an ORAC assay showed reduced antioxidant activity of the hybrids compared to their individual components. It was hypothesized that the presence of the phenol in the hybrids creates a more acidic medium which does not favour regeneration of the nitroxide from the corresponding oxammonium cation, disturbing the typical catalytic cycle of peroxyl radical scavenging by nitroxides. This work highlights the potential intricacies involved with drug hybridization as a strategy for new therapeutic development.
Collapse
Affiliation(s)
- Astrid C R Larin
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Michael C Pfrunder
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathleen M Mullen
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Nathan R Boase
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
8
|
Konopko A, Litwinienko G. Mutual Activation of Two Radical Trapping Agents: Unusual "Win-Win Synergy" of Resveratrol and TEMPO during Scavenging of dpph • Radical in Methanol. J Org Chem 2022; 87:15530-15538. [PMID: 36321638 PMCID: PMC9680031 DOI: 10.1021/acs.joc.2c02080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reaction of the 2,2'-diphenyl-1-picrylhydrazyl radical (dpph•) with resveratrol in methanol (kMeOH = 192 M-1 s-1) is greatly accelerated in the presence of stable nitroxyl radical TEMPO• (kmixMeOH = 1.4 × 103 M-1 s-1). This synergistic effect is surprising because TEMPO• alone reacts with dpph• relatively slowly (kS = 31 M-1 s-1 in methanol and 0.03 M-1 s-1 in nonpolar ethyl acetate). We propose a putative mechanism in which a mutual activation occurs within the acid-base pair TEMPO•/RSV to the resveratrol (RSV) anion and TEMPOH•+ radical cation, both being extremely fast scavengers of the dpph• radical. The fast initial reaction is followed by a much slower but continuous decay of dpph• because a nitroxyl radical is recovered from the TEMPOnium cation, which is reduced directly by RSV/RSV- to TEMPO• or recovered indirectly via a reaction with methanol, producing TEMPOH subsequently oxidized by dpph• to TEMPO•.
Collapse
Affiliation(s)
- Adrian Konopko
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw02-093, Poland,Polish
Academy of Sciences, Nencki Institute of
Experimental Biology, Pasteura 3, Warsaw02-093, Poland
| | | |
Collapse
|
9
|
Ma W, Zhou Y, Wang Y, Li B, Zheng T, Cheng Z, Mei R. Palladium‐Catalyzed Remote δ‐C–H Selenylation of Arylethylamide and Alkenylethylamide Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yunhao Zhou
- Sichuan Industrial Institute of Antibiotics CHINA
| | | | | | | | | | | |
Collapse
|
10
|
Tanaka T, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S, Hasegawa E. A Photocatalytic System Composed of Benzimidazolium Aryloxide and Tetramethylpiperidine 1-Oxyl to Promote Desulfonylative α-Oxyamination Reactions of α-Sulfonylketones. ACS OMEGA 2022; 7:4655-4666. [PMID: 35155957 PMCID: PMC8829864 DOI: 10.1021/acsomega.1c06857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
A new photocatalytic system was developed for carrying out desulfonylative α-oxyamination reactions of α-sulfonylketones in which α-ketoalkyl radicals are generated. The catalytic system is composed of benzimidazolium aryloxide betaines (BI+-ArO-), serving as visible light-absorbing electron donor photocatalysts, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), playing dual roles as an electron donor for catalyst recycling and a reagent to capture the generated radical intermediates. Information about the detailed nature of BI+-ArO- and the photocatalytic processes with TEMPO was gained using absorption spectroscopy, electrochemical measurements, and density functional theory calculations.
Collapse
Affiliation(s)
- Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takehiro Kiuchi
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-ya Takizawa
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shigeru Murata
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
11
|
Guo Y, Pizzol R, Gabbanini S, Baschieri A, Amorati R, Valgimigli L. Absolute Antioxidant Activity of Five Phenol-Rich Essential Oils. Molecules 2021; 26:5237. [PMID: 34500670 PMCID: PMC8434318 DOI: 10.3390/molecules26175237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Essential oils (EOs) have promising antioxidant activities which are gaining interest as natural alternatives to synthetic antioxidants in the food and cosmetic industries. However, quantitative data on chain-breaking activity and on the kinetics of peroxyl radical trapping are missing. Five phenol-rich EOs were analyzed by GC-MS and studied by oxygen-uptake kinetics in inhibited controlled autoxidations of reference substrates (cumene and squalene). Terpene-rich Thymus vulgaris (thymol 4%; carvacrol 33.9%), Origanum vulgare, (thymol 0.4%; carvacrol 66.2%) and Satureja hortensis, (thymol 1.7%; carvacrol 46.6%), had apparent kinh (30 °C, PhCl) of (1.5 ± 0.3) × 104, (1.3 ± 0.1) × 104 and (1.1 ± 0.3) × 104 M-1s-1, respectively, while phenylpropanoid-rich Eugenia caryophyllus (eugenol 80.8%) and Cinnamomum zeylanicum, (eugenol 81.4%) showed apparent kinh (30 °C, PhCl) of (5.0 ± 0.1) × 103 and (4.9 ± 0.3) × 103 M-1s-1, respectively. All EOs already granted good antioxidant protection of cumene at a concentration of 1 ppm (1 mg/L), the duration being proportional to their phenolic content, which dictated their antioxidant behavior. They also afforded excellent protection of squalene after adjusting their concentration (100 mg/L) to account for the much higher oxidizability of this substrate. All investigated EOs had kinh comparable to synthetic butylated hydroxytoluene (BHT) were are eligible to replace it in the protection of food or cosmetic products.
Collapse
Affiliation(s)
- Yafang Guo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Romeo Pizzol
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Simone Gabbanini
- Research & Development—BeC s.r.l., Via C. Monteverdi 49, 47122 Forlì, Italy;
| | - Andrea Baschieri
- The Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| |
Collapse
|
12
|
Amorati R, Valgimigli L, Baschieri A, Guo Y, Mollica F, Menichetti S, Lupi M, Viglianisi C. SET and HAT/PCET acid-mediated oxidation processes in helical shaped fused bis-phenothiazines. Chemphyschem 2021; 22:1446-1454. [PMID: 34033195 PMCID: PMC8361695 DOI: 10.1002/cphc.202100387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Helical shaped fused bis-phenothiazines 1-9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+ ) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5-9 with peroxyl radicals (ROO. ) occurs with a 'classical' HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1-4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+ . Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH ), and kinetic constants (kinh ) of the reactions with ROO. species of helicenes 1-9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.
Collapse
Affiliation(s)
- Riccardo Amorati
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Andrea Baschieri
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Yafang Guo
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Fabio Mollica
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Stefano Menichetti
- Department of Chemistry “U. Schiff”University of FlorenceVia Della Lastruccia 3–13, Sesto Fiorentino50019FirenzeItaly
| | - Michela Lupi
- Department of Chemistry “U. Schiff”University of FlorenceVia Della Lastruccia 3–13, Sesto Fiorentino50019FirenzeItaly
| | - Caterina Viglianisi
- Department of Chemistry “U. Schiff”University of FlorenceVia Della Lastruccia 3–13, Sesto Fiorentino50019FirenzeItaly
| |
Collapse
|
13
|
Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L, Amorati R, Zaccheroni N. Nitroxides as Building Blocks for Nanoantioxidants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31996-32004. [PMID: 34156238 PMCID: PMC8289242 DOI: 10.1021/acsami.1c06674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitroxides are an important class of radical trapping antioxidants whose promising biological activities are connected to their ability to scavenge peroxyl (ROO•) radicals. We have measured the rate constants of the reaction with ROO• (kinh) for a series of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) derivatives as 5.1 × 106, 1.1 × 106, 5.4 × 105, 3.7 × 105, 1.1 × 105, 1.9 × 105, and 5.6 × 104 M-1 s-1 for -H, -OH, -NH2, -COOH, -NHCOCH3, -CONH(CH2)3CH3, and ═O substituents in the 4 position, with a good Marcus relationship between log (kinh) and E° for the R2NO•/R2NO+ couple. Newly synthesized Pluronic-silica nanoparticles (PluS) having nitroxide moieties covalently bound to the silica surface (PluS-NO) through a TEMPO-CONH-R link and coumarin dyes embedded in the silica core, has kinh = 1.5 × 105 M-1 s-1. Each PluS-bound nitroxide displays an inhibition duration nearly double that of a structurally related "free" nitroxide. As each PluS-NO particle bears an average of 30 nitroxide units, this yields an overall ≈60-fold larger inhibition of the PluS-NO nanoantioxidant compared to the molecular analogue. The implications of these results for the development of novel nanoantioxidants based on nitroxide derivatives are discussed, such as the choice of the best linkage group and the importance of the regeneration cycle in determining the duration of inhibition.
Collapse
Affiliation(s)
- Damiano Genovese
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Andrea Baschieri
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, 40129 Bologna, Italy
| | - Danilo Vona
- Department
of Chemistry, University of Bari, via Orabona 4, I-70126 Bari, Italy
| | - Ruxandra Elena Baboi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Fabio Mollica
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Luca Prodi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
14
|
Abstract
Autoxidation limits the longevity of essentially all hydrocarbons and materials made therefrom - including us. The radical chain reaction responsible often leads to complex mixtures of hydroperoxides, alkyl peroxides, alcohols, carbonyls and carboxylic acids, which change the physical properties of the material - be it a lubricating oil or biological membrane. Autoxidation is inhibited by addtitives such as radical-trapping antioxidants, which intervene directly in the chain reaction. Herein we review the most salient features of autoxidation and its inhibition, emphasizing concepts and mechanistic considerations important in understanding this chemistry across the wide range of contexts in which it is relevant.
Collapse
Affiliation(s)
- Julian Helberg
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada.
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
15
|
Ismail TM, Mohan N, Sajith PK. Theoretical study of hydrogen bonding interactions in substituted nitroxide radicals. NEW J CHEM 2021. [DOI: 10.1039/d0nj05362g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).
Collapse
Affiliation(s)
| | - Neetha Mohan
- Department of Chemistry
- Christopher Ingold Building
- University College London (UCL)
- London WC1H 0AJ
- UK
| | - P. K. Sajith
- Department of Chemistry
- Farook College
- Kozhikode
- India
| |
Collapse
|
16
|
Poon JF, Zilka O, Pratt DA. Potent Ferroptosis Inhibitors Can Catalyze the Cross-Dismutation of Phospholipid-Derived Peroxyl Radicals and Hydroperoxyl Radicals. J Am Chem Soc 2020; 142:14331-14342. [DOI: 10.1021/jacs.0c06379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
17
|
Nesterova OV, Bondarenko OE, Pombeiro AJL, Nesterov DS. Phenoxazinone synthase-like catalytic activity of novel mono- and tetranuclear copper(ii) complexes with 2-benzylaminoethanol. Dalton Trans 2020; 49:4710-4724. [PMID: 32207490 DOI: 10.1039/d0dt00222d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel coordination compounds, [Cu(ca)2(Hbae)2] (1), [Cu(va)2(Hbae)2] (2) and [Cu4(va)4(bae)4]·H2O (3), have been prepared by self-assembly reactions of copper(ii) chloride (1 and 2) or tetrafluoroborate (3) and CH3OH (1 and 3) or CH3CN (2) solution of 2-benzylaminoethanol (Hbae) and cinnamic (Hca, 1) or valeric (Hva, 2 and 3) acid. Crystallographic analysis revealed that both 1 and 2 have mononuclear crystal structures, wherein the complex molecules are H-bonded forming extended supramolecular chains. The tetranuclear structure of 3 is based on the {Cu4(μ3-O)4} core, wherein the metal atoms are bound together by μ3 oxygen bridges from 2-benzylaminoethanol forming an overall cubane-like configuration. The strong hydrogen bonding in 1-3 leads to the joining of the neighbouring molecules into 1D chains. Concentration-dependent ESI-MS studies disclosed the equilibria between di-, tri- and tetranuclear species in solutions of 1-3. All three compounds act as catalysts for the aerobic oxidation of o-aminophenol to the phenoxazinone chromophore (phenoxazinone synthase-like activity), with the maximum reaction rates of 4.0 × 10-7, 2.5 × 10-7 and 2.1 × 10-7 M s-1 for 1, 2 and 3, respectively, supported by the quantitative yield of the product after 24 h. The dependence of the reaction rates on catalyst concentrations is evidence of reaction orders higher than one relative to the catalyst. Kinetic and ESI-MS data allowed us to assume that the tetranuclear species, originating from 1, 2 and 3 in solution, possess considerably higher activity than the species of lower nuclearity. Mechanistic and isotopic 18O-labelling experiments suggested that o-aminophenol coordinates to CuII species with the formation of reactive intermediates, while the oxygen from 18O2 is not incorporated into the phenoxazinone chromophore.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olena E Bondarenko
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russia
| |
Collapse
|
18
|
Dai Y, Poidevin C, Ochoa‐Hernández C, Auer AA, Tüysüz H. A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C-H Bond Activation. Angew Chem Int Ed Engl 2020; 59:5788-5796. [PMID: 31850662 PMCID: PMC7154683 DOI: 10.1002/anie.201915034] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 11/06/2022]
Abstract
Direct selective oxidation of hydrocarbons to oxygenates by O2 is challenging. Catalysts are limited by the low activity and narrow application scope, and the main focus is on active C-H bonds at benzylic positions. In this work, stable, lead-free, Cs3 Bi2 Br9 halide perovskites are integrated within the pore channels of mesoporous SBA-15 silica and demonstrate their photocatalytic potentials for C-H bond activation. The composite photocatalysts can effectively oxidize hydrocarbons (C5 to C16 including aromatic and aliphatic alkanes) with a conversion rate up to 32900 μmol gcat -1 h-1 and excellent selectivity (>99 %) towards aldehydes and ketones under visible-light irradiation. Isotopic labeling, in situ spectroscopic studies, and DFT calculations reveal that well-dispersed small perovskite nanoparticles (2-5 nm) possess enhanced electron-hole separation and a close contact with hydrocarbons that facilitates C(sp3 )-H bond activation by photoinduced charges.
Collapse
Affiliation(s)
- Yitao Dai
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Corentin Poidevin
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | | | - Alexander A. Auer
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
19
|
Dai Y, Poidevin C, Ochoa‐Hernández C, Auer AA, Tüysüz H. A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C–H Bond Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yitao Dai
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Corentin Poidevin
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Cristina Ochoa‐Hernández
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
20
|
Hafeez S, Khatri V, Kashyap HK, Nebhani L. Computational and experimental approach to evaluate the effect of initiator concentration, solvents, and enes on the TEMPO driven thiol–ene reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj02882g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fundamental mechanism and reaction kinetics of the TEMPO initiated thiol–ene reaction between benzyl mercaptan and variable enes in the presence of varying initiator concentration and varying solvents has been studied experimentally and computationally.
Collapse
Affiliation(s)
- Sumbul Hafeez
- Department of Materials Science and Engineering
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Vikas Khatri
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Hemant K. Kashyap
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| | - Leena Nebhani
- Department of Materials Science and Engineering
- Indian Institute of Technology Delhi
- New Delhi-110016
- India
| |
Collapse
|
21
|
|
22
|
Baschieri A, Pizzol R, Guo Y, Amorati R, Valgimigli L. Calibration of Squalene, p-Cymene, and Sunflower Oil as Standard Oxidizable Substrates for Quantitative Antioxidant Testing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6902-6910. [PMID: 31132263 DOI: 10.1021/acs.jafc.9b01400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The autoxidation kinetics of stripped sunflower oil (SSO), squalene (SQ), and p-cymene ( p-C) initiated by 2,2'-azobis(isobutyronitrile) at 303 K were investigated under controlled conditions by differential oximetry in order to build reference model systems that are representative of the natural variability of oxidizable materials, for quantitative antioxidant testing. Rate constants for oxidative chain propagation ( kp) and chain termination (2 kt) and the oxidizability ( kp/√2 kt) were measured using 2,6-di- tert-butyl-4-methoxyphenol, 2,2,5,7,8-pentamethyl-6-chromanol, BHT, and 4-methoxyphenol as reference antioxidants. Measured values of kp (M-1 s-1)/2 kt (M-1 s-1)/oxidizability (M-1/2 s-1/2) at 303 K in chlorobenzene were 66.9/3.45 × 106/3.6 × 10-2, 68.0/7.40 × 106/2.5 × 10-2, and 0.83/2.87 × 106/4.9 × 10-4, respectively, for SSO, SQ, and p-C. Quercetin, magnolol, caffeic acid phenethyl ester, and 2,4,6-trimethylphenol were investigated to validate calibrations. The distinctive usefulness of the three substrates in testing antioxidants is discussed.
Collapse
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Romeo Pizzol
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Yafang Guo
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| |
Collapse
|
23
|
Manini P, Lino V, Franchi P, Gentile G, Sibillano T, Giannini C, Picardi E, Napolitano A, Valgimigli L, Chiappe C, d'Ischia M. A Robust Fungal Allomelanin Mimic: An Antioxidant and Potent π-Electron Donor with Free-Radical Properties that can be Tuned by Ionic Liquids. Chempluschem 2019; 84:1331-1337. [PMID: 31944050 DOI: 10.1002/cplu.201900195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/16/2019] [Indexed: 12/23/2022]
Abstract
Developing effective strategies to increase the chemical stability and to fine-tune the physico-chemical properties of melanin biopolymers by rational control of π-electron conjugation is an important goal in materials science for biomedical and technological applications. Herein we report that poly-1,8-dihydroxynaphthalene (pDHN), a non-nitrogenous, catechol-free fungal melanin mimic, displays a high degree of structural integrity (from MALDI-MS and CP/MAS 13 C NMR analysis), a strong radical scavenging capacity (DPPH and FRAP assays), and an unusually intense EPR signal (g=2.0030). Morphological and spectral characterization of pDHN, along with deassembly experiments in ionic liquids, indicated amorphous aggregates of small globular structures with an estimated stacking distance of 3.9 Å and broadband absorption throughout the visible range. These results indicate that DHN-based melanins exhibit a high structural integrity and enhanced antioxidant and free-radical properties of potentially greater biomedical and technological relevance than for typical indole-based eumelanins.
Collapse
Affiliation(s)
- Paola Manini
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Valeria Lino
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Paola Franchi
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| | - Gennaro Gentile
- Institute for Polymers Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Teresa Sibillano
- Istituto di Cristallografia (IC) CNR, via Amendola 122/O, 70126, Bari, Italy
| | - Cinzia Giannini
- Istituto di Cristallografia (IC) CNR, via Amendola 122/O, 70126, Bari, Italy
| | - Emanuela Picardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| | - Cinzia Chiappe
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
24
|
Ambrico M, Manini P, Ambrico PF, Ligonzo T, Casamassima G, Franchi P, Valgimigli L, Mezzetta A, Chiappe C, d'Ischia M. Nanoscale PDA disassembly in ionic liquids: structure–property relationships underpinning redox tuning. Phys Chem Chem Phys 2019; 21:12380-12388. [DOI: 10.1039/c9cp01545k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An integrated EPR and electrical impedance spectroscopy approach to predict ionic liquid-mediated tuning of the redox properties of polydopamine nanoparticles.
Collapse
Affiliation(s)
- Marianna Ambrico
- CNR – Istituto per las Scienza e la tecnologia dei plasmi via Amendola 122/D
- 70126 Bari
- Italy
| | - Paola Manini
- Dipartimento di Scienze Chimiche
- Università di Napoli Federico II
- Napoli
- Italy
| | - Paolo F. Ambrico
- CNR – Istituto per las Scienza e la tecnologia dei plasmi via Amendola 122/D
- 70126 Bari
- Italy
| | - Teresa Ligonzo
- Dipartimento Interateneo di Fisica
- Università degli Studi di Bari
- Bari
- Italy
| | | | - Paola Franchi
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna
- Italy
| | - Luca Valgimigli
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna
- Italy
| | - Andrea Mezzetta
- Dipartimento di Farmacia
- Universita’ degli Studi di Pisa
- Pisa
- Italy
| | - Cinzia Chiappe
- Dipartimento di Farmacia
- Universita’ degli Studi di Pisa
- Pisa
- Italy
| | - Marco d'Ischia
- Dipartimento di Scienze Chimiche
- Università di Napoli Federico II
- Napoli
- Italy
| |
Collapse
|
25
|
Canistro D, Vivarelli F, Cirillo S, Soleti A, Albertini B, Passerini N, Merizzi G, Paolini M. Efficacy of a new delivery system based on solid lipid microparticles for the oral administration of the non-conventional antioxidant IAC on a diabetes mouse model. J Endocrinol Invest 2018; 41:1227-1236. [PMID: 29511967 DOI: 10.1007/s40618-018-0858-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/27/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE We previously showed the positive effects of the new antioxidant molecule bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate (IAC) in reducing basal hyperglycaemia and relieving glucose intolerance in a diabetes model. However, the chemical properties of IAC did not allow an efficient oral administration, thus representing the main failing of that study. Here, we tested the effect of a new oral delivery system based on solid lipid microparticles (SLMs) in a diabetes mouse model. METHODS The diabetes model was induced in C57B1/6J mice using streptozotocin and nicotinamide. Only the animals that overcame the glycaemic threshold of 180 mg/dL were enrolled in the study. Diabetic animals were then randomly assigned to 4 groups (n = 9) and treated once a day for 5 consecutive weeks with IAC (50, 100, and 150 mg/kg b.w.). The control group was composed of (n = 7) healthy mice that received only the vehicle. Glucose level was weekly monitored during the treatment period and up to 3 weeks after the suspension of the treatment. Glucose tolerance and insulin-resistance test were carried out. RESULTS Our results showed that SLMs maintained the IAC effect in reducing basal hyperglycaemia as well as improving the insulin sensitivity and glucose tolerance. CONCLUSION The present study confirms that SLMs are promising drug carriers, which allow the oral administration of IAC ensuring its therapeutic efficacy. The concrete possibility to administer IAC per os represents a significant breakthrough in the putative consideration of this multi-radical scavenger in the diabetes therapeutic approach.
Collapse
Affiliation(s)
- D Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | - F Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - S Cirillo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - A Soleti
- Medestea Research, Via Cernaia 31, 10121, Turin, Italy
| | - B Albertini
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - N Passerini
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - G Merizzi
- Medestea Research, Via Cernaia 31, 10121, Turin, Italy
| | - M Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| |
Collapse
|
26
|
Poon JF, Pratt DA. Recent Insights on Hydrogen Atom Transfer in the Inhibition of Hydrocarbon Autoxidation. Acc Chem Res 2018; 51:1996-2005. [PMID: 30035527 DOI: 10.1021/acs.accounts.8b00251] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoxidation, the free radical chain reaction that nominally inserts O2 into hydrocarbons to give peroxides, is primarily responsible for the degradation of all organic materials. Peroxyl radicals propagate autoxidation mainly by abstraction of labile H-atoms from the hydrocarbons, whereas radical-trapping antioxidants (RTAs) inhibit autoxidation by donating an H-atom to the peroxyl radical to give a nonpropagating radical. As such, a detailed understanding of the kinetics and thermodynamics of H-atom transfer (HAT) reactions to peroxyl radicals, and the effects of sterics, electronics, and medium thereupon, is key to understanding the mechanisms and products of autoxidation and the ability of RTAs to inhibit it. Due to their relatively weak O-H and N-H bonds, phenols and aromatic amines have long been utilized as RTAs, but only phenols have been extensively optimized to maximize their reactivity. Amines offer greater structural variability owing to their trivalent central nitrogen atom. Simply linking the two aromatic rings of a diarylamine to afford a phenoxazine offers profound differences in HAT reactivity: 1000-times greater than diphenylamine and 10-fold more reactive than α-tocopherol, Nature's optimized phenolic RTA. Thus, phenoxazines are an exciting scaffold for RTA development. Indeed, we have recently shown that ring substitution of phenoxazine or 2,4-diazaphenoxazine can yield compounds that undergo barrierless HAT reactions with peroxyl radicals. Amines also have the distinct advantage that they can react with peroxyl radicals to yield nitroxides, which can inhibit autoxidation in a catalytic manner utilizing the substrate itself as the stoichiometric reductant. Herein we provide an account of our recent efforts to understand how they manage this feat, which have revealed at least four mechanisms depending on the specific reaction conditions (i.e., saturated hydrocarbons at elevated temperatures, unsaturated hydrocarbons, acidic media, aqueous media/lipid dispersions). We also reiterate how their impressive RTA activity translates from solution to mammalian cell culture, wherein we have demonstrated that diarylamines and their derived nitroxides are potent inhibitors of ferroptosis, a recently characterized form of cell death associated with lipid peroxidation (autoxidation). In addition to phenols and amines, organosulfur compounds have long been used as antioxidants. The prevailing view has been that they undergo ionic reactions with product peroxides, preventing the initiation of further chain reactions. In recent years, we have found that many organosulfur compounds exhibit very good RTA activity. In particular, sulfenic acids (RSOH) and hydropersulfides (RSSH) are found to be among the best HAT agents known, particularly to peroxyl radicals where secondary orbital interactions are found to play a significant role. Consequently, oxidation of the sulfenic acid to a sulfinic acid greatly diminishes its HAT reactivity to peroxyls. Polysulfides and their oxides also undergo direct reactions with peroxyl radicals, thereby inhibiting autoxidation, but do so by homolytic substitution reactions. These insights suggest that the RTA activity of organosulfur compounds may be as important to the inhibition of hydrocarbon autoxidation, if not more so, than their ionic reactions.
Collapse
Affiliation(s)
- Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, ON K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
27
|
Harrison KA, Haidasz EA, Griesser M, Pratt DA. Inhibition of hydrocarbon autoxidation by nitroxide-catalyzed cross-dismutation of hydroperoxyl and alkylperoxyl radicals. Chem Sci 2018; 9:6068-6079. [PMID: 30079220 PMCID: PMC6053651 DOI: 10.1039/c8sc01575a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
Nitroxides are putative intermediates in the accepted reaction mechanisms of the diarylamine and hindered amine antioxidants that are universally added to preserve synthetic and natural hydrocarbon-based materials. New methodology which enables monitoring of hydrocarbon autoxidations at low rates of radical generation has revealed that diarylnitroxides and hindered nitroxides are far better inhibitors of unsaturated hydrocarbon autoxidation than their precursor amines, implying intervention of a different mechanism. Experimental and computational investigations suggest that the nitroxides catalyze the cross-dismutation of hydroperoxyl and alkylperoxyl radicals to yield O2 and a hydroperoxide, thereby halting the autoxidation chain reaction. The hydroperoxyl radicals - key players in hydrocarbon combustion, but essentially unknown in autoxidation - are proposed to derive from a tunneling-enhanced intramolecular (1,4-) hydrogen-atom transfer/elimination sequence from oxygenated radical addition intermediates. These insights suggest that nitroxides are preferred additives for the protection of hydrocarbon-based materials from autoxidation since they exhibit catalytic activity under conditions where their precursor amines are less effective and/or inefficiently converted to nitroxides in situ.
Collapse
Affiliation(s)
- Kareem A Harrison
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario , Canada K1N 6N5 .
| |
Collapse
|
28
|
Baschieri A, Valgimigli L, Gabbanini S, DiLabio GA, Romero-Montalvo E, Amorati R. Extremely Fast Hydrogen Atom Transfer between Nitroxides and HOO· Radicals and Implication for Catalytic Coantioxidant Systems. J Am Chem Soc 2018; 140:10354-10362. [DOI: 10.1021/jacs.8b06336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Simone Gabbanini
- R&D division, BeC s.r.l. Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Gino A. DiLabio
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
- Faculty of Management, University of British Columbia, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| | - Eduardo Romero-Montalvo
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
29
|
Abstract
Nanomaterials represent one of the most promising frontiers in the research for improved antioxidants. Some nanomaterials, including organic (i.e. melanin, lignin) metal oxides (i.e. cerium oxide) or metal (i.e. gold, platinum) based nanoparticles, exhibit intrinsic redox activity that is often associated with radical trapping and/or with superoxide dismutase-like and catalase-like activities. Redox inactive nanomaterials can be transformed into antioxidants by grafting low molecular weight antioxidants on them. Herein, we propose a classification of nanoantioxidants based on their mechanism of action, and we review the chemical methods used to measure antioxidant activity by providing a rationale of the chemistry behind them.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, Bologna 40126, Italy.
| | | | | |
Collapse
|
30
|
Griesser M, Shah R, Van Kessel AT, Zilka O, Haidasz EA, Pratt DA. The Catalytic Reaction of Nitroxides with Peroxyl Radicals and Its Relevance to Their Cytoprotective Properties. J Am Chem Soc 2018; 140:3798-3808. [PMID: 29451786 DOI: 10.1021/jacs.8b00998] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sterically-hindered nitroxides such as 2,2,6,6-tetramethylpiperidin- N-oxyl (TEMPO) have long been ascribed antioxidant activity that is thought to underlie their chemopreventive and anti-aging properties. However, the most commonly invoked reactions in this context-combination with an alkyl radical to give a redox inactive alkoxyamine or catalysis of superoxide dismutation-are unlikely to be relevant under (most) physiological conditions. Herein, we characterize the kinetics and mechanisms of the reactions of TEMPO, as well as an N-arylnitroxide and an N, N-diarylnitroxide, with alkylperoxyl radicals, the propagating species in lipid peroxidation. In each of aqueous solution and lipid bilayers, they are found to be significantly more reactive than Vitamin E, Nature's premier radical-trapping antioxidant (RTA). Inhibited autoxidations of THF in aqueous buffers reveal that nitroxides reduce peroxyl radicals by electron transfer with rate constants ( k ≈ 106 to >107 M-1 s-1) that correlate with the standard potentials of the nitroxides ( E° ≈ 0.75-0.95 V vs NHE) and that this activity is catalytic in nitroxide. Regeneration of the nitroxide occurs by a two-step process involving hydride transfer from the substrate to the nitroxide-derived oxoammonium ion followed by H-atom transfer from the resultant hydroxylamine to a peroxyl radical. This reactivity extends from aqueous solution to phosphatidylcholine liposomes, where added NADPH can be used as a hydride donor to promote nitroxide recycling, as well as to cell culture, where the nitroxides are shown to be potent inhibitors of lipid peroxidation-associated cell death (ferroptosis). These insights have enabled the identification of the most potent nitroxide RTA and anti-ferroptotic agent yet described: phenoxazine- N-oxyl.
Collapse
Affiliation(s)
- Markus Griesser
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Ron Shah
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Antonius T Van Kessel
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
31
|
Lang X, Zhao J. Integrating TEMPO and Its Analogues with Visible-Light Photocatalysis. Chem Asian J 2018; 13:599-613. [DOI: 10.1002/asia.201701765] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Xianjun Lang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Jincai Zhao
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
32
|
Poon JF, Yan J, Jorner K, Ottosson H, Donau C, Singh VP, Gates PJ, Engman L. Substituent Effects in Chain-Breaking Aryltellurophenol Antioxidants. Chemistry 2018; 24:3520-3527. [DOI: 10.1002/chem.201704811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Jia-fei Poon
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Jiajie Yan
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Kjell Jorner
- Department of Chemistry, Ångström Laboratory; Uppsala University, Box-523; 751 20 Uppsala Sweden
| | - Henrik Ottosson
- Department of Chemistry, Ångström Laboratory; Uppsala University, Box-523; 751 20 Uppsala Sweden
| | - Carsten Donau
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry; Panjab University; Chandigarh 160 014 India
| | - Paul J. Gates
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Lars Engman
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| |
Collapse
|
33
|
Farmer LA, Haidasz EA, Griesser M, Pratt DA. Phenoxazine: A Privileged Scaffold for Radical-Trapping Antioxidants. J Org Chem 2017; 82:10523-10536. [PMID: 28885854 DOI: 10.1021/acs.joc.7b02025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diphenylamines are widely used to protect petroleum-derived products from autoxidation. Their efficacy as radical-trapping antioxidants (RTAs) relies on a balance of fast H-atom transfer kinetics and stability to one-electron oxidation by peroxidic species. Both H-atom transfer and one-electron oxidation are enhanced by substitution with electron-donating substituents, such as the S-atom in phenothiazines, another important class of RTA. Herein we report the results of our investigations of the RTA activity of the structurally related, but essentially ignored, phenoxazines. We find that the H-atom transfer reactivity of substituted phenoxazines follows an excellent Evans-Polanyi correlation spanning kinh = 4.5 × 106 M-1 s-1 and N-H BDE = 77.4 kcal mol-1 for 3-CN,7-NO2-phenoxazine to kinh = 6.6 × 108 M-1 s-1 and N-H BDE = 71.8 kcal mol-1 for 3,7-(OMe)2-phenoxazine (37 °C). The reactivity of the latter compound is the greatest of any RTA ever reported and is likely to represent a reaction without an enthalpic barrier since log A for this reaction is likely ∼8.5. The very high reactivity of most of the phenoxazines studied required the determination of their kinetic parameters by inhibited autoxidations in the presence of a very strong H-bonding cosolvent (DMSO), which slowed the observed rates by up to 2 orders of magnitude by dynamically reducing the equilibrium concentration of (free) phenoxazine as an H-atom donor. Despite their remarkably high reactivity toward peroxyl radicals, the phenoxazines were found to be comparatively stable to one-electron oxidation relative to diphenylamines and phenothiazines (E° ranging from 0.59 to 1.38 V vs NHE). Thus, phenoxazines with comparable oxidative stability to commonly used diphenylamine and phenothiazine RTAs had significantly greater reactivity (by up to 2 orders of magnitude). Computations suggest that this remarkable balance in H-atom transfer kinetics and stability to one-electron oxidation results from the ability of the bridging oxygen atom in phenoxazine to serve as both a π-electron donor to stabilize the aminyl radical and σ-electron acceptor to destabilize the aminyl radical cation. Perhaps most excitingly, phenoxazines have "non-classical" RTA activity, where they trap >2 peroxyl radicals each, at ambient temperatures.
Collapse
Affiliation(s)
- Luke A Farmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Evan A Haidasz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Markus Griesser
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| |
Collapse
|
34
|
Chen K, Mao J, Shen S, Fei L, Xie H, Jiang K. Mechanistic elucidation of the origins of the hydrogen-abstraction reactivity of hydroxyimide organocatalysts and its application in catalyst design. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Chauvin JPR, Griesser M, Pratt DA. Hydropersulfides: H-Atom Transfer Agents Par Excellence. J Am Chem Soc 2017; 139:6484-6493. [DOI: 10.1021/jacs.7b02571] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Philippe R. Chauvin
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Markus Griesser
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
36
|
Amorati R, Valgimigli L, Viglianisi C, Schmallegger M, Neshchadin D, Gescheidt G. Proton-Coupled Electron Transfer from Hydrogen-Bonded Phenols to Benzophenone Triplets. Chemistry 2017; 23:5299-5306. [DOI: 10.1002/chem.201605931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Riccardo Amorati
- University of Bologna; Department of Chemistry “G. Ciamician”; Via S. Giacomo 11 40126 Bologna Italy
| | - Luca Valgimigli
- University of Bologna; Department of Chemistry “G. Ciamician”; Via S. Giacomo 11 40126 Bologna Italy
| | - Caterina Viglianisi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Max Schmallegger
- Institute of Physical and Theoretical Chemistry; Graz University of Technology, NAWI Graz; Stremayrgasse 9 8010 Graz Austria
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry; Graz University of Technology, NAWI Graz; Stremayrgasse 9 8010 Graz Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry; Graz University of Technology, NAWI Graz; Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
37
|
Warnier C, Lemaire C, Becker G, Zaragoza G, Giacomelli F, Aerts J, Otabashi M, Bahri MA, Mercier J, Plenevaux A, Luxen A. Enabling Efficient Positron Emission Tomography (PET) Imaging of Synaptic Vesicle Glycoprotein 2A (SV2A) with a Robust and One-Step Radiosynthesis of a Highly Potent 18F-Labeled Ligand ([ 18F]UCB-H). J Med Chem 2016; 59:8955-8966. [PMID: 27598384 DOI: 10.1021/acs.jmedchem.6b00905] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We herein describe the straightforward synthesis of a stable pyridyl(4-methoxyphenyl)iodonium salt and its [18F] radiolabeling within a one-step, fully automated and cGMP compliant radiosynthesis of [18F]UCB-H ([18F]7), a PET tracer for the imaging of synaptic vesicle glycoprotein 2A (SV2A). Over the course of 1 year, 50 automated productions provided 34 ± 2% of injectable [18F]7 from up to 285 GBq (7.7 Ci) of [18F]fluoride in 50 min (uncorrected radiochemical yield, specific activity of 815 ± 185 GBq/μmol). The successful implementation of our synthetic strategy within routine, high-activity, and cGMP productions attests to its practicality and reliability for the production of large doses of [18F]7. In addition to enabling efficient and cost-effective clinical research on a range of neurological pathologies through the imaging of SV2A, this work further demonstrates the real value of iodonium salts for the cGMP 18F-PET tracer manufacturing industry, and their ability to fulfill practical and regulatory requirements in that field.
Collapse
Affiliation(s)
- Corentin Warnier
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Christian Lemaire
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Guillaume Becker
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Guillermo Zaragoza
- Unidad de RX, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Fabrice Giacomelli
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Joël Aerts
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium.,INSERM U1148 , 75018 Paris, France
| | | | - Mohamed Ali Bahri
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | | | - Alain Plenevaux
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - André Luxen
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| |
Collapse
|
38
|
Haidasz EA, Meng D, Amorati R, Baschieri A, Ingold KU, Valgimigli L, Pratt DA. Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides. J Am Chem Soc 2016; 138:5290-8. [DOI: 10.1021/jacs.6b00677] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Evan A. Haidasz
- Department
of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek Meng
- Department
of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Riccardo Amorati
- Department
of Chemistry “G. Ciamician”, University of Bologna, Bologna I-40126, Italy
| | - Andrea Baschieri
- Department
of Chemistry “G. Ciamician”, University of Bologna, Bologna I-40126, Italy
| | - Keith U. Ingold
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Luca Valgimigli
- Department
of Chemistry “G. Ciamician”, University of Bologna, Bologna I-40126, Italy
| | - Derek A. Pratt
- Department
of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
39
|
Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons. Nitric Oxide 2016; 54:38-50. [DOI: 10.1016/j.niox.2016.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/31/2023]
|
40
|
Zhang S, Miao C, Xia C, Sun W. 4-CH3CONH-TEMPO/Peracetic Acid System for a Shortened Electron-Transfer-Cycle-Controlled Oxidation of Secondary Alcohols. ChemCatChem 2015. [DOI: 10.1002/cctc.201500214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants. Free Radic Res 2015; 49:633-49. [DOI: 10.3109/10715762.2014.996146] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Haidasz EA, Shah R, Pratt DA. The Catalytic Mechanism of Diarylamine Radical-Trapping Antioxidants. J Am Chem Soc 2014; 136:16643-50. [DOI: 10.1021/ja509391u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Evan A. Haidasz
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ron Shah
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
43
|
Canistro D, Boccia C, Falconi R, Bonamassa B, Valgimigli L, Vivarelli F, Soleti A, Genova ML, Lenaz G, Sapone A, Zaccanti F, Abdel-Rahman SZ, Paolini M. Redox-Based Flagging of the Global Network of Oxidative Stress Greatly Promotes Longevity. J Gerontol A Biol Sci Med Sci 2014; 70:936-43. [DOI: 10.1093/gerona/glu160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
|
44
|
Ingold KU, Pratt DA. Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem Rev 2014; 114:9022-46. [PMID: 25180889 DOI: 10.1021/cr500226n] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Keith U Ingold
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | | |
Collapse
|
45
|
Tarozzi A, Bartolini M, Piazzi L, Valgimigli L, Amorati R, Bolondi C, Djemil A, Mancini F, Andrisano V, Rampa A. From the dual function lead AP2238 to AP2469, a multi-target-directed ligand for the treatment of Alzheimer's disease. Pharmacol Res Perspect 2014; 2:e00023. [PMID: 25505579 PMCID: PMC4184701 DOI: 10.1002/prp2.23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
The development of drugs with different pharmacological properties appears to be an innovative therapeutic approach for Alzheimer's disease. In this article, we describe a simple structural modification of AP2238, a first dual function lead, in particular the introduction of the catechol moiety performed in order to search for multi-target ligands. The new compound AP2469 retains anti-acetylcholinesterase (AChE) and beta-site amyloid precursor protein cleaving enzyme (BACE)1 activities compared to the reference, and is also able to inhibit Aβ42 self-aggregation, Aβ42 oligomer-binding to cell membrane and subsequently reactive oxygen species formation in both neuronal and microglial cells. The ability of AP2469 to interfere with Aβ42 oligomer-binding to neuron and microglial cell membrane gives this molecule both neuroprotective and anti-inflammatory properties. These findings, together with its strong chain-breaking antioxidant performance, make AP2469 a potential drug able to modify the course of the disease.
Collapse
Affiliation(s)
- Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna Corso d'Augusto 237, 47921, Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna Via Belmeloro 6, 40126, Bologna, Italy
| | - Lorna Piazzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna Via Belmeloro 6, 40126, Bologna, Italy ; ICIQ - Institute of Chemical Research of Catalonia Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Luca Valgimigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna Via S. Giacomo 11, 40126, Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna Via S. Giacomo 11, 40126, Bologna, Italy
| | - Cecilia Bolondi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna Corso d'Augusto 237, 47921, Rimini, Italy
| | - Alice Djemil
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna Corso d'Augusto 237, 47921, Rimini, Italy
| | - Francesca Mancini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna Via Belmeloro 6, 40126, Bologna, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna Corso d'Augusto 237, 47921, Rimini, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
46
|
Zielinski Z, Presseau N, Amorati R, Valgimigli L, Pratt DA. Redox Chemistry of Selenenic Acids and the Insight It Brings on Transition State Geometry in the Reactions of Peroxyl Radicals. J Am Chem Soc 2014; 136:1570-8. [DOI: 10.1021/ja411493t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zosia Zielinski
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie Presseau
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Riccardo Amorati
- Department of Chemistry
“G. Ciamician”, University of Bologna, I-40126 Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry
“G. Ciamician”, University of Bologna, I-40126 Bologna, Italy
| | - Derek A. Pratt
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
47
|
Nakanishi I, Kawashima T, Ohkubo K, Waki T, Uto Y, Kamada T, Ozawa T, Matsumoto KI, Fukuzumi S. Disproportionation of a 2,2-diphenyl-1-picrylhydrazyl radical as a model of reactive oxygen species catalysed by Lewis and/or Brønsted acids. Chem Commun (Camb) 2014; 50:814-6. [DOI: 10.1039/c3cc47819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Valgimigli L, Bartolomei D, Amorati R, Haidasz E, Hanthorn JJ, Nara SJ, Brinkhorst J, Pratt DA. 3-Pyridinols and 5-pyrimidinols: Tailor-made for use in synergistic radical-trapping co-antioxidant systems. Beilstein J Org Chem 2013; 9:2781-92. [PMID: 24367442 PMCID: PMC3869267 DOI: 10.3762/bjoc.9.313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022] Open
Abstract
The incorporation of nitrogen atoms into the aromatic ring of phenolic compounds has enabled the development of some of the most potent radical-trapping antioxidants ever reported. These compounds, 3-pyridinols and 5-pyrimidinols, have stronger O-H bonds than equivalently substituted phenols, but possess similar reactivities toward autoxidation chain-carrying peroxyl radicals. These attributes suggest that 3-pyridinols and 5-pyrimidinols will be particularly effectiveco-antioxidants when used in combination with more common, but less reactive, phenolic antioxidants such as 2,6-di-tert-butyl-4-methylphenol (BHT), which we demonstrate herein. The antioxidants function in a synergistic manner to inhibit autoxidation; taking advantage of the higher reactivity of the 3-pyridinols/5-pyrimidinols to trap peroxyl radicals and using the less reactive phenols to regenerate them from their corresponding aryloxyl radicals. The present investigations were carried out in chlorobenzene and acetonitrile in order to provide some insight into the medium dependence of the synergism and the results, considered with some from our earlier work, prompt a revision of the H-bonding basicity value of acetonitrile to β2 (H) of 0.39. Overall, the thermodynamic and kinetic data presented here enable the design of co-antioxidant systems comprising lower loadings of the more expensive 3-pyridinol/5-pyrimidinol antioxidants and higher loadings of the less expensive phenolic antioxidants, but which are equally efficacious as the 3-pyridinol/5-pyrimidinol antioxidants alone at higher loadings.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy
| | - Daniele Bartolomei
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy
| | - Evan Haidasz
- Department of Chemistry, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| | - Jason J Hanthorn
- Department of Chemistry, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| | - Susheel J Nara
- Department of Chemistry, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| | - Johan Brinkhorst
- Department of Chemistry, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| | - Derek A Pratt
- Department of Chemistry, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
49
|
Amorati R, Valgimigli L, Dinér P, Bakhtiari K, Saeedi M, Engman L. Multi-faceted Reactivity of Alkyltellurophenols Towards Peroxyl Radicals: Catalytic Antioxidant Versus Thiol-Depletion Effect. Chemistry 2013; 19:7510-22. [DOI: 10.1002/chem.201300451] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 11/08/2022]
|
50
|
Salamone M, Mangiacapra L, DiLabio GA, Bietti M. Effect of Metal Ions on the Reactions of the Cumyloxyl Radical with Hydrogen Atom Donors. Fine Control on Hydrogen Abstraction Reactivity Determined by Lewis Acid–Base Interactions. J Am Chem Soc 2012; 135:415-23. [DOI: 10.1021/ja309579t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michela Salamone
- Dipartimento di Scienze e Tecnologie
Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Livia Mangiacapra
- Dipartimento di Scienze e Tecnologie
Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Gino A. DiLabio
- National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie
Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|