1
|
Zhang M, Wang X, Liu W, Cui X, Wang Y, Fan L, Cui H, Shen Y, Cui H, Zhang L. Engineering a Binding Peptide for Oriented Immobilization and Efficient Bioelectrocatalytic Oxygen Reduction of Multicopper Oxidases. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2355-2364. [PMID: 39693326 DOI: 10.1021/acsami.4c12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in E. coli CueO through semirational design. The first phase of engineering focused on the structural characteristics of MetRich, pinpointing fragment N394-H406 (SBP 1.0, corresponding to variant CueO-M12) as the key region dominating the binding. Subsequent site-saturation mutagenesis, combined with electrochemical screening, yielded three variants, and among them, the variant CueO-M12-1 (CueO-M12 H398I) exhibited a more uniform favorable orientation with a 1.38-fold increase in current density. Further electrocatalytic kinetics analysis revealed a significant 21.2-fold improvement in kinetics current density (Jk) compared with that of CueO-WT, leading to the development of SBP 2.0. When SBPs were fused to laccase from Bacillus pumilus (BpL) and fungal bilirubin oxidase from Myrothecium verrucaria (MvBOD), respectively, they transformed a sluggish adsorption process into a rapid and oriented one. In addition, compared with SBP 1.0, SBP 2.0 endows BpL and MvBOD with enhanced electrocatalytic capabilities for oxygen reduction and glucose/O2 EFC performance. The engineered SBPs are promising for serving as a versatile "glue" to enable the immobilization of oxidoreductases in an oriented manner, which leads to a breakthrough in bioelectrocatalysis and thereby overcoming the current bottleneck of EFCs.
Collapse
Affiliation(s)
- Meng Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Xiufeng Wang
- School of Life Sciences, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinyu Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanming Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Fan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Yanbing Shen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Hansen L, Nagdeve SN, Suganthan B, Ramasamy RP. An Electrochemical Nucleic Acid Biosensor for Triple-Negative Breast Cancer Biomarker Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5747. [PMID: 39275659 PMCID: PMC11397751 DOI: 10.3390/s24175747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, affecting younger women and women of minorities. The nomenclature "triple negative" is derived from the absence of the three most common breast cancer biomarkers: progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). It derives its name from testing negative for these three most common breast cancer biomarkers. Currently, TNBC is diagnosed at advanced stages, necessitating the need for a diagnostic tool or method to identify this malignancy at an early stage prior to metastasis. In this study, a novel electrochemical biosensor was developed, optimized, and evaluated for the detection of microRNA-10b (miRNA-10b), marking the first use of this biomarker for the early diagnosis of TNBC. The biosensor demonstrated the ability to detect concentrations as low as 10 pM. Furthermore, the biosensor was specific toward the target biomarker, distinguishing non-target miRNAs of similar size. The efficacy of the biosensor for TNBC early diagnosis was further validated using human serum samples.
Collapse
Affiliation(s)
- Lexi Hansen
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sanket Naresh Nagdeve
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Suganthan B, Rogers AM, Crippen CS, Asadi H, Zolti O, Szymanski CM, Ramasamy RP. A Bacteriophage Protein-Based Impedimetric Electrochemical Biosensor for the Detection of Campylobacter jejuni. BIOSENSORS 2024; 14:402. [PMID: 39194631 DOI: 10.3390/bios14080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Campylobacter jejuni is a common foodborne pathogen found in poultry that can cause severe life-threatening illnesses in humans. It is important to detect this pathogen in food to manage foodborne outbreaks. This study reports a novel impedimetric phage protein-based biosensor to detect C. jejuni NCTC 11168 at 100 CFU/mL concentrations using a genetically engineered receptor-binding phage protein, FlaGrab, as a bioreceptor. The electrochemical impedance spectroscopy (EIS) technique was employed to measure changes in resistance upon interaction with C. jejuni. The sensitivity of the phage protein-immobilized electrode was assessed using the various concentrations of C. jejuni NCTC 11168 ranging from 102-109 colony forming units (CFU)/mL). The change transfer resistance of the biosensor increased with increasing numbers of C. jejuni NCTC 11168 cells. The detection limit was determined to be approximately 103 CFU/mL in the buffer and 102 CFU/mL in the ex vivo samples. Salmonella enterica subsp. enterica serotype Typhimurium-291RH and Listeria monocytogenes Scott A were used as nontarget bacterial cells to assess the specificity of the developed biosensor. Results showed that the developed biosensor was highly specific toward the target C. jejuni NCTC 11168, as no signal was observed for the nontarget bacterial cells.
Collapse
Affiliation(s)
- Baviththira Suganthan
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ashley M Rogers
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Clay S Crippen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Hamid Asadi
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Or Zolti
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Torrinha Á, Tavares M, Delerue-Matos C, Morais S. Microenergy generation and dioxygen sensing by bilirubin oxidase immobilized on a nanostructured carbon paper transducer. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
5
|
A systematic review on the detection and monitoring of toxic gases using carbon nanotube-based biosensors. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Bocanegra-Rodríguez S, Molins-Legua C, Campíns-Falcó P, Giroud F, Gross AJ, Cosnier S. Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer H 2O 2 reduction with HRP and HRP-bacterial nanocellulose. Biosens Bioelectron 2021; 187:113304. [PMID: 34020225 DOI: 10.1016/j.bios.2021.113304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
The non-covalent modification of carbon nanotube electrodes with pyrene derivatives is a versatile approach to enhance the electrical wiring of enzymes for biosensors and biofuel cells. We report here a comparative study of five pyrene derivatives adsorbed at multi-walled carbon nanotube electrodes to shed light on their ability to promote direct electron transfer with horseradish peroxidase (HRP) for H2O2 reduction. In all cases, pyrene-modified electrodes enhanced catalytic reduction compared to the unmodified electrodes. The pyrene N-hydroxysuccinimide (NHS) ester derivative provided access to the highest catalytic current of 1.4 mA cm-2 at 6 mmol L-1 H2O2, high onset potential of 0.61 V vs. Ag/AgCl, insensitivity to parasitic H2O2 oxidation, and a large linear dynamic range that benefits from insensitivity to HRP "suicide inactivation" at 4-6 mmol L-1 H2O2. Pyrene-aliphatic carboxylic acid groups offer better sensor sensitivity and higher catalytic currents at ≤ 1 mmol L-1 H2O2 concentrations. The butyric acid and NHS ester derivatives gave high analytical sensitivities of 5.63 A M-1 cm-2 and 2.96 A M-1 cm-2, respectively, over a wide range (0.25-4 mmol-1) compared to existing carbon-based HRP biosensor electrodes. A bacterial nanocellulose pyrene-NHS HRP bioelectrode was subsequently elaborated via "one-pot" and "layer-by-layer" strategies. The optimised bioelectrode exhibited slightly weaker voltage output, further enhanced catalytic currents, and a major enhancement in 1-week stability with 67% activity remaining compared to 39% at the equivalent electrode without nanocellulose, thus offering excellent prospects for biosensing and biofuel cell applications.
Collapse
Affiliation(s)
- Sara Bocanegra-Rodríguez
- Departamento de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Carmen Molins-Legua
- Departamento de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Pilar Campíns-Falcó
- Departamento de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Fabien Giroud
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes - CNRS, 570 Rue de La Chimie, 38041, Grenoble, France
| | - Andrew J Gross
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes - CNRS, 570 Rue de La Chimie, 38041, Grenoble, France.
| | - Serge Cosnier
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes - CNRS, 570 Rue de La Chimie, 38041, Grenoble, France.
| |
Collapse
|
7
|
A Hybrid Microbial–Enzymatic Fuel Cell Cathode Overcomes Enzyme Inactivation Limits in Biological Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The construction of optimized biological fuel cells requires a cathode which combines the longevity of a microbial catalyst with the current density of an enzymatic catalyst. Laccase-secreting fungi were grown directly on the cathode of a biological fuel cell to facilitate the exchange of inactive enzymes with active enzymes, with the goal of extending the lifetime of laccase cathodes. Directly incorporating the laccase-producing fungus at the cathode extends the operational lifetime of laccase cathodes while eliminating the need for frequent replenishment of the electrolyte. The hybrid microbial–enzymatic cathode addresses the issue of enzyme inactivation by using the natural ability of fungi to exchange inactive laccases at the cathode with active laccases. Finally, enzyme adsorption was increased through the use of a functionally graded coating containing an optimized ratio of titanium dioxide nanoparticles and single-walled carbon nanotubes. The hybrid microbial–enzymatic fuel cell combines the higher current density of enzymatic fuel cells with the longevity of microbial fuel cells, and demonstrates the feasibility of a self-regenerating fuel cell in which inactive laccases are continuously exchanged with active laccases.
Collapse
|
8
|
Cui H, Zhang L, Söder D, Tang X, Davari MD, Schwaneberg U. Rapid and Oriented Immobilization of Laccases on Electrodes via a Methionine-Rich Peptide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Lingling Zhang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Dominik Söder
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Xiaomei Tang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| |
Collapse
|
9
|
Direct Electrochemistry and Photoelectro-Catalysis on Oxygen Reduction Reaction of Titanium Dioxide Nano-Tubes Sensitized by Meso-Tetrakis (4-carboxyphenyl) Porphine with Laccase Accommodation. Macromol Res 2021. [DOI: 10.1007/s13233-021-9008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Torrinha Á, Jiyane N, Sabela M, Bisetty K, Montenegro MCBSM, Araújo AN. Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries. Sci Rep 2020; 10:16535. [PMID: 33024205 PMCID: PMC7539011 DOI: 10.1038/s41598-020-73635-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022] Open
Abstract
This work describes a simple method for the fabrication of an enzymatic electrode with high sensitivity to oxygen and good performance when applied as biocathode. Pencil graphite electrodes (PGE) were chosen as disposable transducers given their availability and good electrochemical response. After electrochemical characterization regarding hardness and surface pre-treatment suited modification with carbon-based nanostructures, namely with reduced graphene, MWCNT and carbon black for optimal performance was proceeded. The bioelectrode was finally assembled through immobilization of bilirubin oxidase (BOx) lashed on the modified surface of MWCNT via π-π stacking and amide bond functionalization. The high sensitivity towards dissolved oxygen of 648 ± 51 µA mM-1 cm-2, and a LOD of 1.7 µM, was achieved for the PGE with surface previously modified with reduced graphene (rGO), almost the double registered for direct anchorage on the bare PGE surface. Polarization curves resulted in an open circuit potential (OCP) of 1.68 V (vs Zn electrode) and generated a maximum current density of about 650 μA cm-2 in O2 saturated solution.
Collapse
Affiliation(s)
- Álvaro Torrinha
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Nomnotho Jiyane
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Myalowenkosi Sabela
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
11
|
Çakıroğlu B, Chauvin J, Le Goff A, Gorgy K, Özacar M, Holzinger M. Photoelectrochemically-assisted biofuel cell constructed by redox complex and g-C 3N 4 coated MWCNT bioanode. Biosens Bioelectron 2020; 169:112601. [PMID: 32931991 DOI: 10.1016/j.bios.2020.112601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Herein, we report a membraneless glucose and air photoelectrochemical biofuel cell (PBFC) with a visible light assisted photobioanode. Flavin adenine dinucleotide dependent glucose dehydrogenase (FADGDH) was immobilized on the combined photobioanode for the visible light assisted glucose oxidation (GCE|MWCNT|g-C3N4|Ru-complex|FADGDH) with a quinone mediated electron transfer. Bilirubine oxidase (BOx) immobilized on MWCNT coated GCE (GCE|BOx) was used as the cathode with direct electron transfer (DET). An improvement of biocatalytic oxidation current was observed by 6.2% due in part to the light-driven electron-transfer. The large oxidation currents are probably owing to the good contacting of the immobilized enzymes with the electrode material and the utilization of light assisted process. Under the visible light, the photobioanode shows an anodic photocurrent of 1.95 μA cm2 at attractively low potentials viz. -0.4 vs Ag/AgCl. The lower-lying conduction band of g-C3N4 as compared to Ru-complexes decreases the rate of hole and electron recombination and enhances the charge transportation. The bioanode shows maximum current density for glucose oxidation up to 6.78 μA cm-2 at 0.2 V vs Ag/AgCl at pH:7. The performance of three promising Ru-complexes differing in chemical and redox properties were compared as electron mediators for FADGDH. Upon illumination, the PBFC delivered a maximum power density of 28.5 ± 0.10 μW cm-2 at a cell voltage of +0.4 V with an open circuit voltage of 0.64 V.
Collapse
Affiliation(s)
- Bekir Çakıroğlu
- Université Grenoble Alpes, DCM UMR 5250, F-38000, Grenoble, France; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), 54187, Sakarya, Turkey
| | - Jérôme Chauvin
- Université Grenoble Alpes, DCM UMR 5250, F-38000, Grenoble, France
| | - Alan Le Goff
- Université Grenoble Alpes, DCM UMR 5250, F-38000, Grenoble, France; CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Karine Gorgy
- Université Grenoble Alpes, DCM UMR 5250, F-38000, Grenoble, France
| | - Mahmut Özacar
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), 54187, Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, 54187, Sakarya, Turkey.
| | - Michael Holzinger
- Université Grenoble Alpes, DCM UMR 5250, F-38000, Grenoble, France; CNRS, DCM UMR 5250, F-38000, Grenoble, France.
| |
Collapse
|
12
|
Trifonov A, Stemmer A, Tel-Vered R. Carbon-coated magnetic nanoparticles as a removable protection layer extending the operation lifetime of bilirubin oxidase-based bioelectrode. Bioelectrochemistry 2020; 137:107640. [PMID: 32891965 DOI: 10.1016/j.bioelechem.2020.107640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023]
Abstract
One of the factors hindering the development of enzymatic biosensors and biofuel cells in real-life applications is the time-dependant degradation of the biocatalysts on electrode surfaces. In this work, we present a new practical approach for extending the operation lifetimes of bioelectrocatalytic assemblies based on bilirubin oxidase (BOD). As evident by both spectroscopic and electrochemical measurements, an adsorption of carbon-coated magnetic nanoparticles (ccMNPs) onto a BOD/carbon nanotubes-deposited surface yields a stable bioelectrocathode system for mediatorless oxygen reduction. As compared to electrodes, which were stored without a preliminary interaction with the ccMNPs, an 80% increase in the active enzymatic content and the electrocatalytic performance was evident for the modified assemblies over a course of one month. As the full removal of the protective particles before the measurement requires only a single step applying an external magnetic force, the method is shown to be simple, reproducible, and easy to implement. Combined with the high efficiency in preserving the enzymatic stability and bioelectrocatalytic currents, the findings suggest a promising methodology for enhancing the lifetimes of bioelectronic applications.
Collapse
Affiliation(s)
- Alexander Trifonov
- ETH Zürich, Nanotechnology Group, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.
| | - Andreas Stemmer
- ETH Zürich, Nanotechnology Group, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Ran Tel-Vered
- ETH Zürich, Nanotechnology Group, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
13
|
Verho O, Bäckvall JE. Nanocatalysis Meets Biology. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Torrinha Á, Montenegro MC, Araújo AN. Conjugation of glucose oxidase and bilirubin oxidase bioelectrodes as biofuel cell in a finger-powered microfluidic platform. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Zhang L, Cui H, Zou Z, Garakani TM, Novoa-Henriquez C, Jooyeh B, Schwaneberg U. Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angew Chem Int Ed Engl 2019; 58:4562-4565. [PMID: 30689276 DOI: 10.1002/anie.201814069] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Indexed: 11/10/2022]
Abstract
Escherichia coli's copper efflux oxidase (CueO) has rarely been employed in the cathodic compartment of enzymatic biofuel cells (EBFCs) due to its low redox potential (0.36 V vs. Ag/AgCl, pH 5.5) towards O2 reduction. Herein, directed evolution of CueO towards a more positive onset potential was performed in an electrochemical screening system. An improved CueO variant (D439T/L502K) was obtained with a significantly increased onset potential (0.54 V), comparable to that of high-redox-potential fungal laccases. Upon coupling with an anodic compartment, the EBFC exhibited an open-circuit voltage (Voc ) of 0.56 V. Directed enzyme evolution by tailoring enzymes to application conditions in EBFCs has been validated and might, in combination with molecular understanding, enable future breakthroughs in EBFC performance.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Zhi Zou
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | | | - Catalina Novoa-Henriquez
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Bahareh Jooyeh
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| |
Collapse
|
16
|
Zhang L, Cui H, Zou Z, Garakani TM, Novoa‐Henriquez C, Jooyeh B, Schwaneberg U. Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingling Zhang
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Haiyang Cui
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Zhi Zou
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | | | - Catalina Novoa‐Henriquez
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Bahareh Jooyeh
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| |
Collapse
|
17
|
Zhou Y, Fang Y, Ramasamy RP. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. SENSORS (BASEL, SWITZERLAND) 2019; 19:E392. [PMID: 30669367 PMCID: PMC6358788 DOI: 10.3390/s19020392] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Carbon nanotubes (CNTs) have been widely studied and used for the construction of electrochemical biosensors owing to their small size, cylindrical shape, large surface-to-volume ratio, high conductivity and good biocompatibility. In electrochemical biosensors, CNTs serve a dual purpose: they act as immobilization support for biomolecules as well as provide the necessary electrical conductivity for electrochemical transduction. The ability of a recognition molecule to detect the analyte is highly dependent on the type of immobilization used for the attachment of the biomolecule to the CNT surface, a process also known as biofunctionalization. A variety of biofunctionalization methods have been studied and reported including physical adsorption, covalent cross-linking, polymer encapsulation etc. Each method carries its own advantages and limitations. In this review we provide a comprehensive review of non-covalent functionalization of carbon nanotubes with a variety of biomolecules for the development of electrochemical biosensors. This method of immobilization is increasingly being used in bioelectrode development using enzymes for biosensor and biofuel cell applications.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Yi Fang
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Ramaraja P Ramasamy
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Spectroscopic and Electrochemical Features of Glucose Oxidase Incorporation into Polyaniline-Cobaltous Oxalate Nano-complex. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0986-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Atalah J, Zhou Y, Espina G, Blamey JM, Ramasamy RP. Improved stability of multicopper oxidase–carbon nanotube conjugates using a thermophilic laccase. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00072g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CNT electrode modified with a thermophilic laccase improved the shelf life and functional stability of the enzyme–CNT composite.
Collapse
Affiliation(s)
- Joaquín Atalah
- Fundación Científica y Cultural Biociencia
- Santiago
- Chile
- Facultad de Ciencias Químicas y Farmacéuticas de la Universidad de Chile
- Santiago
| | - Yan Zhou
- Nano Electrochemistry Laboratory
- School of Chemical, Materials and Biomedical Engineering
- University of Georgia
- Athens
- USA
| | | | | | - Ramaraja P. Ramasamy
- Nano Electrochemistry Laboratory
- School of Chemical, Materials and Biomedical Engineering
- University of Georgia
- Athens
- USA
| |
Collapse
|
20
|
Filla N, Ramasamy R, Wang X. Forces, energetics, and dynamics of conjugated-carbon ring tethers adhered to CNTs: a computational investigation. Phys Chem Chem Phys 2018; 20:11327-11335. [DOI: 10.1039/c8cp00598b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strength and nature of the interactions between carbon nanotubes (CNTs) and molecular tethers plays a vital role in technology such as CNT–enzyme sensors.
Collapse
Affiliation(s)
| | | | - Xianqiao Wang
- College of Engineering
- University of Georgia
- Athens
- USA
| |
Collapse
|
21
|
|
22
|
Electrocatalytic Properties of Cuprous Delafossite Oxides for the Alkaline Oxygen Reduction Reaction. ChemCatChem 2017. [DOI: 10.1002/cctc.201700712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Fusco G, Göbel G, Zanoni R, Kornejew E, Favero G, Mazzei F, Lisdat F. Polymer-supported electron transfer of PQQ-dependent glucose dehydrogenase at carbon nanotubes modified by electropolymerized polythiophene copolymers. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Zhou Y, Marar A, Kner P, Ramasamy RP. Charge-Directed Immobilization of Bacteriophage on Nanostructured Electrode for Whole-Cell Electrochemical Biosensors. Anal Chem 2017; 89:5734-5741. [PMID: 28485143 DOI: 10.1021/acs.analchem.6b03751] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new type of carbon nanotube (CNT)-based impedimetric biosensing method has been developed for rapid and selective detection of live bacterial cells. A proof-of-concept study was conducted using T2 bacteriophage-based biosensors for electrochemical detection of Escherichia coli B. The T2 bacteriophage (virus) served as the biorecognition element, which was immobilized on polyethylenimine (PEI)-functionalized carbon nanotube transducer on glassy carbon electrode. Charge-directed, orientated immobilization of bacteriophage particles on carbon nanotubes was achieved through covalent linkage of phage capsid onto the carbon nanotubes. The presence of the immobilized phage on carbon nanotube-modified electrode was confirmed by fluorescence microscopy. Electrochemical impedance spectroscopy (EIS) was used to monitor the changes in the interfacial impedance due to the binding of E. coli B to T2 phage on the CNT-modified electrode. The detection was highly selective toward the B strain of E. coli as no signal was observed for the nonhost K strain of E. coli. The present achievable detection limit of the biosensor is 103 CFU/mL.
Collapse
Affiliation(s)
- Yan Zhou
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| | - Abhijit Marar
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| | - Peter Kner
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Rojas-Carbonell S, Babanova S, Serov A, Artyushkova K, Workman MJ, Santoro C, Mirabal A, Calabrese Barton S, Atanassov P. Integration of Platinum Group Metal-Free Catalysts and Bilirubin Oxidase into a Hybrid Material for Oxygen Reduction: Interplay of Chemistry and Morphology. CHEMSUSCHEM 2017; 10:1534-1542. [PMID: 28152261 DOI: 10.1002/cssc.201601822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Catalytic activity toward the oxygen reduction reaction (ORR) of platinum group metal-free (PGM-free) electrocatalysts integrated with an enzyme (bilirubin oxidase, BOx) in neutral media was studied. The effects of chemical and morphological characteristics of PGM-free materials on the enzyme enhancement of the overall ORR kinetics was investigated. The surface chemistry of the PGM-free catalyst was studied using X-ray Photoelectron Spectroscopy. Catalyst surface morphology was characterized using two independent methods: length-scale specific image analysis and nitrogen adsorption. Good agreement of macroscopic and microscopic morphological properties was found. Enhancement of ORR activity by the enzyme is influenced by chemistry and surface morphology of the catalyst itself. Catalysts with a higher nitrogen content, specifically pyridinic moieties, showed the greatest enhancement. Furthermore, catalysts with a higher fraction of surface roughness in the range of 3-5 nm exhibited greater performance enhancement than catalysts lacking features of this size.
Collapse
Affiliation(s)
- Santiago Rojas-Carbonell
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, USA
| | - Sofia Babanova
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, USA
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, USA
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, USA
| | - Michael J Workman
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, USA
| | - Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, USA
| | - Alex Mirabal
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Scott Calabrese Barton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, USA
| |
Collapse
|
26
|
Tominaga M, Sasaki A, Tsushida M, Togami M. Biosurfactant functionalized single-walled carbon nanotubes to promote laccase bioelectrocatalysis. NEW J CHEM 2017. [DOI: 10.1039/c6nj02287a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The type and coverage of biosurfactants adsorbed on single-walled carbon nanotubes strongly influence the direct electron transfer reaction of laccase.
Collapse
Affiliation(s)
- Masato Tominaga
- Graduate School of Science and Engineering
- Saga University
- Saga 840-8502
- Japan
| | - Aiko Sasaki
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | | | - Makoto Togami
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
27
|
Wang FF, Zhao YM, Wei PJ, Zhang QL, Liu JG. Efficient electrocatalytic O2 reduction at copper complexes grafted onto polyvinylimidazole coated carbon nanotubes. Chem Commun (Camb) 2017; 53:1514-1517. [DOI: 10.1039/c6cc08552k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Copper complexes of 5-nitrophenanthroline were sandwiched between polyvinylimidazole layers wrapped on carbon nanotubes, which showed ORR activity comparable to a Pt/C catalyst in alkaline media.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Key Laboratory for Advanced Materials of MOE
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Ye-Min Zhao
- Key Laboratory for Advanced Materials of MOE
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials of MOE
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Qian-Ling Zhang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials of MOE
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
28
|
Abstract
The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.
Collapse
Affiliation(s)
- Alice H Suroviec
- Department of Chemistry and Biochemistry, Berry College, 2277 Martha Berry Highway, Mt. Berry, GA, 30149-4005, USA.
| |
Collapse
|
29
|
Fang Y, Bullock H, Lee SA, Sekar N, Eiteman MA, Whitman WB, Ramasamy RP. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase. Biosens Bioelectron 2016; 85:603-610. [DOI: 10.1016/j.bios.2016.05.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
|
30
|
Monsalve K, Mazurenko I, Gutierrez-Sanchez C, Ilbert M, Infossi P, Frielingsdorf S, Giudici-Orticoni MT, Lenz O, Lojou E. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases. ChemElectroChem 2016. [DOI: 10.1002/celc.201600460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karen Monsalve
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | | | - Marianne Ilbert
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Pascale Infossi
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Stefan Frielingsdorf
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | | | - Oliver Lenz
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| |
Collapse
|
31
|
Hou C, Lang Q, Liu A. Tailoring 1,4-naphthoquinone with electron-withdrawing group: toward developing redox polymer and FAD-GDH based hydrogel bioanode for efficient electrocatalytic glucose oxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Du C, Gao X, Chen W. Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61059-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Lalaoui N, Holzinger M, Le Goff A, Cosnier S. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. Chemistry 2016; 22:10494-500. [DOI: 10.1002/chem.201601377] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Noémie Lalaoui
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Michael Holzinger
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Alan Le Goff
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Serge Cosnier
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| |
Collapse
|
34
|
Pinyou P, Ruff A, Pöller S, Alsaoub S, Leimkühler S, Wollenberger U, Schuhmann W. Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers. Bioelectrochemistry 2016; 109:24-30. [DOI: 10.1016/j.bioelechem.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/29/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
35
|
Matanovic I, Babanova S, Chavez MS, Atanassov P. Protein-Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study. J Phys Chem B 2016; 120:3634-41. [PMID: 27015361 DOI: 10.1021/acs.jpcb.6b01616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An example of biocathode based on bilirubin oxidase (BOx) was used to demonstrate how density functional theory can be combined with docking simulations in order to study the interface interactions between the enzyme and specifically designed electrode surface. The electrode surface was modified through the adsorption of bilirubin, the natural substrate for BOx, and the prepared electrode was electrochemically characterized using potentiostatic measurements. The experimentally determined current densities showed that the presence of bilirubin led to significant improvement of the cathode operation. On the basis of the computationally calculated binding energies of bilirubin to the graphene support and BOx and the analysis of the positioning of bilirubin relative to the support and T1 Cu atom of the enzyme, we hypothesize that the bilirubin serves as a geometric and electronic extension of the support. The computational results further confirm that the modification of the electrode surface with bilirubin provides an optimal orientation of BOx toward the support but also show that bilirubin facilitates the interfacial electron transfer by decreasing the distance between the electrode surface and the T1 Cu atom.
Collapse
Affiliation(s)
- Ivana Matanovic
- The Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico , Albuquerque, New Mexico 87131, United States.,Theoretical Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Sofia Babanova
- The Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico , Albuquerque, New Mexico 87131, United States.,J. Craig Venter Institute, La Jolla, California 92037, United States
| | - Madelaine Seow Chavez
- The Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Plamen Atanassov
- The Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
36
|
Lalaoui N, Rousselot-Pailley P, Robert V, Mekmouche Y, Villalonga R, Holzinger M, Cosnier S, Tron T, Le Goff A. Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02442] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noémie Lalaoui
- University Grenoble Alpes and CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | | | - Viviane Robert
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13397, Marseille, France
| | - Yasmina Mekmouche
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13397, Marseille, France
| | - Reynaldo Villalonga
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - Michael Holzinger
- University Grenoble Alpes and CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Serge Cosnier
- University Grenoble Alpes and CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Thierry Tron
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13397, Marseille, France
| | - Alan Le Goff
- University Grenoble Alpes and CNRS, DCM UMR 5250, F-38000 Grenoble, France
| |
Collapse
|
37
|
Fang Y, Umasankar Y, Ramasamy RP. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens Bioelectron 2016; 81:39-45. [PMID: 26918616 DOI: 10.1016/j.bios.2016.01.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections.
Collapse
Affiliation(s)
- Yi Fang
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Yogeswaran Umasankar
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
38
|
Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 2016; 76:91-102. [DOI: 10.1016/j.bios.2015.06.029] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
|
39
|
Hjelm RME, Garcia KE, Babanova S, Artyushkova K, Matanovic I, Banta S, Atanassov P. Functional interfaces for biomimetic energy harvesting: CNTs-DNA matrix for enzyme assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:612-620. [PMID: 26751397 DOI: 10.1016/j.bbabio.2015.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/04/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
The development of 3D structures exploring the properties of nano-materials and biological molecules has been shown through the years as an effective path forward for the design of advanced bio-nano architectures for enzymatic fuel cells, photo-bio energy harvesting devices, nano-biosensors and bio-actuators and other bio-nano-interfacial architectures. In this study we demonstrate a scaffold design utilizing carbon nanotubes, deoxyribose nucleic acid (DNA) and a specific DNA binding transcription factor that allows for directed immobilization of a single enzyme. Functionalized carbon nanotubes were covalently bonded to a diazonium salt modified gold surface through carbodiimide chemistry creating a brush-type nanotube alignment. The aligned nanotubes created a highly ordered structure with high surface area that allowed for the attachment of a protein assembly through a designed DNA scaffold. The enzyme immobilization was controlled by a zinc finger (ZNF) protein domain that binds to a specific dsDNA sequence. ZNF 268 was genetically fused to the small laccase (SLAC) from Streptomyces coelicolor, an enzyme belonging to the family of multi-copper oxidases, and used to demonstrate the applicability of the developed approach. Analytical techniques such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and enzymatic activity analysis, allowed characterization at each stage of development of the bio-nano architecture. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Rachel M E Hjelm
- Nanoscience and Microsystems, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Kristen E Garcia
- Department of Chemical Engineering, Columbia University, 500 W 120(th) St, New York City, NY 10027, USA.
| | - Sofia Babanova
- Department of Chemical and Biological Engineering, Farris Engineering Center 209, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering, Farris Engineering Center 209, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Ivana Matanovic
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States.
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120(th) St, New York City, NY 10027, USA.
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Farris Engineering Center 209, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
40
|
TOMINAGA M, SASAKI A, TOGAMI M. Bioelectrocatalytic Oxygen Reaction and Chloride Inhibition Resistance of Laccase Immobilized on Single-walled Carbon Nanotube and Carbon Paper Electrodes. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Masato TOMINAGA
- Graduate School of Science and Technology, Kumamoto University
- Kumamoto Institute for Photo-Electro Organics (Phoenics)
| | - Aiko SASAKI
- Graduate School of Science and Technology, Kumamoto University
| | - Makoto TOGAMI
- Graduate School of Science and Technology, Kumamoto University
| |
Collapse
|
41
|
Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochemistry 2015; 106:22-7. [DOI: 10.1016/j.bioelechem.2015.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/23/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
|
42
|
Favero G, Fusco G, Mazzei F, Tasca F, Antiochia R. Electrochemical Characterization of Graphene and MWCNT Screen-Printed Electrodes Modified with AuNPs for Laccase Biosensor Development. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1995-2006. [PMID: 28347108 PMCID: PMC5304766 DOI: 10.3390/nano5041995] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/17/2015] [Indexed: 11/23/2022]
Abstract
The aim of this work is to show how the integration of gold nanoparticles (AuNPs) into multi-wall-carbon-nanotubes (MWCNTs) based screen-printed electrodes and into graphene-based screen-printed electrodes (GPHs) could represent a potential way to further enhance the electrochemical properties of those electrodes based on nanoparticles. Laccase from Trametes versicolor (TvL) was immobilized over MWCNTs and GPH previously modified with AuNPs (of 5 and 10 nm). The characterization of the modified electrode surface has been carried out by cyclic voltammetry. The results showed that the use of AuNPs for modification of both graphene and MWCNTs screen-printed electrode surfaces would increase the electrochemical performances of the electrodes. MWCNTs showed better results than GPH in terms of higher electroactive area formation after modification with AuNPs. The two modified nanostructured electrodes were successively proven to efficiently immobilize the TvL; the electrochemical sensing properties of the GPH- and MWCNT-based AuNPs-TvL biosensors were investigated by choosing 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic-acid diammonium salt (ABTS), catechol and caffeic acid as laccase mediators; and the kinetic parameters of the laccase biosensor were carefully evaluated.
Collapse
Affiliation(s)
- Gabriele Favero
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Fusco
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Federico Tasca
- Department of Chemistry of Materials, University of Santiago of Chile, Av. Libertador Bernardo O' Higgins 3363 Estacíon Central, Santiago, Chile.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
43
|
Lopez RJ, Babanova S, Artyushkova K, Atanassov P. Surface modifications for enhanced enzyme immobilization and improved electron transfer of PQQ-dependent glucose dehydrogenase anodes. Bioelectrochemistry 2015; 105:78-87. [DOI: 10.1016/j.bioelechem.2015.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
|
44
|
Chakraborty S, Babanova S, Rocha RC, Desireddy A, Artyushkova K, Boncella AE, Atanassov P, Martinez JS. A Hybrid DNA-Templated Gold Nanocluster For Enhanced Enzymatic Reduction of Oxygen. J Am Chem Soc 2015; 137:11678-87. [DOI: 10.1021/jacs.5b05338] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Sofia Babanova
- Center for Micro-Engineered Materials (CMEM) and Department of Chemical & Biological Engineering, The University of New Mexico, Advanced Materials Laboratory, 1001 University Blvd. SE, Albuquerque, New Mexico 87106, United States
| | | | | | - Kateryna Artyushkova
- Center for Micro-Engineered Materials (CMEM) and Department of Chemical & Biological Engineering, The University of New Mexico, Advanced Materials Laboratory, 1001 University Blvd. SE, Albuquerque, New Mexico 87106, United States
| | | | - Plamen Atanassov
- Center for Micro-Engineered Materials (CMEM) and Department of Chemical & Biological Engineering, The University of New Mexico, Advanced Materials Laboratory, 1001 University Blvd. SE, Albuquerque, New Mexico 87106, United States
| | | |
Collapse
|
45
|
Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N. A redox hydrogel protects the O2 -sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage. Angew Chem Int Ed Engl 2015; 54:12329-33. [PMID: 26073322 DOI: 10.1002/anie.201502776] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/10/2023]
Abstract
The integration of sensitive catalysts in redox matrices opens up the possibility for their protection from deactivating molecules such as O2 . [FeFe]-hydrogenases are enzymes catalyzing H2 oxidation/production which are irreversibly deactivated by O2 . Therefore, their use under aerobic conditions has never been achieved. Integration of such hydrogenases in viologen-modified hydrogel films allows the enzyme to maintain catalytic current for H2 oxidation in the presence of O2 , demonstrating a protection mechanism independent of reactivation processes. Within the hydrogel, electrons from the hydrogenase-catalyzed H2 oxidation are shuttled to the hydrogel-solution interface for O2 reduction. Hence, the harmful O2 molecules do not reach the hydrogenase. We illustrate the potential applications of this protection concept with a biofuel cell under H2 /O2 mixed feed.
Collapse
Affiliation(s)
- Alaa Alsheikh Oughli
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)
| | - Felipe Conzuelo
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | - Martin Winkler
- Lehrstuhl Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
| | - Thomas Happe
- Lehrstuhl Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | - Olaf Rüdiger
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany).
| | - Nicolas Plumeré
- Center for Electrochemical Sciences-Molecular Nanostructures, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany).
| |
Collapse
|
46
|
Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N. Ein Redoxhydrogel schützt die O2-empfindliche [FeFe]-Hydrogenase ausChlamydomonas reinhardtiivor oxidativer Zerstörung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Tominaga M, Sasaki A, Togami M. Laccase Bioelectrocatalyst at a Steroid-Type Biosurfactant-Modified Carbon Nanotube Interface. Anal Chem 2015; 87:5417-21. [DOI: 10.1021/acs.analchem.5b00858] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masato Tominaga
- Graduate
School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Kumamoto Institute for Photo-Electro Organics, Kumamoto 862-0901, Japan
| | - Aiko Sasaki
- Graduate
School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Makoto Togami
- Graduate
School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
48
|
Sekar N, Ramasamy RP. Recent advances in photosynthetic energy conversion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Le Goff A, Holzinger M, Cosnier S. Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell Mol Life Sci 2015; 72:941-52. [PMID: 25577279 PMCID: PMC11113893 DOI: 10.1007/s00018-014-1828-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 01/11/2023]
Abstract
This review summarizes different approaches and breakthroughs in the development of laccase-based biocathodes for bioelectrocatalytic oxygen reduction. The use of advanced electrode materials, such as nanoparticles and nanowires is underlined. The applications of recently developed laccase electrodes for enzymatic biofuel cells are reviewed with an emphasis on in vivo application of biofuel cells.
Collapse
Affiliation(s)
- Alan Le Goff
- University of Grenoble Alpes, DCM UMR 5250, 38000, Grenoble, France,
| | | | | |
Collapse
|
50
|
Campbell AS, Jeong YJ, Geier SM, Koepsel RR, Russell AJ, Islam MF. Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4056-4065. [PMID: 25643030 DOI: 10.1021/am507801x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enzymatic biofuel cells (EBFCs) utilize enzymes to convert chemical energy present in renewable biofuels into electrical energy and have shown much promise in the continuous powering of implantable devices. Currently, however, EBFCs are greatly limited in terms of power and operational stability with a majority of reported improvements requiring the inclusion of potentially toxic and unstable electron transfer mediators or multicompartment systems separated by a semipermeable membrane resulting in complicated setups. We report on the development of a simple, membrane/mediator-free EBFC utilizing novel electrodes of graphene and single-wall carbon nanotube cogel. These cogel electrodes had large surface area (∼ 800 m(2) g(-1)) that enabled high enzyme loading, large porosity for unhindered glucose transport and moderate electrical conductivity (∼ 0.2 S cm(-1)) for efficient charge collection. Glucose oxidase and bilirubin oxidase were physically adsorbed onto these electrodes to form anodes and cathodes, respectively, and the EBFC produced power densities up to 0.19 mW cm(-2) that correlated to 0.65 mW mL(-1) or 140 mW g(-1) of GOX with an open circuit voltage of 0.61 V. Further, the electrodes were rejuvenated by a simple wash and reloading procedure. We postulate these porous and ultrahigh surface area electrodes will be useful for biosensing applications, and will allow reuse of EBFCs.
Collapse
Affiliation(s)
- Alan S Campbell
- Department of Biomedical Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | | | |
Collapse
|